
Submitted to the Astrophysical Journal
Preprint typeset using LATEX style emulateapj v. 12/16/11

A PORTRAIT OF COLD GAS IN GALAXIES AT 60 PC RESOLUTION AND A SIMPLE METHOD TO TEST
HYPOTHESES THAT LINK SMALL-SCALE ISM STRUCTURE TO GALAXY-SCALE PROCESSES

Adam K. Leroy1, Annie Hughes2,3, Andreas Schruba4, Erik Rosolowsky5, Guillermo Blanc6, Alberto D.
Bolatto7, Dario Colombo8, Andres Escala6, Carsten Kramer9, J. M. Diederik Kruijssen10, Sharon Meidt11,
Jerome Pety12,13, Miguel Querejeta11, Karin Sandstrom14, Eva Schinnerer11, Kazimierz Sliwa11, Antonio

Usero15

Submitted to the Astrophysical Journal

ABSTRACT

The cloud-scale density, velocity dispersion, and gravitational boundedness of the interstellar
medium (ISM) vary within and among galaxies. In turbulent models, these properties play key
roles in the ability of gas to form stars. New high fidelity, high resolution surveys offer the prospect to
measure these quantities across galaxies. We present a simple approach to make such measurements
and to test hypotheses that link small-scale gas structure to star formation and galactic environment.
Our calculations capture the key physics of the Larson scaling relations, and we show good corre-
spondence between our approach and a traditional “cloud properties” treatment. However, we argue
that our method is preferable in many cases because of its simple, reproducible characterization of all
emission. Using, low-J 12CO data from recent surveys, we characterize the molecular ISM at 60 pc
resolution in the Antennae, the Large Magellanic Cloud, M31, M33, M51, and M74. We report the
distributions of surface density, velocity dispersion, and gravitational boundedness at 60 pc scales and
show galaxy-to-galaxy and intra-galaxy variations in each. The distribution of flux as a function of
surface density appears roughly lognormal with a 1σ width of ∼0.3 dex, though the center of this
distribution varies from galaxy to galaxy. The 60 pc resolution line width and molecular gas sur-
face density correlate well, which is a fundamental behavior expected for virialized or free-falling gas.
Varying the measurement scale for the LMC and M31, we show that the molecular ISM has higher
surface densities, lower line widths, and more self-gravity at smaller scales.

1. INTRODUCTION

In a turbulent view of star formation, the physical state
of the interstellar medium (ISM) on the scale of individ-
ual gravitationally bound clouds regulates the ability of
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gas to form stars. Turbulent theories link the star for-
mation per unit gas to the mean density, gravitational
boundedness and turbulent Mach number of star-forming
molecular clouds (see Krumholz & McKee 2005; McKee
& Ostriker 2007; Padoan & Nordlund 2011; Kruijssen
2012; Federrath & Klessen 2012; Krumholz et al. 2012;
Hennebelle & Chabrier 2013).

Telescopes including ALMA and NOEMA can measure
the structure of the molecular ISM at the scale of individ-
ual clouds (a few 10s of pc) across large parts of galaxies
(e.g., Schinnerer et al. 2013). Such observations capture
the surface density and velocity dispersion of the gas.
These are close cognates of the mean density and Mach
number, while their ratio probes gravitational bounded-
ness. Thus, observations directly access these cloud-scale
quantities crucial to the ability of gas to collapse and
form stars.

These observations show that cloud-scale gas structure
does vary within and among galaxies. For example, the
surface density, volume density, and line width of molec-
ular clouds in local starburst galaxies far exceed those of
giant molecular clouds (GMCs) in the Milky Way (e.g.,
Leroy et al. 2015; Johnson et al. 2015). Real, if subtler,
differences are also evident among the GMC populations
of more quiescent galaxies (see Rosolowsky 2005; Hughes
et al. 2013b). Within individual galaxies, cloud prop-
erties correlate with environment, varying between arm
and interarm regions, and with radius in the galaxy (e.g.,
Koda et al. 2009; Kruijssen & Longmore 2013; Colombo
et al. 2014; Heyer & Dame 2015).

A major goal for the next years will be to measure
how these variations in cloud-scale properties depend on
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large-scale galactic environment and how they drive the
behavior of the gas on smaller scales. In this paper, we
present the natural framework to carry out such tests.
We then apply it, in limited form, to a suite of the best
available set of high physical resolution (θ = 60 pc) data
for nearby galaxies.

Linking cloud-scale structure to galactic structure and
star formation is a multi-scale problem. The relevant
gas structural properties must be measured on scales of
10s of pc, but galaxy structure and quantities like the
star formation rate (SFR) and star formation per unit
gas require measurements over larger scales. To mea-
sure the time-average rate or efficiency of star formation,
one must marginalize over the evolution of individual re-
gions (e.g., see Kawamura et al. 2009; Schruba et al.
2010; Kruijssen & Longmore 2014). Meanwhile, many
key aspects of galaxy structure are large-scale quantities,
so that comparing mean cloud structure to, e.g., stel-
lar structure or galactic rotation makes sense at larger
scales. Practical considerations also make this a multi-
scale problem; many key probes of ISM state, including
dust properties (e.g., Sandstrom et al. 2013) and sen-
sitive spectroscopy of faint mm-wave lines (e.g., Usero
et al. 2015; Bigiel et al. 2016), are mainly available at
coarse resolution.

Our approach is to use wide-area, high resolution spec-
troscopic maps of gas (in this paper, molecular gas) to
measure the surface density, velocity dispersion, gravi-
tational boundedness, and intensity distribution at the
scale of individual clouds. We do this in a way that
eschews the arbitrary decomposition choices involved in
traditional cloud property measurements. Nevertheless,
we demonstrate below that we recover the results from
cloud property calculations using our simpler approach.

We combine measurements for many lines of sight using
an intensity weighting scheme to measure the intensity-
weighted surface density, line width, and velocity disper-
sion over a region of interest in a galaxy. In this paper,
our regions of interest are Gaussian beams with FWHM
500 pc, though this choice is somewhat arbitrary. Over
this larger area, we measure quantities like the ratio of
total gas mass to star formation rate, the structure of
the galaxy, or the hydrostatic ISM pressure.

As a practical example of this approach, consider a
test of the hypothesis of Krumholz et al. (2012). They
posit that across a wide range of environments ∼1% of
the gas turns to stars over each free-fall time. In this
theory, the relevant size scale is the outer scale of tur-
bulence, ∼ 50−100 pc, and the free-fall time depends
via τff ∝ ρ−0.5 on the density at this scale. The mass
volume density, ρ, in turn, relates closely to the sur-
face density, Σ, so that for purposes of this example,
τff ∝ Σ−0.5. The hypothesis predicts that the ratio
SFR/MH2 ∝ τ−1

ff ∝ Σ0.5. In this case, Σ must be mea-
sured at approximately the cloud scale. However, the
time-averaged ratio of SFR-to-H2 is only accessible aver-
aging over an ensemble of regions in different evolution-
ary states to capture both the time evolution of the star
formation process and to render the SFR estimate reli-
able. Our method to test the Krumholz et al. (2012) hy-
pothesis, then, is to measure Σ at high resolution, weight
the local Σ by intensity, and average to ∼500 pc (or simi-
lar) scales, where we expect a measurement of SFR-to-H2

to be reliable.
Beyond multiple scales and intensity-weighting, the

other key aspect of our proposed methodology is to treat
the intensity of a mass-tracing line (here CO) beam-by-
beam (“beamwise”) as the key parameter. That is, we
estimate surface density, line width, and gravitational
boundedness point-by-point, and avoid decomposition
into clouds and peak finding. Instead, we focus on a
statistical characterization of the ensemble of intensity
measurements at the native resolution of the data. This
approach is simple, with minimal tuning parameters, and
characterizes the whole ISM. The usefulness of such cal-
culations has already been demonstrated in studies by
Sawada et al. (2012), Hughes et al. (2013a) and Leroy
et al. (2013a), each of which deployed variants of some
of the techniques described here.

Many studies have characterized the gas in galaxies at
cloud-scale using an approach that identifies individual
molecular clouds and then measures their properties (Bo-
latto et al. 2008; Donovan Meyer et al. 2012; Hughes et al.
2013b; Colombo et al. 2014; Leroy et al. 2015). These
calculations often have a number of tuning parameters
and assumptions that are embedded in the segmenta-
tion and property measurement algorithms (see Williams
et al. 1994; Rosolowsky & Leroy 2006; Rosolowsky et al.
2008; Colombo et al. 2015). Because they focus on com-
pact objects – and sometimes only on apparently bound
structures – cloud property studies typically do not char-
acterize the full content of the ISM. They are also often
forced to adopt aggressive assumptions and/or extrapo-
lations in their treatment of marginally resolved objects.

The cloud properties treatment still has large value,
including a direct link to studies of individual molecu-
lar clouds in the Milky Way. Indeed, in this paper we
show that our treatment and a cloud property treatment
generally show good agreement. We demonstrate this
by implementing a “gridding kernel” treatment of cloud
properties that allows straightforward comparison of the
two approaches. This gridding approach allows cloud
catalogs to be used in lieu of simple intensity measure-
ments to carry out hypothesis testing over larger regions
of interest. Nonetheless, we argue that due to its simplic-
ity and more complete characterization of the flux, the
intensity-based approach is often a better way to imple-
ment hypothesis tests using the latest generation of high
resolution, wide-field, full-flux recovery data.

In this paper, we lay out our methods in detail (Sec-
tion 2 and Appendix). Then, in Section 3 we apply our
method to six high physical resolution CO data sets span-
ning from dwarf spirals (the LMC, M33) to disks (M31,
M51, M74), and the nearest major merger (the Anten-
nae). In Section 4, we compare our results to those ob-
tained from a cloud property treatment applied to the
same data. In Section 5, we report results for our six
targets, which demonstrate how cloud-scale ISM struc-
ture varies starkly among galaxies. Section 6 summa-
rizes our findings. This section also identifies natural
next steps for this approach, which include application
to Hi and structural measurements, e.g., application to
multiple scales or point-to-point correlation. In the Ap-
pendices, we present details of the methodology that are
crucial to our calculations, but that are likely to interest
a narrower audience. We also show an atlas of cloud-scale
measurements for our six targets.
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2. METHOD

Our method has two steps, illustrated in Figure 1:

1. Measure the properties of a mass-tracing16 spectral
line for each independent beam in a high physical
resolution, wide-area data cube.

2. Characterize the ensemble of beam-scale properties
across a region of interest, carrying out averages
using an intensity-weighted averaging scheme.

We then use these ensemble averages to gauge the mean
physical state of the ISM or to test hypotheses relating
local ISM properties to galaxy structure and processes
like star formation.

In each beam (each small square in Figure 1), we mea-
sure the peak intensity, integrated intensity, mean ve-
locity, and line width. With a few assumptions, these
trace the gas surface and volume density averaged over
the beam, the turbulent velocity dispersion (related to
the Mach number), and the gravitational boundedness of
the gas. Section 2.1 describes these measurements and
the link to physical properties.

We use an intensity-weighted averaging scheme to ag-
gregate cloud properties across a larger region of interest
(the big circle in Figure 1). Measurements made at the
beam scale are weighted by the local integrated intensity
before averaging is performed (e.g., by convolution to a
coarser resolution; see Equation 11 and Section 2.2). Us-
ing a related approach, we measure the distribution of
intensity inside the averaging region (Section 2.3). The
resulting ensemble averages capture the typical cloud-
scale conditions within a larger region of the galaxy.

The rest of this section lays out our methodology in de-
tail. We describe the measurements that we use to char-
acterize the ISM beam-by-beam (Section 2.1), which we
refer to as “beamwise” measurements. Then we discuss
our weighted averages, including their natural extension
to catalogs of point sources, e.g., cloud catalogs (Section
2.2). Finally, we discuss how we incorporate distribu-
tions into our treatment (Section 2.3). We defer several
more technical aspects of the methodology to the Ap-
pendices: (1) the use of spectral stacking (“shuffling”)
to avoid sensitivity biases, (2) calculation of uncertain-
ties, and (3) treatment of the finite spectral response of
the data. We discuss a number of extensions and future
applications of this method in Section 6.4.

2.1. Beam-Wise Measurements

We consider spectroscopic mapping observations of a
line taken to be mass-tracing. In this paper, we focus on
low-J 12CO lines, but the method applies as well to high
physical resolution observations of the Hi 21-cm line or
tracers of gas at different densities. We are interested in
data sets for which the physical size of the beam, θ, is
comparable to the scale of individual molecular clouds
(θ ≈ 50 pc).

Gaussian line profiles are typical for CO and Hi emis-
sion from the disks of star-forming galaxies (e.g., see Pet-
ric & Rupen 2007; Schruba et al. 2011; Caldú-Primo et al.

16 Here “mass-tracing” means a line with near uniform emis-
sivity, so that a single value relates integrated intensity to mass
surface density; for example, this is often the case for the low-J
12CO lines (Bolatto et al. 2013b) or the Hi 21-cm line.

TABLE 1
Measured or Estimated Quantities

Name Symbol Units

Beamwise observables
for a θpc (FWHM) beam

Integrated intensity Iθpc K km s−1

Mean velocity vθpc km s−1

Line widtha σθpc km s−1

Peak intensity Iν,pk,θpc K

“Boundedness”b Bθpc ≡ I/σ2 K km s−1

(km s−1)2

Related quantities
accessed with additional assumptions

Surface densityb Σθpc M� pc−2

Volume densityc ρθpc M� pc−3

Gravitational free-fall time τff yr
Turbulent mach numberd M · · ·
Virial parametere αvir ≈ 2KE

UE
· · ·

Notation for intensity-weighted
ensemble averages〈

Qθpc

〉
Apc

Intensity weighted average

... of quantity Q

... at measurement scale θ

... over averaging beam A

Quantities measured from light
distribution in the averaging beam

16, 50, 84th percentile for

. . . integrated intensity I16,50,84
θpc K km s−1

. . . intensity I16,50,84
ν,θpc K

Logarithmic distribution width ∆84−16 dex

a Expressed as rms velocity dispersion about mean; measurable
from fit, moments, or equivalent width. When relevant a Gaussian
profile is assumed to translate expressions.
b With an appropriate light-to-mass conversion factor.
c With an assumed depth or scale height.
d After accounting for non-turbulent contributions and for an as-
sumed temperature.
e For a fixed size scale.

2013), though they are not universal, especially in ex-
treme environments (e.g., Johnson et al. 2015). Three
pieces of information specify a Gaussian line profile: the
peak intensity, line width, and mean velocity.

The line width, peak intensity, and their combination,
the integrated intensity, provide an observational esti-
mate (with varying degrees of directness) of the surface
density, volume density and associated free-fall time, tur-
bulent velocity dispersion and associated Mach number,
and gravitational boundedness of the gas. Their distri-
butions contain higher order information related to the
GMC mass function and density probability distribution
function (PDF). Their correlations relate to cloud struc-
ture and clustering. The mean velocity is less important
in this paper, though we use it for spectral stacking (Sec-
tion A.1).

2.1.1. Observables

Table 1 summarizes the observables and related quan-
tities used in our analysis.

The integrated intensity, I, is the sum of specific inten-
sity over the line profile. For a mass-tracing line, I will
be closely related to the surface density and should also
trace the volume density of the gas, though less directly.

The central velocity, v, defines the center of the line
profile. It can be calculated in several ways. In this pa-
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PAWS Peak Intensity Map Beam-Scale Measurements 
 
At the scale of the measurement 
(observed) beam: measure integrated 
intensity, peak intensity, line width, 
and combinations for each beam. 

Intensity-Weighted Averages 
 
Weight these measurements by the 
local integrated intensity and use a 
convolution (or another procedure) to 
take a weighted average over the 
larger aggregating beam. The 
aggregating beam can be chosen to 
isolate conditions in a galaxy but to 
improve S/N and average over 
dynamic evolution of ISM clouds. 

Fig. 1.— Sketch of our method on the PAWS CO(1-0) peak intensity map of M51 (Schinnerer et al. 2013; Pety et al. 2013). In each
independent, high resolution beam (illustrated by the small squares), we measure the peak intensity, integrated intensity, line width, and
mean velocity of the gas. With a few assumptions, these constrain the gas surface and volume density, the turbulent velocity dispersion
and Mach number, and the dynamical state of the gas on the scale of an individual cloud (Section 2.1). We then use an intensity-weighting
scheme to derive ensemble averages on larger scales (the large circle), which allows us to test hypotheses linking this cloud-scale structure
to the time-averaged process of star formation and the large-scale structure of the galaxy.

per, we use the intensity-weighted mean velocity, mostly
for stacking purposes.

The one dimensional velocity dispersion, σ, character-
izes the width of the profile, equivalent within a numeri-
cal factor to the FWHM (= 2.35σ) or HWHM (= 1.18σ)
for a Gaussian profile. This quantity captures the kinetic
energy of the gas. In the case where bulk and thermal
motions are small, σ relates closely to the turbulent Mach
number of the gas, M.

Along with σ and v, the peak intensity of the line,
Iν,pk, specifies a Gaussian profile. Several different phys-
ical meanings have been attributed to the peak intensity,
most intriguingly a mapping to the abundance of a cold,
narrow line width gas phase (e.g., Braun 1997). For a
known source temperature (e.g., from multi-transition
modeling) and an optically thick line, it also closely re-
lates to the gas filling factor. Statistically, Iν,pk is in-
teresting because it is independent of the line width, σ,
while the integrated intensity, I, is covariant with σ.

In this paper, we measure σ using the “equivalent
width” approach because it is less sensitive to emission
in the line wings than a moment-based approach, and
it assumes less about the line shape than direct fitting.
Following Heyer et al. (2001), we define the equivalent
width, denoted as σ, as:

σ =
I√

2πIν,pk

. (1)

Note that the optical definition of equivalent width nor-
malizes by the strength of the continuum, while this
millimeter-wave definition uses the peak intensity of the
line. Sensitivity to the peak temperature measurement
represents the main drawback of this approach, because
Iν,pk can be biased low by averaging the line within a
spectral channel and biased high by the tendency to iden-
tify upward scattering noise peaks as the brightest pixel.
Despite these drawbacks, the method performs well on
simulated data, requires few assumptions, and is less sen-
sitive to noise than the moment approach.

2.1.2. Link to Physical Conditions

Surface Density: With an adopted conversion factor,
αconv, the integrated intensity, I, corresponds to the
mass surface density of gas,

Σ

[
M�
pc2

]
= αconv

[
M� pc−2

K km s−1

]
× I

[
K km s−1

]
. (2)

The conversion factor, αCO, between CO emission and
H2 has been discussed at length elsewhere (see Bolatto
et al. 2013b; Sandstrom et al. 2013; Blanc et al. 2013;
Leroy et al. 2011). For CO (1-0), we adopt a fiducial
α1−0

CO = 4.35 M� pc−2 (K km s−1)−1.
Volume Density and free-fall Time: With an assumed

physical depth, l, Σ relates to the average gas mass vol-
ume density, ρ, and particle number density, n, via

ρ

[
M�
pc3

]
=

Σ
[
M� pc−2

]
l [pc]

(3)

nH2

[
cm−3

]
= 14.9× ρ

[
M�
pc3

]
.

The latter equation assumes H2 and a helium mass frac-
tion of 1.36. Both equations assume a constant density
along the line of sight and correspond to the average den-
sity over a large physical area (the beam multiplied by
the assumed l). They should thus be considered distinct
from the microscopic volume density that is relevant, e.g.,
to excite line emission.

One can compute the gravitational free-fall time for
a sphere of density ρ, often taken to be the controlling
timescale for star formation, from

τff =

√
3π

32Gρ
≈ 8.1Myr

(
ρ

M� pc−3

)−0.5

(4)

Mach Number: If the observed line width is due purely
to turbulent motions and the gas kinetic temperature,
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Tkin, is known, then the three dimensional turbulent
Mach number, M, can be computed from the one di-
mensional velocity dispersion σ by

M =

√
3σ

cs
=

√
3σ

0.38 km s−1 T 0.5
25K

. (5)

Here T25K is the kinetic temperature of H2 divided by
25 K, a typical value for molecular gas, and we have as-
sumed that the gas consists purely of H2 molecules (these
numbers would thus need to be adjusted to estimate M
in the atomic ISM from the Hi line). If thermal or bulk
motions contribute to the line width, then Equation 5
will only hold after accounting for these effects. Note
also, that many theories consider the one dimensional
Mach number, which differs from Equation 5 by a fac-
tor of

√
3.

Gravitational Boundedness: The balance of kinetic en-
ergy, KE , and gravitational potential energy, UE , plays
a key role in the behavior of the ISM. At a basic level,
strongly self-gravitating gas will collapse to form dense
structures and then stars. In detail, turbulent theories
treat the virial parameter, αvir ≈ 2KE/UE (Bertoldi &
McKee 1992), as a governing property for star formation
(Krumholz & McKee 2005; Federrath & Klessen 2012;
Padoan et al. 2012).

For a fixed size scale, R, the ratio Σ/σ2 ∝ UE/KE
is proportional to the gravitational boundedness due to
self-gravity of the gas averaged over that size scale (and
thus inversely proportional to the virial parameter). We
define B ≡ I/σ2 as an observational estimate of gas
boundedness at a fixed size scale R.

For a sphere of uniform density and radius R, B relates
to the balance of potential and kinetic energy via

UE

2 KE
≈α−1

vir =
3GM2

5R

2 1
2Mσ2

=
3GM

5Rσ2
(6)

=
3π

5
G R

M
πR2

σ2
=

3π

5
G R

Σ

σ2

α−1
vir ≈

3π

5
G R αconv B

(7)

Here αconv is the light-to-mass conversion factor for the
line of interest (e.g., αCO), G is the gravitational con-
stant, and we have assumed a constant density sphere
in the potential. Equation 6 shows that B maps to the
ratio of potential to kinetic energy and the inverse of the
virial parameter:

B ≡ I

σ2
∝ UE

KE
∝ α−1

vir . (8)

This proportionality holds because B = I/σ2 relates
to the more physical ratio Σ/σ2 via the mass-to-light
conversion factor. As long as the size scale R remains
roughly fixed for a fixed resolution, B probes the gravita-
tional boundedness of the gas. In Section 4.3, we demon-
strate an empirical match between B and αvir measured
from cloud property measurements. Here we note, for
reference, the conversion from B to α−1

vir for a uniform
density sphere of radius R:

α−1
vir = 1.06 R30 α

conv
4.35 B (9)

where R30 is R divided by 30 pc, αconv is the mass-
to-light ratio relative to the fiducial Milky Way value
of 4.35 M� pc−2 (K km s−1)−1, and B is in units of
K (km s−1)−1. Other density profiles produce somewhat
different proportionalities (e.g., see Rosolowsky & Leroy
2006).
Ratio of Dynamical Time to Free-Fall Time: The virial

parameter offers a useful way to assess the dynamical
state of clouds. The same combination of parameters also
traces the ratio of the cloud’s crossing time, τdyn ∝ R/σ,
and the free-fall time, τff ∝ ρ−0.5 ∝ Σ−0.5. Then for a
fixed size scale, R,

B ∝ Σ

σ2
∝
τ−2
ff

τ−2
dyn

=

(
τdyn

τff

)2

. (10)

Though we defer a comparison of these gas properties
to tracers of the star formation rate to a future paper,
we note that Padoan et al. (2012) highlight this ratio,
τdyn/τff , as a controlling parameter that sets the rate of
star formation in galaxies because it relates closely to the
virial parameter. They predict that the efficiency of star
formation per free-fall time varies as exp(−1.6τff/τdyn)
and so should depend on B within geometrical factors.

2.2. Two Scales: Measurement and Averaging

We consider two scales, the measurement scale and the
averaging scale. The measurement scale is the physical
resolution of the original data. This is the scale over
which we measure I, Iν,pk, σ, and B. We denote the mea-
surement scale for a quantity by appending the FWHM
of the beam as a subscript, e.g., Iθpc.

The averaging scale is the scale over which we aggre-
gate measurements using an intensity-weighted average.
As discussed in Section 1, this averaging is necessary for
hypothesis testing because many quantities of interest for
physical theories emerge only with averaging over space
or (via space) time. These include the star formation rate
and star formation efficiency, which become ill-defined
at small scales due to the cycling of individual regions
between different stages of the star formation process
(Kawamura et al. 2009; Schruba et al. 2010; Kruijssen &
Longmore 2014), and large-scale quantities like galactic
structure. In general, any individual parcel of ISM can
be expected to evolve on its local dynamical timescale,
and the evolution at the scale of individual clouds can be
dramatic and destructive. Averaging over a large region
of emission in a common environment therefore repre-
sents the best practical way to access the time-averaged
behavior of gas and star formation.

We translate between the two scales using an intensity
weighted average. We weight each beam-wise measure-
ment by I, the integrated intensity at the measurement
scale. Next, we convolve these weighted measurements
to the averaging scale and divide by the total weights in
the beam. This formulation is designed to answer ques-
tions like: “What is the 60 pc resolution integrated in-
tensity from which the average CO photon arises within
this 500 pc part of the galaxy?” In this case, 60 pc is the
measurement scale, 500 pc is the averaging scale, and the
quantity of interest is the integrated intensity.
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Formally, when using a Gaussian beam for the averag-
ing scale, we measure the intensity-weighted average of
some quantity Q – which may be I, σ, B, or something
else – via

〈Qθpc〉Apc (x0, y0) =

∑
w (x, y) Iθpc(x, y) Qθpc(x, y)∑

w (x, y, ) Iθpc(x, y)
,

where w(x, y) = exp

(
− (θ(x, y, x0, y0))

2

2 σ2
Apc

)
. (11)

Here θ(x, y, x0, y0) is the angular distance from the mea-
surement point (x0, y0), σApc is the 1σ width of the Gaus-
sian averaging beam, and Apc is a shorthand subscript
reporting the FWHM of the averaging beam17. The sums
in Equation 11 run over the whole map. In practice, only
pixels within a few times σApc of (x0, y0) contribute to
〈Qθpc〉Apc.

Our shorthand describing this operation thus reads
〈Qθpc〉Apc, which should be read as “the intensity-

weighted average of Q measured at θ pc (FWHM) resolu-
tion and averaged over an Apc (FWHM) sized area.” In
this paper, we examine 〈I60pc〉500pc (among other quan-

tities), which is the integrated intensity measured at
60 pc (FWHM) resolution and averaged over a 500 pc
(FWHM) beam.

For any meaningful comparison of surface or volume
densities, this measurement scale should be matched be-
tween data sets. This can be an absolute match; e.g., a
comparison of surface densities measured with θ ≈ 60 pc
can be meaningful. Alternatively, tailoring the measure-
ment scale to the object in question makes sense; e.g.,
comparing surface densities within the effective radius of
a galaxy can make sense. A gross mismatch in the mea-
surement scale seriously undermines the meaning of any
comparison. Because of the dramatic differences in res-
olution and distance, this issue has plagued previous ef-
forts to unify our view of Galactic and extragalactic star
formation. It has also frequently prevented meaningful
comparisons between simulations and observations.

There is no absolute correct measurement scale. In
theory, this formalism can be useful to merge many pairs
of scales, for example relating ∼kpc resolution surface
densities to averages over whole galaxies. In practice,
our main goal is to test theories that link cloud-scale gas
structure to galaxy-scale conditions. For this applica-
tion, the measurement scale should approach the scale of
individual clouds or the outer scale of turbulence, which
are often taken to be roughly equivalent (e.g. Kritsuk
et al. 2013).

Similarly, there is no single correct averaging scale, but
previous studies have shown that familiar scaling rela-
tions that reflect time-averaged behavior emerge at scales
of a few hundred pc to a kpc (see Schruba et al. 2010;
Onodera et al. 2010; Leroy et al. 2013b). A Gaussian
averaging beam is also not required. One could con-
sider, e.g., dynamically distinct zones in the galaxy or
radial bins instead. A round top hat could also be used
to address many of the topics in this paper; we prefer

17 As written, the averaging beam does not account for incli-
nation, but could be modified to do so and hence yield a circular
beam in the plane of the galaxy.

the Gaussian averaging kernel for mainly aesthetic rea-
sons: the lack of sharp edges and the ability to create
smooth maps of intensity-weighted properties from ir-
regularly sampled data.

Note that because they contain no intensity, missing
regions in the map or areas outside the edge of the map
will not contribute to this sum. This can lead to the case
where only a small amount of emission is encompassed in
the average. A similar situation can occur if the averag-
ing beam is too small and the region is deficient in gas.
In practice, this concern can be addressed by considering
only regions above a minimum integrated flux, requiring
some minimum covering fraction of bright molecular gas,
or increasing the size of the averaging beam.

2.2.1. Gridding Cloud Property Measurements or Other
Point Sources

This approach can also be applied to populations of
point sources, weighting by luminosity instead of inten-
sity. In this paper, we apply such treatment to catalogs
of molecular clouds, comparing the results of our beam-
wise calculations to the cloud properties to benchmark
our approach. We calculate 〈QGMC〉Apc, the luminosity-
weighted average GMC property in a Gaussian averaging
beam with FWHM Apc. To do so, we calculate

〈QGMC〉Apc (x0, y0) =

∑GMCs
i w (xi, yi) Li Qi∑GMCs
i w (xi, yi, ) Li

, (12)

where w is a Gaussian convolution kernel with scale σApc

(and FWHM Apc), defined as in Equation 11, and the
sum runs over all GMCs. As before, only GMCs located
within a few σApc of the point of interest contribute. Of
course, Equation 12 works for any set of cataloged point
sources with properties of interest, not only GMCs.

2.3. Incorporating Distributions

Beyond ensemble averages, the distributions of I, σ,
B, and specific intensity, Iν , are of physical interest.
These distributions roughly map to population statistics
of clouds, e.g., the mass function, which show environ-
mental correlations (Rosolowsky 2005; Colombo et al.
2014, Hughes et al. subm.) and play important roles in
many theories for galactic-scale star formation (e.g. Tan
2000; Krumholz & McKee 2005; Meidt et al. 2013).

Similar to Sawada et al. (2012) and Hughes et al.
(2013a), we gauge the distribution of emission within the
averaging beam. Within each beam, we calculate the
sum of integrated intensity from lines of sight of sight
above a succession of threshold intensities, t. Varying
t from a low to high value, we calculate the total flux
in the beam above each threshold. By dividing the to-
tal flux obtained for each value of t by the total flux,
we construct an analog to the integrated intensity cumu-
lative distribution function (CDF). The process can be
applied to the cube itself, thresholding on specific inten-
sity and summing voxels, or to the maps, thresholding
on integrated intensity. The volumetric implementation
resembles the “brightness distribution index” of Sawada
et al. (2012). The main difference is that their approach
is differential, and involves contrasting Iν over two nar-
row specific ranges of Iν .
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Fig. 2.— Illustration of our approach to distributions, here ap-
plied to M51. We measure the fraction of the flux (y-axis) above
a given integrated intensity threshold (x-axis), progressively vary-
ing the threshold used. Each gray line shows the result for an
individual 500 pc averaging beam. Dashed and dotted horizon-
tal lines illustrate the 16th, 50th, and 84th percentiles. We define
the logarithm of the ratio between the integrated intensities that
yield the 16th and 84th percentiles as ∆84−16. The solid diagonal
line illustrates the implied slope in the distribution function. Red
points and error bars show the median and 1σ rms scatter across
all measurements for M51.

Our approach also differs from that of Sawada et al.
(2012) and Hughes et al. (2013a) in that we consider the
distribution of intensity rather than number counts of
pixels. The distinction is somewhat arbitrary; the two
are readily related by an integral or derivative. We focus
on the distribution of intensity because we are primarily
interested in how the bulk of the gas behaves. Based
on the distributions measured by Hughes et al. (2013a)
and the GMC mass spectra measured by (Rosolowsky
2005), reasonable completeness in intensity is also easier
to achieve than completeness in number counts. There
are many low intensity lines of sight, but for the most
part they do not contribute an overwhelming fraction of
the total luminosity. To an extent, this can be checked
by the convergence tests we describe below.

In practice, we implement these calculations by adding
an additional masking criterion to the maps and cubes
created at our measurement scale. When thresholding
by integrated intensity, we:

1. Set all lines of sight with I < t to have I = 0
in the integrated intensity (moment-0) map at the
measurement scale.

2. Convolve the integrated intensity map to the aver-
aging scale.

3. Record the convolved, thresholded intensity at each
location.

4. Repeat for a succession of values of t.

This algorithm acts on the integrated intensity map and
yields the distribution of flux as a function of integrated
intensity. When instead considering the distribution of
specific intensity, we threshold on specific intensity, Iν ,

in the data cube and set voxels with Iν < t to 0. We
then sum the flux over the averaging beam and proceed
as above.

The result of the above procedure is a measurement
of the flux CDF as a function of specific or integrated
intensity. Figure 2 shows the integrated intensity distri-
bution function that we obtain for M51 (PAWS). Each
gray line represents a CDF for an individual 500 pc av-
eraging beam, the red bins show the median trend and
scatter.

The CDF can be analyzed in a number of ways. In this
paper, we record a few basic properties,

1. The intensity thresholds corresponding to 16, 50,
and 84 percent of the included flux.

2. The logarithmic difference between the 84th and
16th percentile, ∆84−16.

These quantities are illustrated by the dotted and dashed
lines in Figure 2. In Section 5.3, we show that the
50th percentile value corresponds well to the intensity
weighted mean that we measure above. Meanwhile,
∆84−16 captures the width of the mass distribution. For
a linear translation of light to mass (i.e. a fixed conver-
sion factor), it can be re-expressed as a logarithmic slope
of the mass CDF. We return to this below.

2.4. Convergence In Intensity Measurements

Our measurements will be most interesting when the
data set analyzed recovers a large fraction of the total
flux from the galaxy at good signal-to-noise at the mea-
surement scale. This allows robust calculation of mo-
ments for each line-of-sight, in turn allowing shuffling
and stacking to make detailed line profile measurements.

Using stacking (see Section A.1), our method should
be sensitive to all of the flux along each line of sight for
which we find bright signal. In this paper, “bright signal”
mean two channels at S/N > 5; more generally, it means
sufficient signal to calculate a first moment and include
the emission in the stacking. To measure how much of
the total flux in the cube such an analysis characterizes,
we carry out the following calculation:

1. Mask the data at the measurement scale using the
criteria used to calculate the first moment.

2. Expand this mask so that it includes all velocities
along a line of sight with any bright signal.

3. Integrate the emission in the data cube that lies
inside the mask and the total emission in the data
cube.

4. Divide the two to estimate the fraction of flux char-
acterized by the methods above.

If the fraction is high, our approach offers a robust
way to describe the properties of the ISM over part of
a galaxy. If the fraction is low, a more sophisticated
approach may be merited. One option would be to use
another bright line as a prior on the local velocity of
CO (e.g., as done with Hi and CO by Schruba et al.
2011). Another option would be to use lower resolution
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versions of the data or to otherwise interpolate the ve-
locity field to predict the local velocity or to work at
a coarser resolution with better flux recovery. Alterna-
tively one could work entirely in the unmasked data, si-
multaneously fitting the distributions of signal and noise
in three-dimensional space.

3. DATA AND APPLICATION

We apply our methodology to characterize the ISM
at 60 pc resolution using the six high resolution, good
sensitivity data sets available to us. These data sets,
shown in Figure 3, are the PAWS map of CO 1-0 from
M51 (Schinnerer et al. 2013); the ALMA CO 2-1 map
of M74 (P.I.: Schinnerer); the CARMA CO 1-0 survey
of Andromeda (Schruba et al., in prep.); the IRAM CO
2-1 survey of M33 (Druard et al. 2014; Gratier et al.
2010); the MAGMA CO 1-0 survey of the Large Magel-
lanic Cloud (Hughes et al. 2010; Wong et al. 2011); and
the CO 3-2 survey of the overlap region of the Antennae
(Whitmore et al. 2014; Johnson et al. 2015). All of these,
except the ALMA Antennae survey, include single dish
data, and so they recover the full flux of the target. The
interacting Antennae yield a very interesting contrast to
the more quiescent spiral and dwarf galaxies, and so we
include them despite the different line (CO 3-2) and lack
of short spacing data.

For each cube, we convolve the data to have a round
beam, convert to units of Kelvin, and then apply the pro-
cessing described above and in the Appendices. Specif-
ically, operating on the cube at the measurement (θ =
60 pc) scale:

1. We identify bright signal in the data cube following
the CPROPS methodology of Rosolowsky & Leroy
(2006). We begin with regions that show ≥ 2 con-
secutive channels above S/N = 5. We then expand
the mask to include all contiguous regions with ≥ 2
consecutive channels above S/N = 1.5.

2. We calculate the integrated intensity, first and sec-
ond moment, and peak intensity based on the emis-
sion inside this mask.

3. We create a “shuffled” version of the data cube, re-
gridding each spectrum so that the local first mo-
ment is the new reference velocity (see Schruba
et al. 2011, and Section A.1). We apply this op-
eration to the unmasked data cube.

4. We weight each measurement (moment) and each
spectrum in the shuffled cube by the local inte-
grated intensity, I, calculated via the zeroth mo-
ment of the masked cube.

5. We convolve these intensity-weighted measure-
ments to the averaging scale. We also convolve the
integrated intensity to this scale. We divide the
weighted, convolved quantity (or spectrum) by the
convolved integrated intensity map. This yields an
intensity-weighted average of each measurement.

6. From the intensity-weighted shuffled spectrum
at the averaging scale, we derive 〈I60pc〉500pc,

〈Iν,pk,60pc〉500pc, 〈σ60pc〉500pc, and 〈B60pc〉500pc at

each location.

7. We also measure the (non-weighted) integrated
intensity in each beam at the averaging scale
using the progressive thresholding described in
Section 2.3. This diagnoses the distribution of
measurement-scale intensities and integrated inten-
sities within the averaging beam.

Following Leroy et al. (2012, 2013b), we build a
Nyquist-spaced (for the averaging beam) hexagonal grid
and sample the intensity weighted measurements. This
yields a moderately oversampled database in which the
intensity-weighted properties of the ISM at the measure-
ment scale are characterized over the scale of the aver-
aging beam at each position in each galaxy.

Following Section A.2, we also carry out a Monte Carlo
calculation to estimate the uncertainties associated with
each measurement. We realize 100 data sets with ran-
domly generated noise and record these as an ensemble
of mock databases. Analyzing their distribution, we esti-
mate the magnitude of and covariance among statistical
uncertainties in each parameter.

For each data set, we also run several cloud property
analysis algorithms, which decompose the emission into
discrete clouds and measure their properties. We ap-
ply the CPROPS algorithm (Rosolowsky & Leroy 2006),
a seeded version of the CLUMPFIND (Williams et al.
1994; Rosolowsky & Blitz 2005) algorithm, and the den-
drogram multiscale approach (Rosolowsky et al. 2008).
In each case we characterize the emission in a “cloud”
following Rosolowsky & Leroy (2006) with modifications
noted in Leroy et al. (2015).

The results of these cloud calculations are estimates
of the size, line width, and luminosity for each cloud, as
well as their combinations, the cloud surface density and
the virial parameter (see Section 2.1). We record these,
so that we have a large set of cloud properties for each
target. We aggregate these into our database using the
approach to gridding cloud properties described in Sec-
tion 2.2.1, carrying out a luminosity-weighted Gaussian
gridding using a kernel with the averaging scale.

We repeat our measurements at a series of resolutions,
beginning with the native resolution listed in Table 2
and increasing to 300 pc. This changes the measurement
scale.

We note some processing details specific to individual
data sets. In the LMC, we assume that regions outside
the MAGMA field-of-view have zero intensity; MAGMA
recovers ∼80% of the full-galaxy CO flux as gauged from
the NANTEN (Fukui et al. 1999) survey, so this assump-
tion should introduce minimal bias (see Wong et al. 2011;
Hughes et al. 2013a,b). For the M33 map, the noise
is inhomogeneous due to the inclusion of some deep re-
gions used in focused studies. We homogenize the noise
by adding 12′′ resolution noise with appropriate spectral
correlation to bring the cube to an approximately even
40 mK (Tmb) noise level. We apply the efficiency correc-
tion noted in Druard et al. (2014).

Table 3 reports properties of the data cubes that we use
at the θ = 60 pc (FWHM) resolution of our analysis. We
give the channel coupling, k, estimated from the channel-
to-channel correlation following Section A.3, and the rms
noise estimated from signal-free regions.

3.1. Convergence
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Fig. 3.— Peak intensity maps for CO emission at θ = 60 pc (FWHM) for (top left) the Large Magellanic Cloud (LMC) from Wong et al.
(2011), (top middle) M74 from ALMA (Schinnerer, Sliwa, et al. in prep.), (top right) M33 from Gratier et al. (2010) and Druard et al.
(2014) and (bottom left) M31 from CARMA (Schruba et al., in prep), (bottom middle) M51 from Schinnerer et al. (2013) and Pety et al.
(2013), and (bottom right) the overlap region of the Antennae galaxies from Whitmore et al. (2014). A beam in the bottom left corner
shows the 60 pc FWHM size of the beam; the dotted white lines are spaced by 1 kpc at the distance to the target. We analyze these data
using both our beamwise method and cloud properties software.

TABLE 2
Data Analyzed

Galaxy Line Distance Resolutiona Channelb Adopted αCO
c Reference

(Mpc) (pc) (km s−1) (
M� pc−2

K km s−1 )

Antennae CO (3-2) 21.5 60 5.0 17.4 Whitmore et al. (2014)
LMC CO (1-0) 0.05 15 1.6 8.7 Wong et al. (2011)
M31 CO (1-0) 0.78 20 2.5 4.35 Schruba et al. (in prep.)
M33 CO (2-1) 0.84 50 2.6 10.8 Druard et al. (2014); Gratier et al. (2010)
M51 CO (1-0) 7.6 45 5.0 4.35 Schinnerer et al. (2013); Pety et al. (2013)
M74 CO (2-1) 9.0 45 2.0 7.9 Schinnerer et al. (in prep.)

a Native resolution; the analysis in this paper is carried out at a common 60 pc resolution.
b Channel width used in analysis; the spectral resolution in the LMC has been degraded to this value to increase signal to noise.
c Adopted mass to light ratio for the line in question, see Section 3.2.

The last column notes of Table 3 reports the complete-
ness of the data, calculated following Section 2.4. At our
resolution of θ = 60 pc, we recover ∼70−100% of the
total flux in the cube. Note that the value larger than
unity in the Antennae galaxy reflects large regions of
moderately negative data, “clean bowls,” in that data
cube, which lacks short spacing correction. Although
the ∼30% of the flux missed by our analysis in M33 and
M74 is significant, in each case our calculation character-

ize the bulk of the emission. The remaining flux could be
included in the analysis either by using a line other than
CO (likely Hi) as a prior to stack faint regions (Schruba
et al. 2011) or by a full analysis of the intensity distribu-
tion in the data cube.

Figure 4 plots flux recovery as a function of resolution
for our target data sets. For the most part, flux recovery
improves as the resolution becomes coarser. This reflects
that improved signal-to-noise allows more areas to be
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TABLE 3
Measured Data Set Properties at 60 pc

Resolution

Galaxy Channela Noiseb Completenessc

Coupling (k) (K)

Antennae 0.07 0.1 1.1
LMC 0.06 0.03 0.9
M31 0.09 0.03 0.9
M33 0.12 0.03 0.7
M51 0.14 0.2 1.0
M74 0.07 0.1 0.7

a Coupling between channels expressed as k (Equation
A1) in the kernel that reproduced the observed channel-
to-channel noise correlation.
b Representative rms noise per channel at 60 pc resolution
from signal-free regions. Note that the channel widths vary
among data sets.
c Ratio of flux included in the analysis to flux in the
cube. The value above unity in the Antennae indicates
that these data lack short spacing information, so that
moderate “clean bowls” persist outside the region that we
treat.

Fig. 4.— Flux recovery in our data, defined in Section 2.4, plotted
as a function of resolution. The measurement scale θ = 60 pc used
in this paper appears as a thick vertical gray line.

included in the mask. The effect is strongest for M31,
M33, and M74, where the signal-to-noise at the native
resolution is good but not sufficient to recover all of the
faint emission in the cube. The decline from high to low
resolution in the Antennae reflects image reconstruction
artifacts.

3.2. Adopted Conversion Factors

In Section 5 we will translate CO intensities into
masses. To do this, we adopt a CO-to-H2 conversion fac-
tor appropriate to each line and galaxy. Refining these
represents its own area of research; here we only note our
adopted value for each galaxy and motivate our choice.

For the Antennae, we adopted α3−2
CO = 17.4 M� pc−2

(K km s−1)−1. This combines a Milky Way conversion
factor for CO (1-0) and a CO (3-2) / (1-0) ratio of ≈ 0.25
(Ueda et al. 2012; Bigiel et al. 2015).

For the LMC, we take αCO = 8.7 M� pc−2

(K km s−1)−1, based on results from MAGMA (Hughes

TABLE 4
Comparison of Our Approach to GMC Properties

Ratio Median Scatter
(dex)

GMC Radius to Beam
. . . CPROPS 1.3 0.10
. . . CLUMPFIND 1.7 0.16

GMC I to Beam-wise I60pc
. . . CPROPS 0.8 0.19
. . . CLUMPFIND 0.7 0.22

GMC σ to Beam-wise σ60pc
. . . CPROPS 0.8 0.09
. . . CLUMPFIND 1.2 0.07

GMC αvir to Beam-wise B−1
60pc

. . . CPROPS 1.2 0.22

. . . CLUMPFIND 2.7 0.30

Note. — Ratios taken across all data sets. All resolutions
used for the radius-to-beam ratio. In other cases, we use a
60 pc measurement scale. Ratios reflect luminosity weighted
mean cloud property and intensity-weighted, stacked beam-
wise measurement over a 500 pc averaging beam.

et al. 2010; Wong et al. 2011) and consistent with Leroy
et al. (2011) and Jameson et al. (2015).

For M31, we adopt a Galactic α1−0
CO = 4.35 M� pc−2

(K km s−1)−1, this is consistent with the dust modeling
results of Leroy et al. (2011), but given the difficulty of
modeling the Spitzer bands and M31’s outlying behavior
in several plots that we present in Section 5, we underline
CO-to-H2 conversion factor as a possible uncertainty for
M31.

For M33, we take α2−1
CO = 10.8 M� pc−2

(K km s−1)−1, which reflects the average CO (2-1) / (1-
0) ratio, ≈ 0.8, measured by Druard et al. (2014) and a
CO (1-0)-to-H2 conversion factor twice the Milky Way
value. We adopt this value based on the recommenda-
tion of Druard et al. (2014), but note some uncertainty
given the apparent contradiction with Rosolowsky et al.
(2003).

For M51, we adopt a Galactic αCO = 4.35 M� pc−2

(K km s−1)−1. Groves et al. (in prep.) show that several
independent approaches yield results consistent with this
value; although note that there is evidence to support
lower values (e.g., Schirm et al. submitted).

For M74, we adopt α2−1
CO = 7.9 M� pc−2

(K km s−1)−1, which combines a CO (2-1)/(1-0) ratio of
∼0.55 with a Galactic CO (1-0)-to-H2 conversion factor.
The line ratio measurement comes from two pointings by
Usero et al. (2015) and is consistent with the integrated
flux ratio of 0.62 between the HERACLES (Leroy et al.
2009) and BIMA SONG (Helfer et al. 2003) data cubes
for this galaxy.

4. BEAMWISE MEASUREMENTS AND CLOUD
PROPERTIES

First, we compare our θ = 60 pc measurements, aver-
aged over 500 pc scales, to results from GMC property
estimates. Figure 5 and Table 4 report the ratio of en-
semble average measurements based on cloud catalogs
(y-axis) to those calculated from our beamwise approach
(x-axis). We highlight three important results of this
comparison. First, cloud cataloging techniques always
yield marginally resolved objects, meaning that our ne-
glect of cloud sizes in the beamwise treatment in fact
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Fig. 5.— (top left) GMC radius as a function of the physical resolution (FWHM beam size) used to carry out the measurement. GMCs
tend to be marginally resolved, beam-scale objects, supporting our adoption of the beam as the relevant physical scale. (remaining panels)
GMC properties measured at θ = 60 pc as a function of analogous beamwise quantities, also measured at θ = 60 pc. For both axes, we
use an averaging scale of 500 pc (FWHM). Each panel shows all data sets using two segmentation methodologies: CPROPS (red points)
and seeded CLUMPFIND (blue points). Circles with error bars show y binned by x with the 1σ logarithmic scatter, and so indicate the
mean relationship. The top right panel shows integrated intensity. The bottom left panel shows line width, with clouds in the overlap
region of the Antennae galaxies marked by gray circles. This region shows complex, often multi-component line profiles, leading to the
discrepancy between the cloud approach and our simple characterization of the line-of-sight line width. The bottom right panel shows the
virial parameter, αvir ∝ KE/UE , as a function of our beamwise approach to “boundedness,” B ≡ I/σ2 ∝ UE/KE . The two correlate in

the expected way, with B ∝ α−1
vir , though with substantial scatter due to cloud radius variations, particularly in CLUMPFIND.

loses less information than one might expect. Second, the
average integrated intensities, I, and line widths, σ, from
our beamwise approach track those from cloud cataloging
algorithms well. Finally, our observational “bounded-
ness” parameter B correlates with the estimated virial
parameter, αvir, in the expected way. We further derive
a ratio relating B to αvir and compare this to the simple
geometrical estimate from Section 2.1.2.

4.1. Clouds are Always Marginally Resolved

Our method takes the measurement beam as the char-
acteristic size scale. Cloud property treatments measure
the size of individual objects extracted from the data

cube. Both approaches have merit and one can justify
our approach simply by the desire to measure average
gas properties at a fixed spatial scale.

Based on Figure 5, we make a stronger argument
that our approach is preferable to a cloud-based treat-
ment. The top left panel plots the average, luminosity-
weighted cloud radius measured using CPROPS and
CLUMPFIND as a function of the native resolution of
the data. Here, we have repeated measurements for our
six targets as we degrade the resolution from its native
value to 100 pc. Table 4 reports the median ratio and
scatter. Clouds in our analysis have radius 1.3 (1.7) times
the beam size using CPROPS (CLUMPFIND), with a
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comparatively small scatter of 0.1 (0.16) dex.
The figure shows that cloud property measurements

tend to recover beam-sized objects from the data. There
is some scatter, which does contain physical information,
but overall it is reasonable to characterize objects in ex-
tragalactic GMC studies as marginally resolved, beam-
sized objects. For a statistical characterization of a re-
gion, Figure 5 suggests that little information is lost –
and a large amount of simplicity and robustness is gained
– by using our beamwise approach.

Figure 5 reinforces and extends the point made by
Hughes et al. (2013b). They showed that the line width-
size relation, one of “Larson’s Laws,” is almost impossi-
ble to extract from cloud property measurements for a
single galaxy or a set of galaxies at a common resolu-
tion. Figure 5 reveals an easy explanation: the dynamic
range in size scales that are accessed by applying cloud
property measurements to a fixed physical resolution is
small. A much stronger relationship between line width
and size emerges when combining studies with different
spatial resolution (e.g., see Bolatto et al. 2008; Fukui &
Kawamura 2010; Leroy et al. 2015). However, as pointed
out by Hughes et al. (2013b), leveraging different galax-
ies to obtain dynamic range makes it harder to measure
differences among the ISM properties in different galax-
ies.

When a data set has intrinsically high resolution, one
can always degrade the resolution. Multi-scale analysis
of an individual data set would therefore seem a promis-
ing way to access the line width-size relation in a single
target. This has been applied in the Milky Way, first
by Heyer et al. (2004) and then several times using the
dendrogram approach of Rosolowsky et al. (2008) (e.g.,
Shetty et al. 2012). With the latest generation of high
resolution CO nearby galaxy surveys, multi-scale struc-
tural analysis is also a viable technique for extragalactic
applications (e.g., Schruba et al., in prep.; Colombo et
al., in prep.). An alternative approach using our frame-
work is to simply re-characterize the beam-wise statistics
of the image for progressively larger measurement beams.
We defer such an investigation to a future paper.

4.2. Beamwise vs. Cloud-Based Integrated Intensity and
Line Width

The top right and bottom left panel of Figure 5
plot average integrated intensity and line width from
luminosity-weighted, gridded GMC catalogs as a func-
tion of measurements over the same area using our beam-
wise approach. Here, we use all six targets and a uniform
measurement scale of θ = 60 pc.

The average integrated intensity and line width esti-
mated from cloud catalogs correlate well with our beam-
wise measurements. The median ratios, reported in Ta-
ble 4, are not exactly unity. Particularly for the case
of the integrated intensity, this should not be surprising.
The integrated intensity for clouds depends on the cloud
radius, which is defined assuming some fiducial geometry
(see Solomon et al. 1987; Rosolowsky & Leroy 2006). The
rms scatter between the different approaches is ∼50% for
the integrated intensity and smaller, ∼30%, for the line
width.

The largest discrepancy between the two methods ap-
pears at high line width. The bottom left panel in Figure
5 shows a population of points with high beam-wise line

width compared to their GMC line widths. These come
from the Antennae galaxies and reflect lines-of-sight in
the “overlap region” where the line profiles show multi-
ple components. This is not an intrinsic failure of our
beamwise approach; it would be possible to refine the
calculation of the line width to deal with multiple com-
ponents. It does, however, highlight that the line-of-
sight line width may not map trivially to a turbulent
velocity dispersion, especially in complex regions. Pro-
jection effects and local dynamics at or below the scale
of the beam may likewise affect the correspondence be-
tween the line width and the turbulent velocity disper-
sion. The overlap region in the Antennae is the site of an
ongoing collision between two galaxies; but similar issues
may appear in subtler ways in galactic spiral arms with
strong streaming motions (e.g., Meidt et al. 2013), or in
gas flows influenced by bars (e.g., Sorai et al. 2000). We
defer a more detailed treatment of complex line profiles
to future work. Importantly for the discussion below, we
note that some of the line width that our method esti-
mates for the Antennae galaxies arises from combining
multiple velocity components. However, we emphasize
that a cloud-property treatment, which does segment the
different velocity components into separate clouds, also
finds that GMCs in the Antennae overlap region have
the highest average line width among our galaxy sample
(e.g., Wei et al. 2012).

4.3. The Virial Parameter and B ≡ I/σ2

The bottom right panel of Figure 5 plots the mean
virial parameter (Equation 6) as a function of our B pa-
rameter, defined as B ≡ I/σ2. Following Section 2.1.2,
we expect these two quantities to anti-correlate, with
αvir ∝ KE/UE and B ∝ UE/KE . As expected, we
see this behavior in the figure.

Because the physical configurations corresponding to
UE = KE (bound; αvir ≈ 2) and UE = 2KE (viri-
alized; αvir ≈ 1) are of special interest, the numerical
factor that relates B to αvir is also important. In Sec-
tion 2.1.2, we note the prefactor expected for a Galac-
tic CO-to-H2 conversion factor and a uniform density
sphere of radius 30 pc. Table 4 reports the ratio cal-
culated from comparing cloud catalog estimates of αvir

to B. This result differs depending on the GMC seg-
mentation methodology. We prefer the CPROPS value
and will take αvir,60pc ≈ 1.3B−1

60pc, with B60pc in units of

K km s−1 (km s−1)−2, which resembles the theoretically
expected value if clouds are modestly extended relative
to the beam. The larger value from CLUMPFIND re-
flects the higher cloud radii found by that algorithm (see
top left panel of Figure 5 and Table 4).

For this ratio of B to αvir, and if αCO = 4.35 M� pc−2

(K km s−1)−1, then B60pc ≈ 0.6 K km s−1 (km s−1)−2

corresponds to marginally bound material and B ≈
1.2 K km s−1 (km s−1)−2 describes virialized material.
These values provide a framework to interpret B in an
absolute sense, though we note that this is an area for fu-
ture improvement in our methodology. Because it affects
the estimated mass, the adopted conversion factor enters
the relationship between B and α−1

vir . Given some value
of B, a higher αCO implies more mass, and so more grav-
itationally bound material, and thus a higher α−1

vir and a
lower αvir. The translation is linear.
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5. RESULTS

We apply our calculations to six galaxies with high res-
olution, high sensitivity mapping. The Antennae galax-
ies are the nearest major merger. The ALMA maps
of Whitmore et al. (2014) cover the region where the
two galaxies collide, including the “super-giant molecu-
lar clouds” (SGMCs) identified by Wilson et al. (2003) at
lower resolution (see also Wei et al. 2012; Johnson et al.
2015). The Large Magellanic Cloud (LMC) and M33
are both Local Group dwarf spiral galaxies, which have
weaker stellar potential wells than large spirals and where
the molecular gas exists within a dominant atomic gas
reservoir. Because of their proximity, these have been the
targets of GMC studies for more than two decades (e.g.,
Wilson & Scoville 1990; Fukui et al. 1999; Rosolowsky
et al. 2003; Hughes et al. 2010). M31 is a massive early-
type spiral also in the Local Group. It has fairly anemic
star formation (e.g., see Lewis et al. 2015) and a large
stellar bulge. The CARMA map by Schruba et al. tar-
gets mostly the 10 kpc molecular ring, which hosts most
of the CO emission in the galaxy (Nieten et al. 2006);
however the southwest field covers part of M31’s bulge.
M51 (NGC 5194) and M74 (NGC 628) are both grand
design spiral galaxies within 10 Mpc distance. M51, the
more massive of the two, is currently undergoing an inter-
action with its early type companion. It shows a higher
surface density of gas in its disk, a higher molecular frac-
tion, and more active star formation than M74.

In Section 3, we applied our analysis to CO data at θ =
60 pc resolution for each of these targets. This yields a
detailed view of the structure of molecular gas in galaxies
on the scale where one resolution element corresponds to
a massive GMC. Table 5 summarizes the results of these
calculations for each target. The table reports intensity-
weighted ensemble average using a measurement scale of
60 pc and an averaging scale of 500 pc. The table quotes
the median over all 500 pc regions in each galaxy. Below
this, in parentheses, we give the 16th to 84th percentile
range, corresponding to ±1σ for a normal distribution.
Thus, this table gives our measurement of the typical
properties of the molecular ISM at a resolution of 60 pc
across a diverse sample of local galaxies.

Table 5 reports the median and range treating each
500 pc averaging beam equally. Some beams contain
more flux than others. If we instead take the median
value and ±1σ weighting each measurement by flux, the
values for most of our targets increase by ∼0.1 dex on
average. That is, more flux comes from high line width,
high intensity regions, but the effect is mild in most of
our targets except for the Antennae.

In the Antennae, the SGMCs identified by Wilson et al.
(2003) contribute a large fraction of the flux but subtend
only a modest area. As Table 6 shows, the ensemble
properties of these few bright regions are more extreme
than those over the rest of the galaxy. A far weaker
version of this effect in the LMC distinguishes the bright
molecular ridge south of 30 Doradus from the rest of that
system. The effect could also be seen using our formalism
by setting the averaging scale to the whole galaxy, which
we would expect to approach the “flux weighting” case
in Table 6.

Figures 6, 8, 9, and 10 visualize the results in Ta-
ble 5. These present the distributions of properties

– 〈I60pc〉500pc, 〈σ60pc〉500pc, 〈B60pc〉500pc, 〈Σ60pc〉500pc,

〈α−1
vir,60pc〉500pc

, and 〈∆84−16
60pc 〉500pc

– as “violin plots”.

These are normalized histograms, where the x-width of
each shape indicates the fraction of data at the value on
the y-axis. In these plots, we indicate the 50th percentile
value with a black dot and the ±1σ range (again from
the 16th to 84th percentile) as a white cavity inside the
full distribution (shown in color).

5.1. Variations Within and Among Galaxies

Figure 6 shows the distributions of integrated intensity,
I, and line width, σ, for our sample (see also Figure 7).
Variations are immediately apparent within our sample.

To first order, the three Local Group galaxies – LMC,
M31, M33 – appear similar to one another and distinct
from the three more active, more distant systems – the
Antennae, M51, and M74. Because of their proximity,
the Local Group galaxies served as the initial targets for
GMC property studies; these represent the only galax-
ies where early mm-wave telescopes could resolve and
detect GMCs (see review in Fukui & Kawamura 2010).
The similarity of molecular gas structures in these sys-
tems, visible in the matched distributions of line width
and integrated intensity, helped fuel the idea of an ap-
proximately universal population of GMCs (see Bolatto
et al. 2008).

Figure 6 also makes clear that the galaxies of the Local
Group offer a biased view of molecular gas properties in
galaxies. The Antennae and M51 show markedly higher
I and σ than the Local Group targets. M74 represents
an intermediate case between the Local Group targets
and M51. At θ = 60 pc scales – that is, at scales where a
beam matches the size of an individual large GMC – the
sense of the variation is that the more gas rich, higher
star formation rate systems show higher CO intensities.
The differences in Figure 6 became particularly appar-
ent with PAWS, which Hughes et al. (2013a,b) used to
demonstrate stark differences between M51, M33, and
the LMC.

Galaxies also differ in their distributions of line widths,
σ, plotted in the right panel of Figure 6. These vary from
a few km s−1, pushing up against the resolution of the
data in M33, to more than 30 km s−1 in the bright re-
gions of the Antennae. As mentioned above, some of
the most extreme Antennae line widths can come from
emission profiles with multiple components. Though the
line width does reflect the dispersion of velocities along
the line-of-sight, some of these values should not be inter-
preted as purely turbulent (see Johnson et al. 2015, for an
example using these same data). But, as the bottom left
panel of Figure 5 shows, even the single component line
widths (reflected in the GMC values) are 15−25 km s−1

in these regions.
The line width variations in Figure 6 reinforce the exis-

tence of real physical differences in ISM properties among
galaxies. The sense of the variations match those ex-
pected if internal pressure in the molecular gas tracks the
hydrostatic pressure needed to support the ISM (Hughes
et al. 2013b). Galaxies with higher mass and deeper po-
tential wells require higher hydrostatic pressure to sup-
port the gas (in the Antennae, the interaction further
raises the pressure; e.g., Renaud et al. 2014). The line
width, σ, relates to the internal pressure in the molecu-
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TABLE 5
Properties of CO Structures at 60 pc Scale for Six Galaxies

Property Antennae LMC M31 M33 M51 M74

log10 I 1.56 0.34 0.45 0.27 1.56 0.82
(K km s−1) (1.27 to 2.28) (0.19 to 0.54) (0.29 to 0.63) (0.07 to 0.48) (1.29 to 1.85) (0.65 to 1.00)

log10 Σ 2.81 1.27 1.09 1.30 2.20 1.71
(M� pc−2) (2.51 to 3.54) (1.13 to 1.48) (0.93 to 1.26) (1.09 to 1.51) (1.92 to 2.47) (1.55 to 1.90)

log10 σ 1.25 0.54 0.67 0.62 0.97 0.67
(km s−1) (0.91 to 1.55) (0.39 to 0.65) (0.59 to 0.80) (0.54 to 0.71) (0.86 to 1.08) (0.60 to 0.74)

log10B -0.85 -0.74 -0.94 -0.99 -0.39 -0.53(
K km s−1

(km s−1)2

)
(−1.04 to −0.58) (−0.90 to −0.55) (−1.11 to −0.78) (−1.17 to −0.82) (−0.59 to −0.21) (−0.64 to −0.42)

log10 α
−1
vir -0.17 -0.35 -0.86 -0.51 -0.31 -0.19

(−0.36 to 0.10) (−0.53 to −0.17) (−1.03 to −0.71) (−0.70 to −0.35) (−0.50 to −0.13) (−0.30 to −0.08)

∆84−16 0.70 0.58 0.60 0.65 0.60 0.60
(dex) (0.56 to 1.16) (0.50 to 0.70) (0.52 to 0.72) (0.54 to 0.78) (0.48 to 1.12) (0.51 to 0.73)

Note. — Results using an averaging scale of 500 pc and a measurement scale of 60 pc. First line shows median of all regions with indicated
weighting. Second line (in parentheses), shows the 16th to 84th percentile range. See Figures 6, 10, 9, and 8.

Fig. 6.— Distribution of average θ = 60 pc resolution properties over A = 500 pc regions in our six targets. (left) Integrated intensity,
〈I60pc〉500pc. The data span two decades in CO surface brightness at fixed resolution with variation both among and within galaxies.

(right) Line width, 〈σ60pc〉500pc. Line width also varies within and among galaxies. The galaxies follow a similar order in the two plots,

with the quiescent LMC showing low surface brightness and narrow lines, followed by M33, M31, and M74. In both plots, the Antennae
galaxies show a wide range of conditions, overlapping M51 in many areas but showing regions of extreme surface density and line width in
the SGMCs at the interface of the two galaxies.

lar gas, P ∝ ρσ2. The more massive M51 lies at higher
values than the more quiescent, gas-poor systems. M31
and M74 lie at intermediate values, with the low mass
dwarf spirals, M33 and the LMC, showing the smallest
line widths. We return to this topic below in the discus-
sions of boundedness (Section 5.4) and the line width-
surface density relation (Section 5.5). In an upcoming
paper, we present a direct region-by-region correlation of
the internal and hydrostatic pressure (extending Hughes
et al. 2013b).

Variations exist not only among galaxies but within
galaxies. The tail of high I values for the Antennae in
Figure 6 reflects the high CO intensities in the overlap re-
gion. There, a few bright complexes (the SGMCs) dom-

inate the light, but a large amount of more quiescent
gas still extends across the overlap region (see Whitmore
et al. 2014). In the LMC, the extension to high I is
due to the molecular ridge on the eastern edge of the
galaxy (south of 30 Doradus), which contains the bright-
est emission in the galaxy. The high I regions in M51 are
the inner parts of the spiral arms. Meanwhile, the high
I and high σ tails in the M31 distribution come from the
inner part of the galaxy where the stellar surface density
is high. In short, though we plot one-dimensional dis-
tributions, the variations in Figure 6 are real, physical,
and directly map to distinct environments in the sample
galaxies.
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TABLE 6
Flux vs. Equal Weighting for Antennae

Property Equal Weighting Flux Weighting

log10 I (K km s−1) 1.56 2.33
log10 Σ (M� pc−2) 2.81 3.58
log10 σ (km s−1) 1.25 1.55

log10B
(

K km s−1

(km s−1)2

)
−0.85 −0.78

log10 α
−1
vir −0.17 −0.10

∆84−16 0.70 0.95

Note. — As for Table 5 but for two approaches to taking the
median over all averaging beams in the Antennae. “Equal Weight-
ing” treats each 500 pc averaging beam equally. “Flux Weighting”
takes the median weighted by flux, so that 50% of the flux comes
from above or below the reported value. The significant difference
between the two weightings indicates that a large amount of the
flux in the Antennae emerges from the SGMCs at the interface of
the two galaxies.

5.2. Distributions

The distribution of cloud-scale ISM properties within
an averaging beam, in addition to the average proper-
ties, is of physical interest. Following Section 2.3, we
calculate cumulative mass distributions for each averag-
ing beam. As illustrated in Figure 2, we parameterize
these distributions in a simple way, recording the inte-
grated intensity at the 84th, 50th, and 16th percentile.

Before inspecting the detailed results, we consider the
distribution of integrated intensities at θ = 60 pc reso-
lution across the whole map for each of our targets. We
show that the flux in our maps is distributed over a rela-
tively narrow range of I, following a roughly, though not
exactly, lognormal distribution in most targets. In a log-
normal framework, ∆84−16 maps straightforwardly to the
width of the distribution and 〈I60pc〉500pc to the median,

modulo a factor to convert mean to median. Bearing
these results in mind, we then investigate how the distri-
bution varies from point to point and galaxy to galaxy
in our sample.

5.3. Overall Distributions of Integrated Intensity

Figure 7 plots (left) the distribution of integrated in-
tensity, I60pc, and (right) the distribution of flux as a
function of integrated intensity for each of our targets.
Note that this figure does not include any ensemble av-
eraging. It shows the distribution of I60pc for the entire
area within our masks at θ = 60 pc resolution for each
target. On the right, the histogram shows the sum of
the flux associated with pixels that have I60pc near the
indicated value.

The right panel of Figure 7 may be surprising.
The number distribution of molecular clouds is usually
treated using a truncated power law (Rosolowsky 2005).
Previous studies of the number distribution of CO in-
tensities (the left column of Figure 7) have found a mix-
ture of lognormal and power law distributions (Hughes
et al. 2013a). In both cases, many clouds and may pixels
live near the sensitivity threshold. Here we show that
the distribution of flux as a function of I appears ap-
proximately lognormal and lies well above the sensitivity
threshold in each of our sources. The large numbers of
low mass clouds or low intensity pixels do not contribute
overwhelming amounts of flux. We checked the robust-
ness of this result by integrating the cubes directly, with

no masking, and subtracting the flux distribution for neg-
ative I from that for positive I; the result shows small
shifts from what we observe in Figure 7 but appear qual-
itatively the same.

The distributions in Figure 7 are not perfectly lognor-
mal. The fits, which are only approximate, somewhat
overpredict the data at high values, suggestive of a trun-
cation; for example, see the cases of M31 and M51 (and
Rosolowsky 2005; Hughes et al. 2013a). The Antennae
appear to be better described by two lognormal distri-
butions than one, again reflecting the difference between
the SGMCs and the rest of the overlap region. We see
some point-to-point variation in the width of the dis-
tribution (see next subsection), as well as real internal
scatter in the center of the distribution. The full-galaxy
distributions presented in Figure 7 therefore represent
the combination of a number of discrete local distribu-
tions (as previously noted by Hughes et al. 2013a, using
kinematically-defined environments in M51 PAWS).

For a lognormal distribution, the 50th percentile in the
CDF captures the peak of the distribution. This is closely
related, but not identical, to the intensity-weighted I
that we measure. We compare the two quantities mea-
sured for our data in Figure 8. They track one another
well but the intensity-weighted average value is higher.
The intensity-weighted I is a linear weighted average;
the logarithmic axis for the lognormal distribution means
that the intensity-weighted I will tend to be above the
50th percentile by an amount related to the width of the
distribution (essentially just the difference between geo-
metric and linear averaging).

5.3.1. Variations in the Cumulative Distribution Width

Figure 7 shows that when all lines-of-sight are consid-
ered, the CO flux appears to be approximately lognor-
mally distributed as a function of I in our targets. Figure
8 shows the width of the distributions within individual
500 pc averaging beams. ∆84−16/2, which will be the rms
dispersion for a lognormal distribution, is ∼0.3 dex over
most of the area in all of our targets (i.e., ∆84−16 ≈ 0.6).
This is modestly narrower than the full distributions in
Figure 7, which have 1σ dispersion ∼0.4. The difference
reflects the blending of all regions together into Figure 7.

This narrow distribution means that ∼ 70% of the CO
flux, and so presumably ∼70% of the molecular mass, is
distributed over only a narrow range of factor ∼4 in I
(or Σ for a fixed αCO). This modest ∆84−16 at θ = 60 pc
resembles the idea of a fixed GMC surface density, one
expression of the Larson (1981) relations (see Bolatto
et al. 2008; Heyer & Dame 2015). However, this is not
what is shown here. Instead, we observe the center of
the distribution, tracked by I, to vary within and among
targets (Figure 6). However, in individual 500 pc re-
gions (Figure 8), and even over large parts of galaxies
(Figure 7), much of the flux lies within a factor of ±2 of
the median value. Our result supports the idea that the
properties of molecular gas on cloud-scales achieve an
equilibrium configuration that depends on larger scale
conditions, rather than an absolute value for the molec-
ular gas surface density that applies across all galaxies
and galactic environments.

In the LMC, M31, M33, and M74, this narrow distri-
bution also describes most of the light (right panel of
Figure 8), while broader distributions are present for a
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Fig. 7.— Histograms showing (left) the distribution of integrated intensity, I, at 60 pc resolution in each target and (right) the distribution
of flux as a function of I60pc for the same data sets. The solid vertical lines show the 5th percentile of integrated intensities in the mask.
Black dashed lines in the right column show Gaussian fits to the histograms. While many lines-of-sight exist near the threshold, most of the
flux tends to lie well above our threshold, following an approximately lognormal distribution. The most notable exception is the Antennae,
which shows a slightly bimodal flux distribution.

small but bright subset of regions in the Antennae and
M51. The high-∆ regions in M51 come from the two
bright spiral arms, while those in the Antennae galaxies
come from near the SGMCs in the overlap region. In
both cases, gas is concentrated to high surface densities
by dynamical effects. The bright, dense structures are
small compared to our beam, creating a large contrast
with the surrounding medium inside our 500 pc averag-
ing beam.

5.4. Physical State of the Gas

Mass Surface Density: With a conversion factor, the
integrated intensities in Table 5 and Figure 6 correspond
to a mass surface density, Σ. Figure 9 and Table 5 report
these values for our adopted conversion factors. The rel-
ative behavior among galaxies remains mostly the same
as for I, except that M31 now has a lower Σ than both

M33 and the LMC as a result of our adopted conversion
factors.

For physical models, the specific values of Σ are of
interest. Most regions in the LMC, M31, and M33 have
low intensity-weighted surface densities at θ = 60 pc,
Σ ≈ 10−30 M� pc−2. This is comparable to the Hi mass
surface densities in these galaxies, implying a mixture
of approximately equal amounts of Hi and H2 over a
60 pc box containing most molecular gas. For Σ = 15
M� pc−2, the mass within a 60 pc beam is M ≈ 6× 104

M�, roughly equivalent to a typical Milky Way molecular
cloud in the beam.

The large spiral galaxies show higher Σ, with aver-
age surface densities of Σ ≈ 160 M� pc−2 in M51 and
Σ ≈ 50 M� pc−2 in M74. These values resemble com-
monly quoted extragalactic GMC surface densities and
imply a much sharper contrast with ΣHI on 60 pc scales
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Fig. 8.— (left) Intensity-weighted integrated intensity, < I60pc >500pc (y-axis) as a function of the 50th percentile integrated intensity
within the averaging beam (x-axis). The two quantities track one another well. Some offset is expected based on the definitions of the two
quantities, with larger offsets for wider distributions (see text). The intensity-weighted integrated intensity is thus closely related to the
peak of the integrated intensity distribution function at 60 pc scales (see Figure 7). (right) Width of the cumulative integrated intensity
distribution function (CDF), parameterized as ∆84−16, for our targets. For a lognormal distribution of light (Figure 7) ∆84−16/2 is the
1σ width. Thus, most of the regions in our analysis show narrow distributions, with most flux within ±0.3 dex (a factor of two) of the
median. Bright regions in M51 (spiral arms) and the Antennae (the SGMCs) contain a large amount of light concentrated by dynamical
effects on small scales, creating higher contrast in these regions.

Fig. 9.— Distribution of mass surface density for our six data
sets at 60 pc resolution averaged over 500 pc beams. Galaxies
show a range of mean intensity-weighted gas surface density, with
M74 and M51 showing higher Σ than the lower mass Local Group
galaxies (LMC, M33, M31). The Antennae again show the highest
mean Σ, and also the widest range of values.

(see Leroy et al. 2013a, for discussion of ΣHI at high res-
olution) than we see in the Local Group galaxies. The
molecular gas mass in a beam is ∼2×105 M� for Σ = 50
M� pc−2 and ∼7× 105 M� for Σ = 160 M� pc−2, both
typical of a massive Milky Way GMC.

The Antennae show both the largest Σ and a large
contrast between the median over all regions, Σ ≈ 650
M� pc−2, and the median weighted by flux, Σ ≈ 4, 000
M� pc−2 (Table 6). As noted above, the light from the
Antennae is dominated by a handful of regions with high

Σ at the interface between the colliding galaxies. The
clouds in this zone have enormous line widths and surface
densities (Wei et al. 2012), comparable to those found in
other extreme starbursts (Leroy et al. 2015).

The quantity Σ that we discuss here is cleanly defined,
but we note that it differs – at least in theory – from
the definition of Σ used in cloud property studies. Here
we use a single, fixed averaging scale, θ = 60 pc, and
compare measurements within and among galaxies at
that scale. Cloud property studies attempt to define a
physical scale of interest object-by-object, although in
practice this is usually an ad hoc, observational defini-
tion, rather than physical one (algorithms are designed
to match by-eye structure finding results). The physical
scale of cloud-property measurements does tend to re-
semble the beam scale. As a result, the two definitions
of Σ match in practice for a given data set, but they are
not required to do so.
Mass Volume Density and Free-fall Time: Volume

mass density, ρ, and number density, nH2, relate closely
to surface density and are key parameters for most the-
ories that explain the formation of stars from molecular
clouds. Estimating ρ requires knowledge of the line-of-
sight depth through the gas. In a cloud view, this is usu-
ally achieved assuming spherical symmetry, so that the
measured radius in the plane of the sky also corresponds
to the cloud depth. In our approach, one must assume a
line-of-sight depth. Here, we adopt a fiducial l ≈ 60 pc,
the size of a large molecular cloud and a reasonable ap-
proximation to the thickness of a cold gas disk; it is also
our beam size, but although this makes the calculation
symmetric there is no reason to expect a match between
l and the beam. We treat the gas as having a tophat
density distribution along the line-of-sight and estimate
the H2 number density, nH2, following Equation 3.
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Fig. 10.— Distribution of (left) B ≡ I/σ2, an observational tracer of the self-gravity of the gas, for our six data sets at 60 pc resolution
averaged over 500 pc beams. Galaxies show a spread in the B ratio with M74 and M51 showing higher B values (i.e., more bound) than the

Local Group systems. The Antennae show the widest range of B values. (right) Inverse virial parameter, α−1
vir , implied by our observed B.

Here, too, higher values are more bound, with log10 α
−1
vir = 0.0 (αvir = 1) expected for virialized clouds and log10 α

−1
vir ≈ −0.3 (αvir = 2)

being the approximate boundary for boundedness.

The Σ ≈ 10−30 M� pc−2 in the Local Group targets
implies nH2 ≈ 2.5−7.5 cm−3 for l = 60 pc; Σ ≈ 50
M� pc−2 in M74 yields nH2 ≈ 12 cm−3; Σ ≈ 160
M� pc−2 in M51 corresponds to nH2 ≈ 40 cm−3; and
the Σ ≈ 650−4000 M� pc−2 in the Antennae yields
nH2 ≈ 150−1000 cm−3. As with Σ, these are densities
measured within a fixed-size averaging box (with an as-
sumed value for the third dimension). Given that these
densities are often lower than those required to excite
the CO emission that we observe, there must clearly be
substantial sub-resolution clumping.

With our assumed depth, the high surface densi-
ties in the Antennae correspond to free-fall times of
〈τff,60pc〉500pc ≈ 1−3 Myr (for Σ = 650−4000 M� pc−2).

The moderate surface densities in M51 and M74 im-
ply 〈τff,60pc〉500pc ≈ 5−10 Myr. Meanwhile in the Lo-

cal Group systems, the free-fall time implied the average
density over 60 pc is quite long, τff ≈ 10−20 Myr. All of
these numbers come with the caveat that they apply to
the average density over 60 pc scales. Gas clumped on
scales smaller than our resolution will have a shorter τff
locally.
Line Width and Mach Number: The average line width

varies from 〈σ60pc〉500pc ≈ 3.5 km s−1 in the LMC to

∼4−5 km s−1 in M31, M33, and M74, to ∼9 km s−1 in
M51 and ∼18 km s−1 in the Antennae. Though other
sources may contribute significantly to these line widths
(see Meidt et al. 2013, for an example in M51), we esti-
mate the turbulent Mach number, M, implied for these
dispersions and T = 25 K. For this temperature, all of
the line widths are highly supersonic, with three dimen-
sional Mach numbers M ∼ 15−20 in the LMC, M31,
M33, and M74, to M ≈ 40 in M51 and ∼80 the An-
tennae, though this last value certainly overestimatesM
somewhat.

Although these Mach numbers are high, the line widths
that we measure are actually lower than previous mea-

surements on larger scales (e.g., Tamburro et al. 2009;
Wilson et al. 2011; Caldú-Primo et al. 2013). Apply-
ing stacking on ∼kpc scales, Caldú-Primo et al. (2013)
found a characteristic line width σ ≈ 12 km s−1 for a
modest sample of nearby spiral galaxies (including M74
and M51). Our result of smaller line widths at small
(60 pc) scales agrees with the findings by Caldú-Primo
& Schruba (2016) for M31, where they find a narrow line
width component of σ ≈ 3.2 km s−1 on 175 pc scales.
They argue that coarser beams sample larger scales in
the turbulent cascade, although the inclusion of stream-
ing or other bulk gas motions might also contribute.
Gravitational Boundedness: Surface density and line

width combine to yield an estimate of gravitational
boundedness. Beams with high surface density will have
stronger self-gravity, and beams with high line width
have high kinetic energy. The ratio of the two is traced
by the observable, B ≡ I/σ2 (Equation 6), which re-
lates to the inverse of the virial parameter, α−1

vir . We plot

〈B60pc〉500pc and 〈α−1
vir,60pc〉500pc

in Figure 10. For α−1
vir ,

the specific values α−1
vir = 1 (log10 αvir = 0.0) and 0.5

(log10 αvir ≈ −0.3) have specific physical meaning: the
former corresponds to virialized clouds and the latter to
marginally-bound material. Our absolute scale for α−1

vir
depends on either a simple adopted geometry or an em-
pirical scaling from cloud catalogs, as well as the adopted
conversion factor for each system. Thus, the location of
our measurements between these absolute values should
not be over-emphasized, but is still worth noting.

Figure 10 shows that our galaxies are more clustered
in boundedness (〈B60pc〉500pc or 〈α−1

vir,60pc〉500pc
) than in

surface density. The two spirals (M51 and M74) do show
a larger B than the Local Group galaxies and the An-
tennae, but this difference is reduced when we apply
our adopted conversion factors. Then, most of the data
points cluster between 〈α−1

vir,60pc〉500pc
= 0 and −0.5, that
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is between virialized (α−1
vir = 0) and marginally unbound

(α−1
vir < 0.5 ≈ −0.3 dex). Few regions appear virialized,

on average, at θ = 60 pc scales, though many appear
(at least marginally) gravitationally bound. We show
below that the dynamical state of the gas depends on
resolution, with self-gravity becoming more important at
smaller spatial scales. One way to read this result, then,
could be that θ = 60 pc is roughly the scale at which self
gravity becomes important in our targets.

M31 appears as an outlier from the other galaxies in its
distribution of 〈α−1

vir,60pc〉500pc
, such that the gas in M31

appears unbound by self-gravity at these scales. Schruba
et al. (in prep.) note this apparent high line width com-
pared to the gas surface density. They also show that
it varies across the galaxy, with gas in the inner bulge
region appearing less bound than gas in M31’s 10 kpc
molecular ring. They hypothesize that this could be
due to clouds confined by the pressure of M31’s atomic-
dominated ISM. Alternative explanations would be that
M31 has a higher conversion factor (by about a factor of
∼2) than our adopted Milky Way αCO = 4.35 M� pc−2

(K km s−1)−1 or that the gas in M31 is more strongly
clumped than the gas in our other targets.

5.5. A Scaling Between Surface Density and Line Width

The same regions and galaxies that have a high line
width also have a high mass surface density. This is re-
flected in both the histograms and the narrow range of
〈α−1

vir,60pc〉500pc
. In fact, these two quantities correlate

well across our sample. The correlation, and deviations
from it, serve as a useful physical diagnostic of the dy-
namical state of the gas. We show this correlation for
all targets, highlighting each galaxy, in Figure 11. Black
points show the median line width and 1σ log scatter
binning all data except the Antennae by Σ. A fit to the
non-Antennae data yields:

log10

〈
σ60pc[km s−1]

〉
500pc

≈ (13)

(0.31± 0.04) log10

(
〈Σ60pc〉500pc

50 M� pc−2

)
+ (0.74± 0.01) ,

which describes the aggregate behavior of the data (the
equation is a bivariate fit to the ensemble of data exclud-
ing the Antennae).

Figure 11 and Equation 13 show that gas with higher
surface density, and so higher self-gravity, at θ = 60 pc
also has a higher dispersion. For uniform geometry across
our sample – i.e., if clumping or size scales do not matter
below 60 pc – then we would expect σ ∝ Σ0.5 for a
fixed ratio of potential to kinetic energy (see Equation
6 with fixed R). Our observed scaling is shallower than
0.5, so that gas appears somewhat more bound at higher
Σ60pc. This gradient is also visible in Table 5, where the

Antennae, M51, and M74 have higher α−1
vir (more bound)

than the Local Group targets. In fact, this galaxy-to-
galaxy variation accounts for much of the shallow slope
in Equation 13; fits to individual galaxies, shown in color
in each panel, do tend to show a steeper relationship.

High Σ60pc regions appear somewhat more bound at
60 pc scales, but this does not mean that the Local Group

targets are unbound at all scales. Sub-beam clumping
means that the gas will have stronger self-gravity on
smaller scales (see Leroy et al. 2013a). If the line width
is turbulent in origin and if the outer scale of turbulence
is & 60 pc, then the line width, σ, will also decrease
moving to smaller scales. If the dependence of surface
density on size scale is stronger than that of line width,
then our results may instead be interpreted as evidence
that the molecular gas in Local Group targets is grav-
itationally bound on smaller size scales than the gas in
more massive, gas-rich targets. In a picture of the ISM
where GMCs are gravitationally bound, isolated spheres,
this is equivalent to arguing that Figure 11 reflects the
results of a combination of filling factor and mean GMC
size. Our results are not, however, consistent with varia-
tions in the filling factor of otherwise identical clouds as
the sole explanation. Such a scenario would not alter the
line width except via “‘shadowing” of clouds along the
line-of-sight. Neither the line profiles nor the apparent
surface density suggest that this effect drives the corre-
lation that we see. As noted above, we revisit the scale
dependence of this approach in a future work.

Figure 11 can be read as a beam-wise version of the
σ2/R vs. Σ plot commonly used in Milky Way (Keto &
Myers 1986; Heyer et al. 2009; Field et al. 2011) and ex-
tragalactic (see Leroy et al. 2015; Johnson et al. 2015)
cloud studies to examine the dynamical state of clouds.
Alternatively, when cast in terms of virial mass versus lu-
minosity, this relation can be used to solve for αCO by as-
suming a dynamical state for clouds (see Donovan Meyer
et al. 2012). Our approach does not measure a size scale
and treats each resolution element rather than each cloud
as a measurement, but the encapsulated physics are sim-
ilar. Regions that deviate towards high line width at a
given surface density are farther from virialization, less
likely to be bound, and more likely to represent gas that
is part of a turbulent medium, described by an average
turbulent pressure P ≈ ρσ2 rather than KE ≈ UE (see
Field et al. 2011).

The surface density, Σ, and line width, σ, are intrinsi-
cally correlated. Indeed, for an optically thick line like
CO, an alternative view of the correlation in Figure 13
is that a variable line width, perhaps set by the local po-
tential well, drives the strength of the CO line. If this is
the only effect at play, this translates to a variable αCO

(see, e.g., Maloney & Black 1988; Downes & Solomon
1998; Narayanan et al. 2012; Bolatto et al. 2013a). This
effect certainly occurs, and helps to explain the observed
contrast between “disk” and “starburst” conversion fac-
tors. However, there are several reasons to think that our
observed σ-Σ correlation is not purely explained by this
effect. First, there is also a correlation between peak
intensity, Iν,pk,60pc, and σ (not shown) that spans ap-
proximately an order of magnitude and shows many of
the same features that we see in Figure 11. Second, we
have already accounted for our best-estimate variations
of αCO in Figure 11. Equating line width variations to
αCO variations predicts a specific behavior for αCO. This
behavior does not appear to be borne out by experiments
using dust to infer αCO at lower resolution, although it
may be somewhat at play in the centers of galaxies (Sand-
strom et al. 2013). This appears particularly true in the
case of M51, where multiple methods constrain αCO to a
value similar to the Milky Way (Groves et al. in prep.).
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Fig. 11.— Line width at 60 pc, < σ60pc >500pc, as a function of surface density, < Σ60pc >500pc for our targets, both using a 500 pc
averaging beam. Line width increases with surface brightness across the sample. The dark line shows Equation 13, which has a power law
index of ≈ 0.3; colored lines show fits to the individual data sets. Within the Antennae and M31, some regions stand out as having a high
line width relative to their surface density.

Beyond these arguments, our approach provides an ideal
framework to test this hypothesis: by correlating dust-
based αCO measurements with σ60pc one can test this
hypothesis with a high degree of rigor.

Our view is that Figure 11 reflects a degree of self-
regulation in galaxies to achieve a similar, but not uni-
versal, dynamical state at 60 pc scales. Given the values
of α−1

vir that we observe, this dynamical state may simply
be marginally bound, collapsing gas (e.g., Ballesteros-
Paredes et al. 2011) or it could be virialization some-
what below our measurement scale. The shallow slope
of the relation (∼0.3 rather than 0.5) may indicate more
clumped molecular gas in more quiescent regions. Varia-
tions about this relation, such as the high σ regions seen
in the inner part of M31 and the overlap region of the
Antennae, will arise due to gas in a different dynami-
cal state. For example, the high ambient gas pressure
in M31’s inner region and the turbulent pressure created
by the collision between the Antennae galaxies (e.g., Re-
naud et al. 2014) may counteract the self-gravity of the
gas to some degree. Though in the Antennae, in partic-
ular, local variations in αCO (which includes excitation
in our formulation) and contributions to the line widths
from complex geometry will also be crucial.

5.6. Resolution and the Physical State of the Gas

The results throughout this section describe the aver-
age state of the cold ISM on scales of θ = 60 pc. However,
molecular gas is structured below this scale. Indeed, by

comparing the average volume densities found in the Lo-
cal Group targets, nH2 ≈ 1−10 cm−3, to the density
needed to produce appreciable CO emission, ∼300 cm−3

even with optical depth effects, one can immediately see
that the gas must be highly clumped below our resolu-
tion. In our framework, a natural way to explore this
smaller scale structure is to vary the resolution of the
data and then re-measure the properties of the emission.
Figure 12 shows the results of this exercise for our two
targets with the highest native resolution. We character-
ize the emission from the LMC and M31 at θ = 30 pc
using the same grid and A = 500 pc averaging beam that
were used for the θ = 60 pc characterization. The flux
recovery is worse for M31 at θ = 30 pc than at θ = 60 pc,
so we compare only points with appreciable CO flux in-
side our mask at both resolutions.

Figure 12 compares the calculated surface density, line
width, α−1

vir , and the distribution width between the two
resolutions. As expected, the surface density appears
higher at θ = 30 pc than at θ = 60 pc, reflecting sub-
resolution clumping of gas (see Leroy et al. 2013a). The
contrast is a factor of 1.6, which is far weaker than the
factor of 4 expected if all emission came from point
sources at the center of the beam. The average line
width, σ, appears 15−25% lower at 30 pc resolution than
at 60 pc. The sense of the change is expected from the
line width-size relation (Larson 1981; Bolatto et al. 2008;
Heyer & Dame 2015), but the magnitude of the change is
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Fig. 12.— Properties of the gas in the LMC (magenta) and M31 (green) at θ = 30 pc (y-axis) and θ = 60 pc (x-axis): (top left) surface
density, (top right) line width, (bottom left) self-gravity, tracked by the inverse virial parameter, (bottom right) width of the intensity
distribution. Solid lines show equality. Dotted lines in the top two panels show simple physical expectations: beam dilution acting on a
point source for surface density and the line width-size relation for line width. In the bottom left plot, gray regions highlight the region of
parameter space between marginally bound and virialized. Dashed colored lines show the median ratio relating structure between the two
size scales for each galaxy. These plots show that surface density increases, line width decreases, and self-gravity increases as we consider
smaller scales.

again lower than what one would infer from the canonical
σ ∝ r0.5. Both measurements can be explained if gas is
more extended and structured on larger scales than only
individual GMCs; such a situation has been observed in
the clustering of clouds in M33 (Rosolowsky et al. 2007).

With higher surface densities and narrower line widths,
the self-gravity of gas will be higher at smaller scales.
The bottom left panel of Figure 12 shows that α−1

vir rises
significantly moving from θ = 60 pc to θ = 30 pc, in-
creasing by factors of ∼3 for M31 and ∼2 for the LMC.
This shifts a large amount of LMC gas to an approx-
imately virialized state, consistent with the fact that
our adopted LMC CO-to-H2 conversion factor was par-
tially motivated by the virial theorem arguments made
by Hughes et al. (2010) and Wong et al. (2011). Much
of the M31 gas remains marginally bound or unbound,

but the self-gravity of the gas is stronger at 30 pc than
at 60 pc resolution.

The width of the intensity distribution does not appear
to change dramatically with scale, so that the distribu-
tion seems to “slide” to higher values.

The key result from Figure 12 is that the average prop-
erties of the molecular ISM depend on scale, though not
in a trivial way. In particular, the dynamical state of gas
depends sensitively on the spatial scale considered, with
the narrower line widths and high surface densities found
on small scales leading to stronger self-gravity.

6. DISCUSSION AND CONCLUSIONS

We present a simple way to capture the cloud-scale
properties of the interstellar medium (ISM) using high
physical resolution, wide-area maps of mass-tracing spec-
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tral lines. Applying this method to wide-area, high reso-
lution low-J CO maps of a diverse sample of six galaxies,
we derive a picture of the physical state of molecular gas
in galaxies at θ = 60 pc resolution.

6.1. Method

Our approach measures the line width, peak inten-
sity, and integrated intensity at high physical resolu-
tion (“cloud scales”). We then carry out an intensity-
weighted average at a larger scale to improve signal-to-
noise, average over the cycling of the ISM between differ-
ent evolutionary states, and measure the typical state of
the ISM over a large part of the galaxy. We also measure
the cumulative distribution of light as a function of in-
tensity inside the averaging beam, parameterized by the
50th percentile value and logarithmic 68% width, ∆84−16.

The line width (σ), integrated intensity (I), and their
combination (B = I/σ2) relate closely to the turbulent
velocity dispersion, mass surface density (Σ), and gravi-
tational boundedness of the ISM (parameterized via the
inverse of the virial parameter α−1

vir ). For data with res-
olutions of ∼10−100 pc, we demonstrate that this ap-
proach captures much of the same physical information
that is encoded in GMC-based property studies.

The advantage of our approach is that it avoids com-
plex segmentation algorithms (with associated unquanti-
fied uncertainty), characterizes the whole ISM traced by
the line in a simple way, and includes a natural trans-
lation to the larger scales ideal to test theories relating
local properties to galactic structure or time-averaged
processes like star formation. The utility of an intensity-
based approach has been demonstrated in previous stud-
ies focusing on beamwise statistics by Sawada et al.
(2012) and Hughes et al. (2013a). The translation of such
statistics between scales was discussed in Leroy et al.
(2013a).

We apply our method to a diverse set of six galaxies
with high physical resolution low-J CO maps: the Anten-
nae Galaxies, the LMC, M31, M33, M51, and M74. We
also analyze these galaxies using standard GMC property
measurements, which we grid into luminosity-weighted
average measurements for comparison to our beam-scale
measurements.

Using these calculations, we show that common ap-
proaches to measure cloud properties almost always yield
marginally resolved clouds. As a result, our adoption of
the beam scale as the relevant size scale discards mini-
mal information relative to cloud-based analysis. We also
show good agreement between the gridded, luminosity-
weighted results of GMC property measurements and our
beam-wise approach. Although the validity of our ap-
proach does not depend on such agreement, this corre-
spondence adds confidence that our simpler approach ac-
cesses the same physics as previous studies. We demon-
strate this agreement in detail by gridding cloud prop-
erty measurements, weighting by flux, across our av-
eraging beam. The average surface density and line
width measured using our method correlate well with
the same quantities derived using several cloud property
approaches.

A key quantity in our analysis is B ≡ I/σ2, which
traces the strength of self-gravity in the gas at our mea-
surement scale, B ∝ UE/KE . B is an observable cognate

of the quantity Σ/σ2 and for a fixed size scale it relates
directly to the inverse of the virial parameter or the ratio
of the free-fall time to the crossing time. We demonstrate
that, as expected, this anti-correlates with the virial pa-
rameter calculated from cloud property studies and note
conversions from B to α−1

vir based on both this empirical
comparison and a simple geometry.

We aim to characterize the average state of all of the
gas inside an averaging beam. To gauge how well one
achieves this goal, we note a useful convergence criteria:
compare the flux along lines of sight in the cube for which
the first moment can be measured to the total flux in the
cube. At θ = 60 pc resolution, the data sets in this paper
recover & 70% of the emission in the cube.

The Appendices tackle several important technical
points. Our measurements incorporate a stacking
methodology that helps to avoid some of the biases in
sensitivity introduced by signal-to-noise based masking.
We also present methods to help account for the spec-
tral response of the data beyond only the finite channel
width, which is an often-neglected topic in radio data
analysis. We also outline a straightforward path to es-
timate statistical uncertainties in our framework using
Monte Carlo calculations. Applying this method to our
data, we derive fractional uncertainties in our ensem-
ble averages of ∼ 2−10% and note a strong covariance
among statistical errors in the quantities I, σ, and Iν,pk,
consistent with their definition.

6.2. Capturing the Physics of “Larson’s Laws” Using
our Approach

With a few exceptions, most analysis of the structure
of the molecular ISM in galaxies at . 100 pc resolution
has been carried out through the lens of “Larson’s Laws”
(Larson 1981; Rosolowsky et al. 2003; Bolatto et al. 2008;
Fukui & Kawamura 2010; Donovan Meyer et al. 2012;
Colombo et al. 2014; Leroy et al. 2015, among many oth-
ers). Our framework captures most the key physics of
this approach as it attempts to describe the structure of
the gas. Specifically:

1. We measure the intensity-weighted surface density,
Σθpc, which is often a main focus of the mass-radius
relation for GMCs.

2. The cumulative flux distribution as a function of
integrated intensity (or surface density) captures
physics closely related to the GMC mass function
and cloud filling factor.

3. The parameter B or Σ/σ2 relates to the dynamical
state of the gas and accesses information similar to
that revealed by comparing virial mass to luminos-
ity.

4. The fact that gas at ∼60 pc scales regulates to a
somewhat fixed dynamical state creates a scaling
relation between line width and surface density.
The position of a region relative to this scaling also
serves as a diagnostic of dynamical state.

5. The line width distribution at a fixed size scale (for
us, the measurement beam) relates closely to the
normalization of the line width-size relation.
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Though explored only briefly in this paper, for the
LMC and M31, varying the measurement scale and re-
peating our measurements has the potential to further
refine this information, for example revealing a version
of the line width-size relation and measuring the clumpi-
ness of structure within the beam.

6.3. Molecular Gas in Galaxies at 60 pc Resolution

Our application to a diverse set of six galaxies yields a
sketch of the molecular ISM at 60 pc spanning from Lo-
cal Group dwarf spirals (the LMC and M33) to the near-
est major merger (the Antennae) and including massive
spiral galaxies where most stars are formed (M31, M51,
M74).

Except in the Antennae, the distribution of CO flux,
and so presumably mass, as a function of integrated in-
tensity appears to be approximately described by a log-
normal. This has not, to our knowledge, been cleanly
noted before, but relates closely to the work of Hughes
et al. (2013a), Sawada et al. (2012), and Rosolowsky
(2005). The width of this distribution appears fairly nar-
row 1σ ≈ 0.3−0.4 dex in most of our targets, but also
displays notable environmental variation in M51 and the
Antennae. In the Antennae galaxies, the distribution ap-
pears bimodal with the SGMCs showing a distinct dis-
tribution from emission in the rest of the overlap region.

We observe significant variations in the intensity-
weighted surface density and line width within and
among galaxies. To first order, the Local Group galaxies
show a narrow range of conditions, while the Antennae
galaxies and the spirals M74 and M51 exhibit higher sur-
face densities and line widths. This extends a main result
of PAWS shown by Hughes et al. (2013b) comparing the
LMC, M33, and M51.

At 60 pc resolution, the molecular gas surface density
varies from ∼ 10−30 M� pc−2 in the Local Group tar-
gets, to ∼ 50 M� pc−2 in M74, ∼ 160 M� pc−2 in M51,
and then as high as ∼ 4, 000 M� pc−2 in the Antennae.
Assuming a fiducial (but not known) depth of 60 pc,
these correspond to a range of average volume densities
from a few particles per cm−3 up to nH2 ≈ 1000 cm−3.
In addition to a wide range of free-fall times, this implies
a wide range of density contrasts with the atomic gas on
60 pc scales across our sample.

The line width, σ, varies from 〈σ60pc〉500pc ≈ 3–5

km s−1 in the smaller targets up to ∼20 km s−1 for the
Antennae (though sometimes confused by multiple com-
ponents). For a fiducial gas temperature of T = 25 K
and assuming the line widths to be totally turbulent,
these values imply Mach numbersM≈ 15−80 that vary
systematically among our targets.

The sense of the variations in both surface density and
line width are that targets with high masses and higher
overall gas surface densities tend to also have higher lo-
cal line widths and surface densities. This supports a
good correspondence between ambient ISM pressure and
internal pressure in the molecular gas (see Hughes et al.
2013b).

Because surface density and line width correlate, both
rising towards higher pressure regions, the dynamical
state of the gas at 60 pc scales, parameterized by
α−1

vir,60pc, appears more constant. We see a relatively

narrow range of α−1
vir ≈ 0.33−1 in all of our targets ex-

cept M31. This means that the cold gas in our targets
ranges from virialized to marginally unbound at 60 pc
scales, with most data hovering around α−1

vir ≈ 0.5, the
marginally bound case. Given the tendency of gas to
appear more bound by self-gravity at smaller spatial
scales, we interpret our α−1

vir measurements to indicate
that θ ≈ 60 pc may be near the characteristic scale where
gas self-gravity becomes dominant.

The cold gas in M31 appears strikingly unbound com-
pared to that in our other targets, reflecting moder-
ately high line widths but relatively low surface densi-
ties. This is noted and explored by Schruba et al. (in
prep.). It could reflect either unbound gas that is part of
a turbulent medium and perhaps mixed with the dom-
inant atomic medium. It could also reflect more highly
clumped gas in M31 compared to our other targets. Or,
despite previous evidence, it could reflect a higher con-
version factor in M31 than we adopt here.

These conclusions demonstrate how our approach cap-
tures the physical state of the ISM in absolute terms and
reveals variations among galaxies. This characterization
does depend on the measurement scale. In this paper we
choose to characterize the properties of the ISM on 60 pc
scales, but we emphasize that the surface density, line
width, and self-gravity all depend on the measurement
scale (Leroy et al. 2013a). At sharper resolution, the
surface density increases, the line width decreases and
– via the combination of these two effects – self-gravity
increases. We show these variations for two of our tar-
gets, the LMC and M31. The variations with scale are
weaker than expected for a beam-diluted point source or
the standard line width-size relation, indicating extended
structure beneath our resolution. Self-gravity increases
dramatically in both targets at higher resolution, such
that many regions that are unbound when averaged over
60 pc scales appear bound when viewed at 30 pc scales.

6.4. Future Applications

Our method is designed to test hypotheses that link
cloud-scale conditions to large scale conditions in a
galaxy and the time-averaged efficiency of processes like
star formation and feedback. Though we characterize
the structure of the molecular gas in this paper, we defer
such an analysis (beyond galaxy-to-galaxy comparisons)
to future work. Key first applications include contrasting
the hydrostatic pressure to the internal pressure in the
molecular gas and measuring the dependence of the star
formation efficiency per free-fall time on environment.
Strong theoretical expectations exist for both cases and
our method is explicitly designed to test these expecta-
tions.

Section 5.6 highlights another key test. Varying the
measurement scale, e.g., via progressive convolution of
the data, probes the physical state of the gas as a function
of scale. This will access the scale at which self-gravity
becomes dominant, the clumping of molecular gas, and
a version of the turbulent line width-size relation.

Finally, although we have applied our calculations to
only CO observations, the method can be naturally ap-
plied to high physical resolution Hi observations (e.g.,
Braun 2012) to probe the state of that gas (e.g., see
Goodman et al. 2009; Leroy et al. 2013a). It is also
readily applicable to numerical simulations, which now
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regularly predict CO or Hi emission from galaxies (e.g.,
Narayanan et al. 2012; Smith et al. 2014). Such applica-
tions offer the potential for large gain in both directions:
observations offer a powerful benchmark for simulations,
while simulations should help to calibrate the translation
of our observables to physical quantities.
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Fig. 13.— (left) Illustration of our stacking (“shuffling”) approach. In this example, we combine three lower signal-to-noise spectra (upper
panels) into a shuffled, stacked spectrum (bottom panel). First, we estimate the intensity-weighted mean velocity from the first moment
(the red bar). Then, we shift each spectrum to a new velocity axis for which this mean velocity is defined as v = 0. Finally, we co-add
the shuffled spectra, weighting each by its integrated intensity (see text). (right) The bias, defined as measured over true value, in the
recovery of integrated intensity and line width measurements from a Monte Carlo simulation. Results for moments calculated from masked
data are indicated in red and blue. Results from a fit to a stack of 25 spectra co-added after removing their mean velocity (from the first
moment) are indicated in green and purple. Individual moment measurements are biased, and these would persist into any average of
moment measurements. Thus, the curves can be fairly compared. The error bars show the range of bias for lines with 1σ line width 2–10
times the channel width.
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APPENDIX

A. METHODS

This appendix steps through methodological details that, while crucial to the implementation of our calculations,
may only be of interest to a small subset of readers. In Section A.1, we detail the spectral stacking technique that we
use to circumvent biases due to limited sensitivity. In Section A.2, we describe our Monte Carlo approach to calculate
uncertainties. Section A.3 discusses how to account for the finite spectral resolution of radio data; this includes a
treatment of channel-to-channel correlation, an effect that is usually neglected in analysis of radio data.

Incorporating Spectral Stacking

We consider two methods to calculate the peak intensity, integrated intensity, and line width at the measurement
scale. First, we simply calculate the first three moments of the masked data cube at the measurement scale, yielding
the integrated intensity, mean velocity, and second moment. This is a standard approach but it can yield biased results
in the case of low signal-to-noise data. Masking is necessary to pick out regions of interest from the mostly empty data
cube. This enables the use of the second moment, which diverges in the presence of noise, to estimate the line width.
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However, the masking suppresses faint, extended emission around the bright peaks. This introduces a bias towards
low values into the integrated intensity and second moment measurements. Rosolowsky & Leroy (2006) discuss these
biases and propose corrections for them, which are implemented in the CPROPS software. In the current version
of CPROPS, clouds are treated as three dimensional Gaussians to calculate a first-order correction to the measured
moments based on the ratio of peak intensity to masking threshold for each cloud. Line profile fitting or the use of
more robust statistics like the equivalent width (Equation 1) may also mitigate these effects.

The right panel of Figure 13 shows the bias in the integrated intensity and second moment measurements for an
individual spectrum. The model spectrum is a Gaussian line profile with noise added and then masked following our
standard prescription (an initial mask identifying at least two consecutive channels with S/N =, expanded out to
adjacent channels with S/N > 2). Red and blue lines show the bias in line properties measured using moments as
a function of peak signal-to-noise18. The bias is strongest for the second moment near the signal-to-noise threshold
adopted for the mask. Bias in the line width persists even to high signal-to-noise, however, with moment-based
measurements of σ biased low by ∼ 10−30%. Integrated intensity measurements, which depend less on recovering
emission in the line wings of the line, perform better. These are biased by . 10% at about S/N ≈ 8.

The green and purple lines in the right panel show results using stacking instead of beam-by-beam moments. The
procedure, illustrated in the left panel, is to measure the mean velocity of a spectrum from its first moment. Then
the spectrum is interpolated to a new velocity axis with this local first moment defined to be the new v = 0. These
spectra are summed to produce a stacked, high signal-to-noise spectrum. The resulting spectrum is tractable to fitting
or statistical analysis, which yield less biased measurements because of the higher signal-to-noise. The use of the first
moment to do the shuffling does introduce some statistical uncertainty. However, this is similar to the use of the first
moment to compute the second in the moment method.

In the right panel of Figure 13, the green and purple lines show results stacking 25 independent spectra, each of
which has the indicated peak signal-to-noise. The Figure 13 shows that the stacking results, at least for our simulated
noisy Gaussian, recover the line width and integrated intensity with minimal bias. In contrast, the bias seen in the
blue and red lines would affect each moment measurement and so persists into the measured average of many moment
measurements.

In practice, our stacking methodology resembles that of Schruba et al. (2011), but differs in a few important details.
First, we use the first moment of the line itself to stack the data (similar to Stilp et al. 2013) instead of a velocity
estimated a priori from another brighter line; e.g., Schruba et al. (2011) used the velocity centroid of the Hi emission
to stack CO data. This introduces some statistical uncertainty, but does not appear to strongly bias the measurement.
The larger difference is that we implement our weighted averaging scheme to aggregate the shuffled data into a stacked
spectrum. The procedure is:

1. Shuffle the original, measurement-scale data cube using the local first moment.

2. Weight each spectrum in the original data cube by the local integrated intensity (zeroth moment).

3. Convolve the weighted cube to the averaging scale.

4. Divide the convolved, weighted cube by the sum of weights, which is the convolved integrated intensity map.

The result is an integrated-intensity weighted, self-shuffled data cube that is stacked on scales of the averaging beam.
This is our preferred methodology for obtaining line width measurements in this paper, because it allows a more
detailed characterization of the line profile. However, note that there is information lost in this approach: analysis of
the measurement-scale distribution of line widths width still requires beam-wise calculations.

Comparing Stacking and Moments in Our Data

The left panel of Figure 14 compares results for the line width (blue) and integrated intensity (red) from this stacking
approach (y-axis) to moment-based (x-axis) results for our six data sets. The figure reports the median ratio and the
scatter in the ratio derived from the two approaches.

Results from the two methods track one another well over an order of magnitude in line width and three orders
of magnitude in integrated intensity. We do measure an offset, which has the sense expected from our discussion of
sensitivity biases in the previous section: the stacked results recover higher values than the moments, with a larger
discrepancy for the line width than for the integrated intensity. The sensitivity bias of moment-based analysis has
been recognized before, with previous works addressing the issue via curve-of-growth corrections or leveraging the
peak-to-edge ratio and an assumed Gaussian geometry (see Rosolowsky & Leroy 2006). Here, we advocate the simpler
solution of shuffling and weighted stacking. This recovers the true values for a model Gaussian line well, as long as
enough emission is detected to estimate the intensity-weighted mean velocity for stacking.

Calculation of Uncertainties

We adopt a Monte Carlo approach to estimate uncertainties. For a given data set at a given measurement resolution,
we identify bright signal and estimate the noise from signal-free regions (including spatial variations, if present). We

18 The error bars indicate the spread in results for different line
widths; the significant width of these bars show that the bias de-

pends on both channel width and signal-to-noise (see Heyer et al.
2001; Rosolowsky & Leroy 2006)
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Fig. 14.— (left) Line width (blue) and integrated intensity (red) from intensity-weighted stacking (y-axis) and moment methods (x-axis)
for our six data sets at 60 pc resolution. The two methods agree well, but the stacked results recover larger values on average, especially for
the line width. This reflects the sensitivity bias using moment methods, illustrated in Figure 13. Methods exist to correct the moments for
clipping and sensitivity effects (see Rosolowsky & Leroy 2006), but here we prefer to use the stacking approach, which also yields results
that are more tractable to detailed line profile analysis. (right) Fractional scatter in line width and integrated intensity for our six targets.
Colored regions show the rms fractional scatter (defined as scatter in the measurement over the median value) for each quantity and target
(we plot the rms scatter times −1, too, so that the lines bound the expected 1σ range). Black dots show results for individual Monte Carlo
realizations. These show the strong correlation between the statistical error for I and σ. We do not expect statistical errors to heavily
affect the results in the main text, given the modest values of the uncertainty, but the ability to calculate rigorous statistical errors and
covariance among the errors in another advantage of our approach.
then add a new realization of normally distributed noise to the masked data. This creates a simulated data set in
which the masked data are the true value by construction. We realize a succession of such data sets. For each, we
measure the intensity-weighted quantities of interest described above. The scatter among the measurements of this
mock data set provides a reasonable estimate of the statistical uncertainties in the quantities of interest. Moreover,
the Monte Carlo treatment naturally yields an estimate of the covariance in the uncertainties among the quantities of
interest. This is important given the intrinsic correlation, for example, between I and σ.

This approach embeds an approximation: that the masked real data (which includes noise) is the true intensity
distribution. Therefore the uncertainties that we derive should strictly be interpreted as the simulated uncertainties
for a model intensity distribution equal to the real data. In this paper, we neglect this difference and consider our
simulated uncertainties to be a good representation of the true ones.

We consider normally distributed noise that is spatially correlated by the nominal beam of the telescope. In principle,
one could generalize this approach to a truly rigorous treatment by beginning the Monte Carlo treatment in the u− v
data and raw single dish data. At this point, it is not clear that adding this degree of rigor is needed. The uncertainty
in the translation from observed emission properties to physical quantities instead appears to represent a much larger
obstacle to rigorous hypothesis testing.

We note that radio and millimeter-wave (mm-wave) astronomy still lacks a universally accepted treatment of the
spectral response in a data set. By “spectral response”, we mean the spectral shape of a delta function emission feature,
i.e., the spectral “beam” of the data, similar to the “line spread function” for optical data. Most analyses assume
independent successive channels. However most real correlators and data processing pathways introduce non-zero
channel-to-channel correlation in a given spectrum. This effect needs to be quantified and treated in a field-standard
way for rigorous uncertainty calculations in the cube domain to be easily tractable. We describe our approach, which
is approximate but an improvement over no treatment, in Section A.3.

Our approach to simulate noise with appropriate intrinsic correlation is:

1. Measure the amplitude of the noise from the signal-free region of the real data cube.

2. Measure the channel-to-channel correlation in each cube via a linear correlation coefficient.

3. Generate a cube of normally distributed random data with unity amplitude.

4. Convolve each plane of the random, normally distributed data with the beam of the real data cube.

5. Convolve each spectrum in the random, normally distributed data with a kernel designed to produce the appro-
priate channel-to-channel correlation.

6. Renormalize the amplitude of the simulated noise cube so that it has the same rms scatter about zero as the real
data cube with appropriate correlations.
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TABLE 7
Uncertainties in Ensemble Averages From Our Data

Galaxy Median uncertainty in ... Fractional uncertainty in ... Covariance in uncertainty ...
Iν,pk I σ Iν,pk I σ Iν,pk and I Iν,pk and σ I and σ
[K] [K km s−1] [km s−1]

Antennae 0.007 0.47 0.39 0.014 0.02 0.02 0.27 -0.28 0.68
LMC 0.001 0.02 0.22 0.029 0.07 0.07 0.25 -0.19 0.78
M31 0.002 0.06 0.24 0.019 0.06 0.05 0.22 -0.13 0.86
M33 0.001 0.04 0.33 0.026 0.09 0.09 0.22 -0.06 0.81
M51 0.015 0.92 0.43 0.018 0.05 0.05 0.21 -0.12 0.82
M74 0.005 0.13 0.23 0.026 0.06 0.06 0.25 -0.14 0.83

Note. — Based on 100 Monte Carlo realizations of the data, as described in the text.

Then we add the simulated noise to the masked real data cube. Repeating this process, we take the scatter and
covariance in the measured results to represent realistic uncertainties for our real measurements.

After averaging among large areas over high quality data, systematic rather than statistical uncertainties often
dominate the error budget. Calibration uncertainties are easy to treat; for mm-wave data these are usually ∼ 10−15%
and reasonably simulated as a lognormal distribution that applies once to each data set (i.e., they are multiplicative
and more or less 100% covariant across a single cube). Uncertainties in image reconstruction, baseline subtraction,
and other aspects of calibration remain harder to treat quantitatively; the combination of a Monte Carlo treatment
and automated image reconstruction algorithms offers an appealing route forward, but one that lies beyond the scope
of this paper.

Uncertainties and Covariance in Our Data

Table 7 and the right panel of Figure 14 present the statistical uncertainties in our data based on a Monte Carlo
calculation. We report both absolute and fractional uncertainties. The fractional uncertainties range from ∼ 1−10%.
The low values should not be surprising given that our calculations aggregate data with good signal-to-noise. The
magnitude of the uncertainties places the statistical uncertainties in the same range as systematic uncertainties in flux
calibration (∼ 5−15%). Although unquantified, uncertainties due to limited u− v coverage and image reconstruction
algorithms (combination of single dish and interferometer, error beam treatment, etc.) likely contribute uncertainties
at the same level.

The uncertainties on I, σ, and Iν,pk are not independent. The right panel in Figure 14 plots contours of the fractional
offset from the median value in line width (y) and integrated intensity (x) for each point and Monte Carlo realization.
The two are strongly correlated, as one would expect from the definition of I. As a result, a statistical fluctuation
leading to a large line width is also likely to yield a large integrated intensity. Conversely, because our definition of
line width uses the peak intensity to define the equivalent width, a scatter to high Iν,pk leads to a lower σ, though the
effect is more modest. The last three columns of Table 7 report the correlation between offsets from the median value
across our set of Monte Carlo iterations. Though the statistical uncertainties in our current analysis are modest, these
correlated uncertainties can be important to the interpretation of scaling relations in more marginal cases.

Treatment of Spectral Response

The spectral response affects the measured line width, so that the measured line profile is the convolution of the
true line profile shape with the channel profile. CPROPS (Rosolowsky & Leroy 2006) uses subtraction in quadrature,
approximating the channel as a Gaussian with the same equivalent width (Equation 1) as the tophat channel. In the
case of known channel width, channel-to-channel coupling (k), and a good model for the line shape (e.g., a Gaussian),
an alternative would be to include the spectral response in forward modeling the line.

We adopt the deconvolution-in-quadrature approach, modified to account for channel-to-channel correlation (see
below), but only in the regime where corrections are modest. We identify this regime by modeling the effects of finite
channel width on a large set of real spectra. From our spectral stacking of six galaxies below, we have many high
signal-to-noise line profiles from a diverse set of nearby galaxies. We take the observed, uncorrected line profiles,
resampled to a very fine grid, as a reasonable family of templates (note that this is an approximation, similar to
treating the data as the true value in the Monte Carlo calculation). We channelize these spectra and re-measure the
line width of the data, varying the channel width from small to large values. We also carry out the same calculation for
a series of model Gaussian line profiles. From these channelized, model lines we measure the new, degraded line width
using both moment methods and the equivalent width. We compare this to the same statistic obtained for the line
before channelization. The result is a correction factor that would need to be applied to the measured line width after
channelization to recover the true line width before channelization. We plot this factor as a function of the channel
width divided by the measured line width in Figure 13.

The figure shows that corrections become unstable and substantial below ∆vchan ≈ σ, where σ is the measured line
width before any correction. Corrections are small for lines better resolved than this. We therefore adopt this as a
practical cutoff for measuring the line width. We suggest to treat narrower lines as having an upper limit σ < ∆vchan.
Equation A4 gives our formula for deconvolution in quadrature while accounting for any channel-to-channel correlation,
which broadens the spectral response.
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Fig. 15.— (left) Bias in the measured line width due to finite channel width, estimated from real spectra (gray points), model Gaussian
lines (blue and green lines), and a simple quadratic prescription (red). The y-axis shows the correction factor that must be applied to the
measured line width to match the known, true input. The x-axis shows the ratio between the measured line width, expressed as the rms
dispersion σ, and the channel width. Corrections become large and unstable when the measured line width approaches a channel width. We
adopt this as our cutoff, below which we consider a linewidth measurement to be an upper limit, σ < ∆vchan. (right) The linear correlation
coefficient, r, between noise in successive channels as a diagnostic of the spectral response beyond a channel width. Our simple treatment
models the spectral response as a three-element normalized kernel of the form [k, 1− 2k, k] (so that k = 0.25 is the Hann kernel). The plot
shows the induced channel-to-channel noise correlation for different values of k. We use a polynomial fit to values r < 0.65 and values of r
measured from signal-free regions of the real data to model a spectral response beyond the channel width in our Monte Carlo treatment.

Note that with precise knowledge of the functional form of the line profile, the spectral response, and sufficient
signal-to-noise, one could derive the width of spectral features much narrower than the channel width. The spectral
response of most current mm-wave facilities does tend to be well-characterized as part of the development of the
instrument (e.g., the spectrometers at the IRAM 30-m have a well-characterized noise-equivalent bandwidth, e.g.,
Klein et al. 2012). However, given the diversity of observed line shapes in galaxies, our view is that the functional
form of the astrophysical line profile is not sufficiently well-known for a forward modeling approach to work far below
the resolution of the instrument.

Channel-to-Channel Correlation

Real mm-wave data seldom have perfectly independent spectral channels, reflecting the response of telescope back-
ends, the common practice of Hanning smoothing, and frequent interpolation during data processing. Accounting for
this correlation is important to model uncertainties and to measure the width of marginally resolved spectral lines.
We adopt an ad hoc approach to this problem, modeling the spectral response outside an individual channel with a
normalized three-element kernel similar to a Hann kernel but with variable magnitude, i.e.,

[k, 1− 2k, k] . (A1)

Convolution with such a kernel will introduce a channel-to-channel correlation in the noise in a data set. This is
measurable via the linear correlation coefficient, r, between noise in successive spectral channels. That is, in a signal
free part of the data cube, we measure the correlation of the intensity in channel n with the intensity at the same
spatial position but channel n+ 1 (or equivalently n− 1). For independent spectral channels in a signal-free region of
the cube, we expect r = 0.

Figure 15 shows the magnitude of channel-to-channel correlation, r, induced by a kernel specified according to
Equation A1. Below r ≈ 0.65, a measured r can be inverted to yield k. This kernel can then be used to treat
uncertainties or estimate line widths. Based on the numerical calculations shown in Figure 15, the following yields k
with ∼ 1% accuracy:

k ≈ 0.0 + 0.47r − 0.23r2 − 0.16r3 + 0.43r4 . (A2)

Our experience with real mm-wave data (including those used below) is that r ≈ 0.15 to 0.4 for real data. This
should be expected from the common practice of Hanning smoothing and then downsampling the data by a factor of
2, which yields r ≈ 0.15. Complex instrumental profiles, additional interpolation and smoothing of the data can add
further complications.

From this approach, we have an estimate of the spectral response that we have bootstrapped from data that we
can use during the Monte Carlo treatment or for line width analysis. The adopted kernel is easily extensible beyond
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adjacent channels; however, our exploration of the data considered in this paper does not suggest strong correlations
between channel n and n± 2. Therefore we treat the spectral response as a three element kernel (Equation A1).

Channel-to-channel correlation implies a broader spectral response than only the channel width, which should be
accounted for in the estimate of the astrophysical line width. Following Rosolowsky & Leroy (2006), we account for
broadening by deconvolving the measured line width by the equivalent width of the spectral response, expressed as
the rms of an equivalent-area Gaussian. They considered the channel width, ∆vchan. We extend this to an effective
spectral response width

σresponse =
∆vchan√

2π
×
(
1.0 + 1.18k + 10.4k2

)
(A3)

where the term in parentheses (which is unity for k = 0) accounts for the broadening of the response by a kernel
specified by Equation A1 in the range k ∈ [0., 0.25]. We then correct the measured line width via

σtrue =
√
σ2

measured − σ2
response (A4)

Note that this correction is required even for σ estimated from the equivalent width because the spectral response
“dilutes” the peak intensity, Ipeak, in Equation 1. To first order (within ∼10%), the dilution yields the same apparent
broadening of the line as Equation A3.

B. ATLAS OF CO STRUCTURAL PROPERTIES

Though the main text focuses on statistical distributions, our analysis returns spatial information, suitable for cross-
correlation with environmental metrics. That is, our analysis involves the construction of maps of average cloud-scale
properties. We defer a detailed analysis of the spatial distribution of molecular gas properties within galaxies to future
work, but we present these data as maps in Figures 16 – 21. These maps motivate our statements that the inner
region of M31 differs from the star-forming ring, the LMC ridge from the main body of the galaxy, and the Antennae
SGMCs from the rest of the galaxy. Radial variations are also evident in M33 and M51.
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Fig. 16.— Atlas images of the intensity-weighted average cloud-scale surface density (top left), line width (top right) and boundedness
(bottom left) of molecular gas in the Antennae. The averages are measured within 500 pc apertures. The logarithmic 68% width, ∆84−16,
of the CO integrated intensity distribution within each 500 pc region is also shown (bottom right).
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Fig. 17.— Same as Fig. 16, but for the Large Magellanic Cloud.
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Fig. 18.— Same as Fig. 16, but for M31.
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Fig. 19.— Same as Fig. 16, but for M33.
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Fig. 20.— Same as Fig. 16, but for M51.
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Fig. 21.— Same as Fig. 16, but for M74


