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Astronomy 8824: Problem Set 4 
Due Tuesday, October 29, 2019 

Multi-variate Gaussians and Simple MCMC 
 
Background Reading:  
For bivariate and multivariate Gaussians, see section 3.5 of Ivezic et al. 
 
For MCMC, see sections 5.8.1 and 5.8.2 of Ivezic et al., and section 15.8 of the 3rd edition of 
Numerical Recipes. Note that this topic was not in the 1st or 2nd edition. Useful journal article 
references are Dunkley et al. 2005, MNRAS, 356, 925 and the more comprehensive review of 
Sharma 2017, ARAA, 55, 213. 
 
Part 1: Bivariate Gaussian 
 
Generate 5000 random data pairs (p1, p2) where p1 and p2 are drawn independently from Gaussians 
of standard deviation σ1 = 2 and σ2 = 0.5, respectively (with mean zero). Use the python routine 
np.random.normal. 
 
Compute new data pairs (x, y) with x = p1 cos α − p2 sin α and y = p1 sin α + p2 cos α for α = π/6. 
 
Plot these two distributions (e.g., as tiny dots with different colors) over the top of each other, and plot 
as x and y-axis histograms the marginal distributions of p1, p2, x, and y. 
 
Using equations 3.85 - 3.87 of Ivezic et al., compute the expected values of σX, σY, and σXY. Are the 
marginal distributions for x and y in your plot Gaussians with the expected widths? Overplot 
Gaussians for comparison. 
 
What is the covariance matrix of (x, y)? Compute this analytically, though it may be useful to compare 
it to your numerical estimate. 
 
Draw 5000 random data pairs from a bivariate Gaussian with this covariance matrix using 
np.random.multivariate_normal. 
 
Compare this distribution and the marginal distributions of x and y to the ones you got by your 
previous procedure and comment on the result. 
 
If you want an example of using np.random.multivariate_normal, and some routines to make 
some useful plots, see my starter notebook on the course webpage. 
 
Part 2. MCMC realization of a 2-d probability distribution 
 
The probability distribution for the bivariate Gaussian distribution in Part 1 is:  

p x =  
1

2𝜋 det𝐶
exp −

1
2 𝑥

!𝐶!!𝑥  

where x = (x,y) and the covariance matrix C is 
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C = 𝜎!! 𝜎!"
𝜎!" 𝜎!!

. 

Implement a simple Markov Chain Monte Carlo (MCMC) routine:  
 

1. Start at a user-specified location (x0, y0).  
2. At each iteration generate a trial point (xi+1, yi+1) with: 

x!!! = x! + ℎ𝜎!𝒩(0,1) 
y!!! = y! + ℎ𝜎!𝒩(0,1) 

where 𝒩(0,1) is a Gaussian random variable of zero mean and unit dispersion (chosen 
separately for x and y) and h is a user-specified scaling of the step size.  

3. If p(xi+1, yi+1) > p(xi, yi) accept the step, i.e., add the new pair to the chain and take your next 
trial step from this new position. 

4. If p(xi+1, yi+1) < p(xi, yi) then accept the step with probability p(xi+1, yi+1)/p(xi, yi) (draw a uniform 
random deviate and compare it to this ratio). If the step is not accepted, add the previous point 
(xi, yi) to the chain and generate a new trial point.  

5. Output (or just plot within your program) the final distribution of the chain. Also keep track of 
and report the fraction of trial steps that are accepted, i.e., the ratio of the final length of the 
chain to the total number of steps needed to produce it. 

 
Use this program to generate a 5000-element chain starting from (x, y) = (1, 1) with step scaling h = 1.  
Plot the distribution of points from this chain, and the corresponding marginal distributions, over the 
bivariate Gaussian distribution from Part 1. If your programs are working, you should get good 
agreement. 
 
Try several different starting points and compare the results. You can just describe this comparison in 
words.  
 
Change h from 1 to 0.1. Compare the distribution to that for h = 1 (with a plot), and compare the 
fraction of steps that are accepted. 
 
Change h from 1 to 2.5. Compare the distribution to that for h = 1 (with a plot), and compare the 
fraction of steps that are accepted. 
 
In generating the initial bivariate Gaussian and computing the covariance matrix for the MCMC, 
change σ2 from 0.5 to 0.1. Compare to your previous results, for h = 1. 
 
Comment on issues of efficiency and accuracy in MCMC computations and strategies that could 
improve the efficiency for the σ2 = 0.1 case.  
 
Part 3. Cosmic MCMC: Parameters of the Universe 
 
Here we will do a simplified version of the statistical analysis in Aubourge et al. (2015), Phys Rev D.  
 
You will need to adapt David’s program cosmodist.py from PS 3, or your own code that does the 
equivalent. This time, we will use its ability to compute distances for Ωk ≠ 0 and w = −1. Refer back to 
PS 3 for the relevant equations. Because you’ll evaluate this integral many times, I recommend 
adopting a tolerance of 3 x 10−5, which is adequate given the uncertainties of our observational 
constraints. 
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As the cosmological constraints, take the following (the first two are from the CMB, and others are 
from BAO measurements): 
 
Ωm h2 = 0.1386 ± 0.0027 
DM(z = 1090) = 13962 ± 10 Mpc 
DM(z = 2.34) = 5381 ± 170 Mpc 
H(z = 2.34) = 222 ± 5 km s−1 Mpc−1 
DM(z = 0.57) = 2204 ± 31 Mpc 
H(z = 0.57) = 98 ± 3 km s−1 Mpc−1 
DM(z = 0.32) = 1249 ± 25 Mpc 
 
Compute the likelihood of the data for a given set of cosmological parameters as L	∝	exp{−χ2/2}, where 
χ2 is computed from the above data values ignoring any error covariances (i.e., χ2	= Σ (yi −ymod,i)2/σi

2). 
 
Adapt your MCMC code to create a chain for cosmological parameter values. You should set it up to 
allow steps in 4 parameters: Ωm, h, w, and Ωk. 
 
First consider a flat universe, with Ωk = 0, but allowing free w. Create a 2000-point, 3-d MCMC using 
the parameters Ωm, h, and w, where h ≡ H0/100 km s−1 Mpc−1. (Use your 4-d code but set the step size 
in the Ωk dimension to zero.) For a starting point I suggest Ωm = 0.3, h = 0.68, w = −1, and for initial 
step sizes I suggest Δ = 0.03 in each of these three parameters. 
 
Note that Δ here refers to the actual steps in Ωm, h, and w. These data give parameter errors that are 
roughly in this ballpark. Do not further multiply 0.03 by the expected standard deviations of these 
parameters — that would be like taking h = 0.03 in Part 2, and you already saw (I hope) that h = 0.1 
leads to chains that do not explore the likelihood surface very well. Warning: with Δ = 0.03 your 
acceptance fraction in the MCMC will be low (around ∼ 1%), but if you take a much smaller step then 
you will not get good likelihood sampling. 
 
Plot the distribution of your points in the planes w vs. Ωm, w vs. h, and Ωm vs. h. You may find it useful 
to use the python package corner by Daniel Foreman-Mackey. 
 
Now consider a universe with w = −1 and free Ωk. Create a 2000-point, 3-d MCMC using the 
parameters Ωm, h, and Ωk. (This time set the step size in the w dimension to zero.) For a starting point 
I suggest Ωm = 0.3, h = 0.68, Ωk = 0, and for initial step sizes I suggest trying Δ = 0.03 in the first two 
parameters and Δ = 0.003 in Ωk. 
 
Plot the distribution of your points in the planes Ωk vs. Ωm, Ωk vs. h, and Ωm vs. h. 
 
For reference, you may want to look at Figure 8 of Aubourg et al. (the wCDM and oΛCDM panels), but 
you should not expect to get exactly the same results. The main simplifications are that you are not 
including covariances of the errors and that I have converted the BAO measurements to absolute 
units using the best-fit value of the sound horizon rd, which is well known (to 0.4%) but not perfectly 
known; a full calculation would consider its dependence on cosmological parameters. 
 
Note: This problem set was developed by David Weinberg. 


