Atomic Astrophysics and Spectroscopy

Anil K. Pradhan, Ohio State University
Sultana N. Nahar, Ohio State University

“This is a very important book that bridges the gap between modern atomic physics and modern astrophysics. It covers all the essential subjects, and is very well written. I think it will be of considerable value to research workers in both broad areas, to professors who wish to teach about the subjects, and to students.”

- Dimitri Mihalas, G. C. McVittie Professor Emeritus, University of Illinois and Laboratory Fellow, Los Alamos National Laboratory

Bridging the gap between physics and astronomy, this is the first integrated graduate-level textbook on atomic astrophysics. It covers the basics of atomic physics and astrophysics, including state-of-the-art research applications, methods and tools. An undergraduate knowledge of physics is assumed, and relevant basic material is summarized at the beginning of each chapter. The material is completely self-contained and features sufficient background information for self-study. Advanced users will find it handy for spectroscopic studies. A website hosted by the authors contains updates, corrections, exercises and solutions, as well as news items from physics and astronomy related to spectroscopy. A link to this can be found at www.cambridge.org/9780521825368.

Features

• A well-balanced treatment of atomic astrophysics covering the basics as well as advanced applications
• Suitable for self-study; the basics are summarized at the beginning of each chapter
• Ancillary materials, including updates, corrections, exercises, and solutions available at www.cambridge.org/9780521825368

For further information or to request an examination copy visit www.cambridge.org/9780521825368
Table of Contents

1. Introduction
2. Atomic structure
3. Atomic processes
4. Radiative transitions
5. Electron-ion collisions
6. Photoionization
7. Electron-ion recombination
8. Multi-wavelength emission spectra
9. Absorption lines and radiative transfer
10. Stellar properties and spectra
11. Stellar opacity and radiative forces
12. Gaseous nebulae and HII regions
13. Active galactic nuclei and quasars
14. Cosmology

Appendices
References
Index.