

Atomic Astrophysics and Spectroscopy

Spectroscopy allows the precise study of astronomical objects and phenomena. Bridging the gap between physics and astronomy, this is the first integrated graduate-level textbook on atomic astrophysics. It covers the basics of atomic physics and astrophysics, including state-of-the-art research applications, methods and tools.

The content is evenly balanced between the physical foundations of spectroscopy and their applications to astronomical objects and cosmology. An undergraduate knowledge of physics is assumed, and relevant basic material is summarised at the beginning of each chapter.

The material is completely self-contained and contains sufficient background information for self-study. Advanced users will find it useful for spectroscopic studies. Websites hosted by the authors contain updates, corrections, exercises and solutions, and news items from physics and astronomy related to spectroscopy. Links to these can be found at www.cambridge.org/9780521825368.

ANIL K. PRADHAN is a Professor in the Department of Astronomy, the Chemical Physics Program, and the Biophysics Graduate Program at The Ohio State University. He has taught a course on astrophysical spectroscopy for the past 20 years at The Ohio State University.

SULTANA N. NAHAR is a Senior Research Scientist in the Department of Astronomy at The Ohio State University. She has an extensive background in atomic physics and astrophysics and is one of the foremost researchers on atomic processes.

Atomic Astrophysics and Spectroscopy

Anil K. Pradhan

and

Sultana N. Nahar

Department of Astronomy The Ohio State University

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

Information on this title: www.cambridge.org/9780521825368

© A. K. Pradhan and S. N. Nahar 2011

This publication is in copyright. Subject to statutory exception, and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2011

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

Pradhan, Anil K.

Atomic astrophysics and spectroscopy/Anil K. Pradhan and Sultana N. Nahar.

p. cm.

Includes bibliographical references and index.

ISBN 978-0-521-82536-8

1. Atomic spectroscopy. 2. Astronomical spectroscopy. I. Nahar, Sultana N.

II. Title.

QC454.A8P73 2011

523.01'97-dc22

2010036196

ISBN 978-0-521-82536-8 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Preface			page ix
A	knov	vledgements	xi
ı	Intr	oduction	1
	1.1	Atomic astrophysics and spectroscopy	1
	1.2	Chemical and physical properties of elements	2
	1.3	Electromagnetic spectrum and observatories	4
	1.4	Astrophysical and laboratory plasmas	5
	1.5	Particle distributions	6
	1.6	Quantum statistics	10
	1.7	Spectroscopy and photometry	11
	1.8	Spectroscopic notation	12
	1.9	Units and dimensions	13
2	Atomic structure		15
	2.1	The hydrogen atom	16
	2.2	Quantum numbers and parity	19
	2.3	Spectral lines and the Rydberg formula	20
	2.4	Spectroscopic designation	21
	2.5	The ground state of multi-electron systems	23
	2.6	Empirical rules for electronic configurations	25
	2.7	Intermediate coupling and jj coupling	25
	2.8	Hund's rules	26
	2.9	Rydberg formula with quantum defect	27
	2.10	Multi-electron atomic systems	29
	2.11	The Hartree–Fock method	30
	2.12	Central-field approximation	35
	2.13	Relativistic fine structure	37
3	Atomic processes		46
	3.1	Bound, continuum and resonance states	47
	3.2	Collisional and radiative atomic processes	49
	3.3	Theoretical approximations	53
	3.4	The close coupling approximation	56
	3.5	The R-matrix method	59
	3.6	Approximate methods	65

vi Contents

4	Radiative transitions				
	4.1	Einstein A and B coefficients	73		
	4.2	Electron motion in an electromagnetic field	75		
	4.3	Transition matrix elements	77		
	4.4	Multipole expansion	78		
	4.5	Electric dipole approximation	78		
	4.6	Central-field approximation	81		
	4.7	Length, velocity and acceleration	84		
	4.8	Oscillator strengths for hydrogen	85		
	4.9	Configuration interaction	86		
		Fine structure	87		
		R-matrix transition probabilities	88		
		Higher-order multipole transitions	91		
		Selection rules and Z-scaling	93		
		Dipole and non-dipole transitions in He-like ions	93		
		Angular algebra for radiative transitions	94		
	т.13	Angular algebra for radiative transitions	/-		
5	Elec	ctron–ion collisions	97		
	5.1	Electron impact excitation (EIE)	98		
	5.2	Theoretical approximations	101		
	5.3	Excitation rate coefficients	104		
	5.4	Atomic effects	105		
	5.5	Scaling of collision strengths	111		
	5.6	Comparison with experiments	112		
	5.7	Electron impact excitation data	115		
	5.8	Electron impact ionization	115		
	5.9	Auger effect	117		
6	Photoionization		120		
	6. l	Hydrogen and helium	121		
	6.2	Photoionization cross section	122		
	6.3	Bound-free transition matrix element	122		
	6.4	Central potential	124		
	6.5	Generalized bound-free transition probability	126		
	6.6	Channel coupling and resonances	128		
	6.7	Experimental measurements	137		
	6.8	Resonance-averaged cross section	137		
	6.9	Radiation damping of resonances	139		
	6.10	Angular distribution and asymmetry	144		
7	Elec	Electron–ion recombination			
	7.1	Detailed balance	148		
	7.2	Total electron—ion recombination rate	148		
	7.3	Independent treatments for RR and DR	149		
	7.4	The unified treatment	153		
	7.5	Photorecombination and dielectronic recombination	163		
	7.6	Dielectronic satellite lines	164		
	7.7	Recombination to H and H-like ions	169		
	7.8	lonization equilibrium	169		
	7.9	Effective recombination rate coefficient	173		
		Plasma effects	173		
	,	5110000	17=		

C	Contents	
8	Multi-wavelength emission spectra	175
Ū	-	176
	8.1 Emission line analysis 8.2 Collisional-radiative model	176
		176
	 8.3 Spectral diagnostics: visible lines 8.4 X-ray lines: the helium isoelectronic sequence 	177
	8.5 Far-infrared lines: the boron isoelectronic sequence	191
9		194
	9.1 Optical depth and column density	194
	9.2 Line broadening	195
	9.3 Absorption lines	205
	9.4 Radiative transfer	209
	9.5 LTE and non-LTE	216
10	0 Stellar properties and spectra	220
	10.1 Luminosity	220
	10.2 Spectral classification – HR diagram	221
	10.3 Stellar population – mass and age	224
	10.4 Distances and magnitudes	225
	10.5 Colour, extinction and reddening	225
	10.6 Stellar structure and evolution	226
	10.7 High-Z elements	231
	10.8 Atmospheres	231
	10.9 Solar spectroscopy	232
	10.10 Cool and hot stars	236
	10.11 Luminous blue variables	237
П	I Opacity and radiative forces	239
	11.1 Radiative and convective envelope	239
	11.2 Equations of stellar structure	240
	11.3 Radiative flux and diffusion	241
	11.4 Opacity	243
	11.5 Radiative forces and levitation	252
	11.6 Opacities and accelerations database	255
12	2 Gaseous nebulae and HII regions	257
	12.1 Diffuse and planetary nebulae	257
	12.2 Physical model and atomic species	257
	12.3 Ionization structure	259
	12.4 Spectral diagnostics	261
	12.5 Fluorescent photo-excitation	272
	12.6 Abundance analysis	275
	12.7 Atomic parameters for nebular emission lines	277
13	3 Active galactic nuclei and quasars	278
	13.1 Morphology, energetics and spectra	279
	13.2 Spectral characteristics	288
	13.3 Narrow-line region	290
	13.4 Broad-line region	291
	13.5 Fe II spectral formation	291
	13.6 The central engine – X-ray spectroscopy	295

viii Contents

14 Cosmology				
14.1	Hubble expansion	306		
14.2	Recombination epoch	307		
14.3	Reionization and Ly α forests	308		
14.4	CMB anisotropy	310		
14.5	Helium abundance	312		
14.6	Dark matter: warm-hot intergalactic medium	313		
14.7	Time variation of fundamental constants	314		
14.8	The distance scale	316		
Appendix A Periodic table				
Appendix B Physical constants				
Appen	dix C Angular algebra and generalized radiative transitions	328		
A ppen	Appendix D Coefficients of the fine structure components of an LS multiplet			
Appendix E Effective collision strengths and A-values				
References				
Index				

Preface

This text is aimed at students and researchers in both astronomy and physics. Spectroscopy links the two disciplines; one as the point of application and the other as the basis. However, it is not only students but also advanced researchers engaged in astronomical observations and analysis who often find themselves rather at a loss to interpret the vast array of spectral information that routinely confronts them. It is not readily feasible to reach all the way back into the fundamentals of spectroscopy, while one is involved in detailed and painstaking analysis of an individual spectrum of a given astrophysical object. At the same time (and from the other end of the spectrum, so to speak) physics graduate students are not often exposed to basic astronomy and astrophysics at a level that they are quite capable of understanding, and, indeed, that they may contribute to if so enabled.

Therefore, we feel the need for a textbook that lays out steps that link the mature field of atomic physics, established and developed for well over a century, to the latest areas of research in astronomy. The challenge is recurring and persistent: high-resolution observations made with great effort and cost require high-precision analytical tools, verified and validated theoretically and experimentally.

Historically, the flow of information has been both ways: astrophysics played a leading role in the development of atomic physics, and as one of the first great applications of quantum physics. As such, it is with basic quantum mechanics that we begin the study of astrophysical spectroscopy. The atomic physics and the astrophysics content are intended to be complementary, and attempt to provide a working knowledge in the two areas, as necessary for spectral analysis and modelling. The emphasis is on the introductory theoretical basics, leading up to a practical framework for applications of atomic spectroscopy. While we limit ourselves to atomic physics, we have attempted to highlight and delineate its reach into the main areas of astronomy.

The link between basic-to-advanced atomic physics and spectral analysis is increasingly important in ever more sophisticated astrophysical models. But the challenge of writing a book such as this one has been to find a balance between basic physics treatment that is not superficial, and state-of-the-art astrophysical applications that are not too technical. Though that defined and delimited the scope, it was still clear from the outset that the material should encompass a wide variety of topics. But what is essential and what is superfluous is, to some extent, a matter of subjective judgement. The level of depth and breadth of each topic is subject to these constraints. However, owing to the objective needs before us, we have tried to be as comprehensive as possible (limited by our own expertise, of course).

The text is evenly divided into atomic physics and astrophysics. The first seven chapters form the foundational elements of atomic processes and spectroscopy. The next seven chapters deal with astrophysical applications to specific objects and physical conditions. Each chapter follows the same plan. We begin with the essentials that all readers should be able to follow easily. However, towards the end of each chapter we outline some of the more advanced or specialized areas. The subject matter is broadly divided into 'basic' material in both areas, and 'advanced' material that incorporates state-of-the-art methods and results. The underlying atomic physics is intended as an introduction to more specialized areas, such as spectral diagnostics, astrophysical models, radiative transfer, plasma opacities, etc.

Emphasizing the unifying and connecting themes, the text is planned as follows. Following the Introduction, the next six chapters cover 'basic' collisional and radiative atomic structure and processes. The second part of the text, the other seven chapters, are the 'applications' of the physical framework developed in the first part. Chapters 8 and 9 describe the interaction of radiation with matter and spectral formation. The remainder of the text, Chapters 10–14, deals with descriptions of astronomical sources: stars, nebulae, active galactic nuclei and cosmology. A special chapter is devoted to a description of

x Preface

the largest single application of atomic physics to astronomy: stellar opacities (Chapter 11). However, the content of these chapters is *not* designed to be exhaustive, but mainly to exemplify spectral formation in astrophysical environments. Each of Chapters 10–14 contains tables and sample spectra characteristic of the particular astrophysical source(s). The appendices provide some of the tools, and some of the atomic data, needed in spectral modelling. However, they are not comprehensive and readers are advised to consult the websites described below.

Supplementary to the present text are the authors' websites. They will provide continual updates and revisions related to atomic data and developments in atomic astrophysics. Eventually, this facility is designed to be user-interactive, with features such as on-line calculation of spectral line intensities and ratios, model calculations of ionization fractions, etc., using up-to-date atomic data.

 $\label{eq:www.astronomy.ohio-state.edu/} www.astronomy.ohio-state.edu/\sim\!nahar.$

Acknowledgements

The material in this book is partially based on several courses that Anil Pradhan has taught over the years. First of all, it is from a course on Theoretical Spectroscopy taught to astronomy graduate students at the Ohio State University every alternate year for nearly 20 years. Some of the material is also derived from graduate courses taught on atomic structure at the University of Windsor, scattering theory at the University of Colorado, and advanced undergraduate causes on stellar astrophysics at Ohio State. In addition, teaching introductory astronomy courses to non-science majors at Ohio State has been a valuable exercise in learning that, in addition to the discovery of wondrous new objects, some of the most basic and common phenomena in the Universe remain poorly understood (and that is the fun and raison d'etre for doing astronomy!).

But it is in the inspiration derived from our teachers and mentors wherein lies the foundation. The first acknowledgement - indeed a debt of gratitude - is due to Mike Seaton, advisor and mentor for over three decades. Mike was among the foremost pioneers who developed atomic astrophysics into the discipline it is today. Although he was not aware of this effort, and, regrettably, would not see it, Mike's monumental contributions are self-evident throughout the text. Nearly a decade ago, Dimitri Mihalas first suggested to Anil Pradhan the need for a book such as this. Dimitri has since then encouraged and advised on several aspects of the presentation, so well exemplified in his classic Stellar Atmospheres. From the observational side, Don Osterbrock continually pointed out over many years the specific needs for astrophysical diagnostics that could be fulfilled by the state-of-the-art atomic physics he appreciated so well. We also regret that Don is no more to see the fruit of his inspiration, howsoever imperfect this may be.

A number of our colleagues have read parts of the material and made numerous suggestions. We are especially grateful to our long-time collaborator, Werner Eissner, for revisions of the chapter on atomic structure. Special thanks are due to former student, postdoc, and now a valued colleague, Max Montenegro, for expertly and patiently (re-)drawing most of the figures in the book. Among the several colleagues who reviewed the material, Gerry Newsom and Bob Wing made particularly valuable comments on the chapters on stars, emission lines and nebulae. We also thank Dirk Grupe, Hong Lin Zhang, Prajaval Shastri, Bob Williams, Belinda Wilkes and David Branch, who read and suggested many corrections or improvements. But although all the material in the text has been reviewed by at least one of them, any errors, omissions and inaccuracies are entirely our responsibility. All we can say is that, fortunately, we have the electronic means to correct or revise any material, and would greatly appreciate readers pointing those things out to us. We shall endeavour to post all updates on the special website meant for this book (with due acknowledgement).

Finally, we would like to acknowledge the immense support and motivation derived from our families, to whom this work is dedicated. Anil Pradhan would like to thank his wife, Indira, and children, Alka and Vivek, his mother, Sarojini (who is no more), grandparents, Laksman Swarup and Phoolmati Pradhan, and parents Mahesh Chandra and Kunj Bala Pradhan. Sultana Nahar is grateful for inspiration from parents, Abdul Razzaq and Shamsun Nahar, teachers and family, especially her son, Alburuj R. Rahman.