Elucidating the Mechanism of Antibiotic Resistance in *Enterobacteriaceae* by Metallo-β-Lactamases: A Genomic and Proteomic Study to Design New Drug Molecules

Members of *Enterobacteriaceae* from clinical and non-clinical settings have become one of the most important cause of hospital and community acquired infections¹. As these are becoming increasingly resistant to conventional antibiotics.

The dissemination of metallo- β -lactamases genes (*bla*_{MBLs}) in *Enterobacteriaceae*, by conjugation, imparts resistance to other species against penicillins, cephalosporins and carbapenems. The widespread of *bla*_{MBLs} pose a greater risk of infection as these genes are located on plasmids and flanked by IS elements/integrons/transposons and can disseminate across species². Moreover, these plasmids carry genes for co-resistance to other antibiotics such as aminoglycosides, fluoroquinolones, tetracyclines, chloramphenicols, etc³.

New Delhi Metallo- β -lactamase (NDM) is one such MBL that has a very broad substrate profile, including carbapenems, but sparing monobactams⁴. The rapid and global dissemination of NDM producing Gram-negative species possess major public health threat^{5, 6, 7}.

In India, the presence of NDM-1 in community acquired infections suggests that bla_{NDM-1} is widespread in environment and posing a greater risk to the community health⁸. This scenario is of immense concern because no new antibiotic is in the pharmaceutical pipeline that is effective against NDM-1 producers. Thus, there is pressing need for the development of new drug molecules against MBLs.

In the light of above background, we wanted;

- To learn more about the prevalence of NDM-producing Enterobacteriaceae in the environment of India
- To study the genetic environment around *bla*_{NDM} to locate IS elements/integrons/transposons/resistant islands mutations/new genes that aid antibiotic resistance in *Enterobacteriaceae*.
- To understand the molecular basis of antibiotic hydrolysis by NDM and to design novel inhibitors against it.

Work done to date:

For this study, we collected environmental sample (sewage water) from Aligarh, India. PCR and sequence analysis showed that the bacterial strains were having 2 NDM variants (NDM-4 and NDM-7). These bacterial strains showed very high minimum inhibitory concentrations against following antibiotics Imipenem, Meropenem, Aztreonam, Ceftazidime, Cefotaxime, and Cefoxitin, Gentamicin, Ticarcillin/Clavulanic acid. Conjugation experiment confirmed that bla_{NDM} gene is present on plasmid and its dissemination can easily occur. Moreover, replicon typing and PCR based genetic environment study were also performed.

Significance

The study will open new vista to understand the role of genetic markers around bla_{MBLs} in multidrug resistance. Moreover, potential new lead drug molecules can be identified against MBLs may be further optimized for clinical use.

References

- 1. Cantón R, et al. (2008) Clin Microbiol Infect 14: 144-153.
- 2. Suh JY, et al. (2010) Antimicrob Agents Chemother. 54:560-562.
- 3. Hradecka H, et al. (2008) J. Antimicrob. Chemother. 62:938-941.

- 4. Yong D, et al. (2009) Antimicrob Agents Chemother 2009; 53: 5046–54.
- Kumarasamy KK, *et al.* (2010) *Lancet Infect. Dis.* 10: 597–602.
 Nordmann P, *et al.* (2011) *Emerg. Infect. Dis.* 17:1791–1798.

- Walsh TR, *et al.* (2011). *Lancet Infect. Dis.* 11:355–362.
 Kumarasamy, KK *et al.* (2010) *Lancet Infect Dis.* 10(9): 597-602.