Taqseer Khan

Abstract

Operator theory occupies an important place in Analysis because of its significant applications in various fields of Mathematics as well in other natural sciences. An operator $T: X \to Y$ is called compact if the image of each bounded subset of X is precompact in Y. Compactness of an operator is a powerful notion but it occurs not very often. Several other notions which are near to this concept have been studied. One of them is strict singularity. An operator T is said to be strictly singular if its restriction to any infinite dimensional subspace does not induce an isomorphism. The notion is widely studied, for intance in [1, 2, 3, 4]. It is well known that compactness \implies finite strict singularity \implies strict singularity. But the converse is false. We study the following Volterra operator $V: L^1[0, 1] \to C[0, 1]$ defined by

$$V(f)(x) = \int_0^x f(t)dt.$$

To study the asymptotic behaviour of this operator we associate a sequence of numbers, called s- numbers. There are several s-numbers, for example, approximation numbers $a_n(V)$, isomorphism numbers $i_n(V)$, Gelfand numbers $c_n(V)$, Bernstein numbers $b_n(V)$, Mityagin numbers $m_n(V)$, Kolmogorov numbers $d_n(V)$ etc.. In general, it is known that $a_n(v) \ge d_n(v) \ge m_n(v) \ge i_n(V)$ We are investigating for the bounds of the Mityagin numbers and trying to establish the equality

$$b_{(V)} = m_n(V) = i_n(V).$$

References

- I. Chalendar, E. Fricain, A. Popov, D. Timotin, V. Triotsky, *Finitely strictly singular operators between James spaces*, J. Funct. Anal. 256 (2009), no. 4, 1258-1268.
- [2] P. Lefevre, L. Rodrígueez-Piazza, Finitely strictly singular operators in harmonic analysis and function theory, Advances in Math., 255(2014), 119U152.
- [3] J. Linndenstrauss, L. Tzafriri, Classical Banach Spaces. I. Sequence Spaces, Vol. 92, Springer-Verlag, Berlin-New York, 1977.
- [4] V. Milman, Operators of class C_0 and C_0^* . (Russian) Teor. Funckii Functional, Anal. i Priloden. No. 10 (1970), 15-26.