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STUDYING ASTRONOMICAL OBJECTS

ASTRONOMICAL objects are studied in 3 ways:

e IMAGING: - Beautiful pictures or images of as-
tronomical objects, Stars, Nebulae, Active Galactic
Nuclei (AGN), Black hole Environments, etc

- Bands of Electromagnetic Colors ranging from X-
ray to Radio waves — macroscopic information

e PHOTOMETRY: - Low resolution spectroscopy -
Examples: types of stars, abundances, general idea
of physical conditions, etc

— macroscopic information

e SPECTROSCOPY: - Provides most of the de-
tailed knowledge: temperature, density, extent, chem-
ical composition, etc. of astronomical objects. Bright-
ness of the line indicates abundance of the element
and width of the spectral lines indicate other effects
such plasma broadening due to collisions, Stark ef-
fects etc.



IMAGING: BLACK HOLE JET OF
CENTAURUS A (Chandra space telescope)

e Imaging: red - low-energy X-rays, green -
intermediate-energy X-rays, and blue - the highest-
energy X-rays. The dark green and blue bands are
dust lanes that absorb X-rays.

e The falling particles spiral around the blackhole,
move faster close to it and release energy in the
form of radiation - mainly X-rays

e The highly energetic SUPER HOT ATOMS near
the blackhole are in a plasma state & emit bright
K, (1s-2p) X-rays

e Sucked materials are ejected as a jet (L & E con-
servation)

e Blasting from the black hole in the galaxy a jet
of a billion solar-masses extending to 13,000 light
years



Photometry: Supernova Remnant
CASSIOPIA A [Spitzer (Infrared - red),

Hubble (Visible - yellow), Chandra
(X-ray - green & blue)]

e Star elements: H, He, though Fe, some Ni
e Elements heavier than Fe created from nu-
clear fusion during supernova explosions are
scattered into interstellar medium

e Our earth was created from supernova rem-
nants (common for astronomical objects)

- Two pristine clouds of H & He discovered
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Spectroscopy: Indication of a Black Hole
(ASCA and Chandra)
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e K, (1s-2p) transition array lines of Fe in Seyfert

I galaxy MC(G-6-30-15 6

e Maximum AF = 6.4 keV for a 1s-2p transition
e The asymmetric stretching toward E ~ 5 keV in-
dicates presence of a black hole nearby

e K, photons lose energy by the black hole’s grav-
itational potential (AAS - Pradhan and Nahar)
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X-RAY INTERACTION WITH ELEMENTS

1. Photoexcitation:

X2 + hy = X2

e Oscillator strength (f), Radiative decay rate (A-

value)
e Form absorption and emission lines

2. Direct Photoionization (PI) :
X+z+h]/éX+z+1+ e

3. Photoionization via an Autoionizing State :

e+ X4 Al

The intermediate doubly excited state - ”autoron-
1zing state” - introduces resonances

e 2 & 3. Photoionization Cross Sections (op;)
e PI Resonances form absorption lines



RESONANT NANO-PLASMA
THERANOSTICS (RNPT)
(Pradhan, Nahar, Montenegro, Yu, Chem. Phys. 2009)

Physics of X-ray spectroscopy for a black hole
similar to — X-ray sources in medical facilities.
e Differences - heavier elements, high energy X-
rays

e X-rays are absorbed by inner shell electrons
for photoionization

e Produce low energy Auger electrons

e At the right Resonant energy production of
electrons can be maximized (nano-plasma)

e A monochromatic X-ray source can be tar-
geted at the resonant energy through spec-
troscopy and considerable reduce harmful ef-
fects

RNPT is based on the above ideas



X-Ravys: Cancer Treatment with Gold NP

N312 ] F Hainfeld ez al

Figure 3. Radiographs of mouse hind legs before and after gold nanoparticle injection. (A) Before
injection. (B) 2 min after i.v. gold injection (2.7 g Au/kg). Significant contrast (white) from
the gold is seen in the leg with the tumour (arrow) compared with the normal contralateral leg.
6 s exposures at 22 kVp and 40 mA s. Bar = 1 em.

e Top: Radiograph of mouse hind leg before

and after injecting intravenously & accumulat-
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e 30 days experiment: X-ray irradiation with
gold NP reduced 85% tumor volume

e With Au NP, less radiation was needed to kill
the defective cells than that in radiation therapy



Auger Electrons from Photoionzation

e Fig (i) K-shell ionization by an X-ray photon — Auger
process - an inner shell hole is filled by an upper shell electron
As a L-shell e™ drops to K-shell, a photon of excess energy is
emitted which can knock out another L-shell e

e Fig (ii) Two vacancies created in L-shell are to be filled by
M-shell e”s. The process can lead to cascade of electron and
photon emissions as multiple vacancies move upward

e Single ionization of 1s electron can lead to ejection of 20 or
more electrons in an ion with occupied O and P shells

e Fig (iii) Inverse Auger - Resonant photo-excitation from 1s
— 2p (with L-shell vacancy) by an external monoenergetic
X-ray source with intensity above RNPT predicted critical
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PHOTOIONIZATION: X(ion) + hv — X" 4+ e

K-shell edge effect on X-ray absorption by gold nanoparticles
e Gold nanparticles absorb X-rays & photoionize

e Attachment of ejected electrons to the surrounding malig-
nant cells breakdown the DNA

e OBJECTIVE: Increase number of electrons

e Fig: background photoinization op; of Au

e op; rises at various K, L, M (sub)-shells energies

e Rise in K-shell ionization edge ~ 81 keV investigated with
no evidence

e RNNPT predicts resonant energy, below the K-edge, where
probability of electrons production is orders of magnitude
higher than that at K-edge (in red)
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X-RAY SOURCES IN MEDICAL FACILITIES

e X-ray sources in medical facilities (Figure)

e Bremsstrahlung radiation is emitted as electrons
accelerate between cathode & anode of a given AV and
hit a high-Z target, e.g., tungsten (W) (Inset diagram)

X-ray tube schematic
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Typical Bremsstrahlung of an X-ray Machine

e The energy range of the Bremsstrahlungl
0 - machine peak voltage (kVp). Fig: W
Bremsstrahlung (square)
e A filter (e.g. Al, dotted) - reduces low energy
radiation, harmful to body cells

e Bremsstrahlung- maximum at ~1/3 of kVP
or MVp

Intensity (arbitrary)
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Production of Monochromatic X-rays
e Monochromatic X-rays can be produced by directing
bremsstrahlung to a high-Z target rotated at a selective angle

e Inner K-shell ionization in the target followed by radiative
decays by upper shell e s — X-ray fluorescence at monochro-
matic energies. Flourescence yield

WK = Ar<L - K)/[Ar(L — K> + Aa<L>}

e Fig: Production of K, X-rays from Zr (Pradhan et al 2010)
250)

A —_—r I{m Fluorescence and Scattering

2000 e Background ]

50

PF.'u
o
Q
-
U
Q
e
Q
o
un
c
_E 10 15 20 25 30 35 A0
E 15|:| [ T I T I I ]
e} B Zr Ku.
©
et
.E 100 .
S
-8
ot
wn
5 5ok £r Ke. )
et
=
|:| I] 1 1 1 1
10 15 20 25 30 35 41

Energy (keV)

13



RNPT: NANOBIO-SPECTROSCOPY
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e With consideration of all points, RNPT is de-
scribed above

e Nanoparticles of heavy elements are embedded
in the tumor

e Direct X-rays at nanoparticle resonant energies
from a tunable monochromatic source

e The heavy element absorbs/emits X-rays
at higher energies where biogenic elements
(H,C,N,0,CHON) are transparent

e Fluorescent emission and electron ejections due
to inner-shell ionization and produce nano-plasma
e Electrons breakup the DNAs of tumor cells

e Spectroscopically targeted radiation should be
far more efficient with reduced exposure
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Monte Carlo Simulation for Resonant K,

X-Ray Absorption by Au Nanoparticles
(Montenegro et al. 2009)

e We applied gold « in Monte Carlo simulation to
study X-ray absorptions and intensities of emitted
photons and electrons by Auger process in tissues
e Modifed the simulation code, GEANT4, to in-
clude the resonant cross sections

e TOP: Geomtry of the experiment - the phantom
(15 x 5 x 5 cm) models a tumor embedded with
gold nanoparticles (golden section 2 cm) 10 cm in-
side normal tissue (blue section)

e BOTTOM: Simulation - gold nanoparticles at 5
mg/ml, X-ray beam at resonant energy ~ 68 keV
e NOTE: Because of Compton scattering only a few
photons reach the region with gold nanoparticles

Water
X-Ray

Nano material




X-RAY ABSORPTION BY Au AT 68 keV, 82 keV, 2 MeV

Figure: X-ray energy deposited by depth in the phantom:
Red curve - with tumor in region 100 to 120 mm embedded
with gold nanoparticles at 5 mg/ml, Blue curve - only water
e Top: X-ray at 68 keV - averaged Ka resonant energy

e Middle: 82 keV - just above K-edge ionization energy

e Bottom: 2 MeV - high energy common in clinical usage

e The presence of gold nanoparticles has increased the
energy deposited at the tumor

e The highest absorption, by more than 25 time that at 82
keV, is at the resonant energy 68 keV (top panel)

Mean energy deposited per photon and depth
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ELECTRON PRODUCTIONS AT 68 keV, 82 keV, 2 MeV

Figure: Number of Auger electrons produced with depth
following X-ray absorptions: Red curve - tumor embedded
with gold nanoparticles at 5 mg/ml in region 100 to 120
mm, Blue curve - only water

e Top: X-ray at 68 keV - averaged Ka resonant energy

e Middle: 82 keV - just above K-edge ionization energy

e Bottom: 2 MeV - high energy common in clinical usage

e A considerably large number of electrons, by more than
an order of mangitude, were produced by 68 keV X-rays
compared to those by 82 keV and 2 MeV
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Radiation Dose Enhancement Factor (DEF)

DEF is the ratio of the average radiation dose absorbed
by the tumor when it is loaded with a contrast medium or
agent (viz. iodine) to the dose absorbed without that agent
Figure: DEFs with various gold nanoparticle concentration
from 0 to 50 mg/ml

e Red: X-ray at 68 keV - averaged Ka resonant energy

e Green: 82 keV - just above K-edge ionization energy

e Blue: 2 MeV - high energy common in clinical usage

e The DEFs obtained for the resonant X-ray beam of 68
keV are one order of magnitude greater than those calcu-
lated at lower concentration using iodine as a contrast agent.
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CONCLUSION

. RNPT is explained with X-ray spectroscopy of Au nanopar-
ticles where we predict resonant energies below the K-shell
ionization threshold for enhanced X-ray absorption

. We obtained Auger resonant probabilities and cross sec-
tions to obtain total mass attenuation coefficients with res-
onant cross sections

. We find that the attenuation coefficients for X-ray absorp-
tions at resonant energies are much larger, over orders of
magnitude, higher over the background cross section as
well as to that at K-edge threshold

. We have been able to produce monochromatic radiation
from the Bremsstrahlung of a conventional X-ray tube ma-
chine
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Anil K. Pradhan and Sultana N. Nahar
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