Astronomy 141 -- Winter 2012
Quiz 1 Study Guide

Unit 1: Introduction

Astronomical Numbers
 Scientific Notation
 Metric system
 The AU, Light Year, Earth Mass and Solar Mass
 The micron and nanometer

Unit 2: Five Revolutions

The Copernican Revolution
 Motions of the Stars, Sun, Moon, and Planets
 Retrograde Motion of the Planets
 Geocentric Models of the Solar System
 Epicycles - why needed
 Heliocentric Models of the Solar System
 How does it explain retrograde motion
 Contributions of Copernicus, Kepler and Galileo
 Galileo’s telescope observations & their significance
 The Moon, Sunspots, Phases of Venus, Moons of Jupiter

The Chemical Revolution and the Nature of Matter
 Classical Elements (Earth, Air, Fire & Water)
 The Atomists vs. the Aristotelians
 Contributions of Lavoisier and Dalton
 Periodic Table of the Elements
 Constituents of Atoms:
 Nucleus of Protons & Neutrons
 Orbiting Electrons
 Chemical Elements
 Atomic Number (number of protons)
 Isotopes
 Radioactive Decay and Half-Life

The Geological Revolution and the Age of the Earth
 Historical versus Physical Ages
 Radioactive half-life
 Radioactive Isotope Dating (radiometric dating)
 The age of a rock is the time since it solidified
 Problems finding the oldest rocks
 What is the age of the Earth? What data are used?

The Biological Revolution
 Idea of Spontaneous Generation and its persistence
 Discoveries with the microscope
 Mendel’s discovery of the laws of heredity
 Understanding of the workings of heredity in cells
 Discovery of DNA as the agency of heredity

The Cosmological Revolution
 The number, location and types of planets in the Solar System
 The nearest stars
 What are the basic properties of the Milky Way?
 What are galaxies?
 Clusters and Superclusters of Galaxies
 What is the current value for the age of the Universe?
 What is the origin of the chemical elements?
 What are the most abundant elements in the Universe?

Unit 3: Life on Earth (Part I)

Inside the Earth
 Seismology as a probe of the Earth’s interior
 P- and S-waves
 Location and composition of the different layers
 Solid Inner Core, Molten Outer Core, Mantle, Crust
 Differentiation

Origin of Earth’s Magnetic Field
 Plate Tectonics
 Types of plate boundaries
 Transform Boundaries (lateral motions, transverse faults)
 Convergent Boundaries (plates colliding, subduction, crust buckling)
 Divergent Boundaries (mid-ocean ridges)

The Earth’s Atmosphere
 Composition of the present atmosphere
 Primordial (ancient) atmosphere
 Origin of the atmosphere in volcanic outgassing
 Origin of oxygen in the atmosphere
 Where is the water and carbon dioxide now?
 Why is Nitrogen the most abundant constituent of the present-day atmosphere
 Greenhouse Effect (causes & manifestation, importance in determining the Earth’s surface temperature)
 Atmosphere evolution

The Geologic History of the Earth
 Types of Rock (metamorphic, igneous, sedimentary)
 Stratigraphic vs. Radiometric ages
 Major Eons (Hadean, Archaean, Proterozoic, & Phanerozoic)
 Hadean Earth: Moon Formation, Atmosphere & Ocean Formation
 Epoch of Heavy Bombardment

Climate Regulation and Climate Change
 History of the Earth’s Atmosphere
 Carbon Dioxide Thermostat
 Ice Ages and the Malenkovich Cycles
 Snowball Earth
 Modern Climate Change