This lecture reviews the history of life on Earth.

- Rapid diversification of anaerobic prokaryotes during the Proterozoic Eon
- Emergence of Photosynthesis and the rise of O₂ in the Earth’s atmosphere.
- Rise of Eukaryotes and the Cambrian Explosion in biodiversity at the start of the Phanerozoic Eon
- Colonization of land first by plants, then by animals
- Emergence of primates, then hominids, then humans.

A brief digression on notation: “ya” = “years ago”

Introduce a simple compact notation for writing the length of time before the present day. For example:

- “3.5 Billion years ago”
- “454 Million years ago”

Gya = “giga-years ago”, hence 3.5 Gya = 3.5 Billion years ago

Mya = “mega-years ago”, hence 454 Mya = 454 Million years ago

[Note: some sources use Ga and Ma]
The four Eons of geological time.

Hadean: 4.5 – 3.8 Gya: Formation, oceans & atmosphere

Archaean: 3.8 – 2.5 Gya: Stromatolites & fossil bacteria

Proterozoic: 2.5 Gya – 454 Mya: Eukarya and Oxygen

Phanerozoic: since 454 Mya: Rise of plant and animal life

The Archaean Eon began with the end of heavy bombardment ~3.8 Gya.

Conditions stabilized. Oceans, but no O₂ in the atmosphere.

Stromatolites appear in the geological record ~3.5 Gya and thrived for >1 Billion years

Rise of anaerobic microbes in the deep ocean & shores using Chemosynthesis.

Time of rapid diversification of life driven by Natural Selection.

The Proterozoic Eon (2.5Gya – 454Mya) was the time of single-celled life and the rise of Oxygen.

Find microfossils of prokaryotes.

Emergence of Photosynthesis:

First using H₂S instead of H₂O, so no Oxygen produced.

Then using CO₂+H₂O to make O₂ starting ~2.4 Gya.

The first O₂ is quickly soaked up by mineral oxidation, and very little makes it into the atmosphere.
Most of the initial Oxygen made by photosynthesis was soaked up by mineral oxidation.

Banded Iron Formations
Iron oxide layers in sedimentary rocks.

Total O_2 locked up in BIFs is about 20x current atmospheric O_2 content!

Source of much modern iron ore for industry.

Major sink for early oxygen production until ~1.8 Gya.

Rapid rise in atmospheric Oxygen once the mineral sinks became saturated ~1.8 Gya

Crisis for anaerobic life:
O_2 attacks chemical bonds

Mass extinction of anaerobic prokaryotes except in the deep oceans and Deep underground

Bad for anaerobic prokaryotes, but...

Good for photosynthetic prokaryotes and emerging Eukaryotes

The first Eukaryotes arose ~2.1 Gya during the early Proterozoic Eon from large prokaryotes.

Accompanied the rise of Oxygen allowing larger organisms.

First Eukaryotes were a symbiosis of prokaryotes:
- Mitochondria in animal cells
- Chloroplasts in plant cells

These symbiotic “organelles” still have their own DNA.
First multi-celled Eukaryotes arose about 1.2Gya

Fossil red algae recognizable in modern-day descendants.

Probably started as colonies of single-celled Eukaryotes.

Developed specialized cell functions.

Sexual reproduction emerged soon thereafter, providing greater genetic diversity to drive rapid evolution.

The whole became greater than the sum of the parts…

While diversity evolved quickly, body plans did not evolve much between 1.2 Gya and 550 Mya.

Biggest change in the late Proterozoic Eon ~580 Mya was the emergence of the Ediacara biota after the last Snowball Earth episode.

First complex multicellular organisms.

Apparently soft-bodied and abundant until the start of the Cambrian.

The Phanerozoic Eon marks the rise of plant and animal life on the Earth.
The Cambrian Explosion in multicellular organisms marks the start of the Phanerozoic Eon.

Most major groups of animals and their body plans appeared rapidly during a 40Myr period at the start of the Cambrian Period 450Mya.

Only major diversification in basic body plans in the geological record.

Complex animal and plant life quickly filled most available ecological niches.

Why the sudden explosion in biodiversity at the start of the Phanerozoic?

Abundant atmospheric O₂ allows larger creatures by providing for their higher metabolism.

Snowball Earth at the end of the Proterozoic caused mass extinctions:
- Opened up ecological niches
- Provided strong selection pressure.

Sexual reproduction led to greater genetic complexity driving rapid evolution to quickly adapt to the new niches.

Animal and plant life only slowly colonized land after the Cambrian Period

Land represents many challenges to complex life:
- UV radiation before the ozone layer formed was a fatal hazard.
- How to extract minerals and water from the ground (no soil yet)?
- Plants and fungi first colonized land ~475Mya.
- Animals followed plants ~75Myr later.
By the Carboniferous Period 360Mya, the land was covered in vast forest with numerous insect species. Carbon deposits from this period is our main source of coal…

The last 250 Myr has seen two major groups of land animals emerge on the Earth.

Dinosaurs and mammals first appear ~220Mya
Dinosaurs rule the Earth for 155Myr until ~65Mya when they were wiped out by an asteroid impact. Mammals radiated into the vacated niches, and are prominent to the present day.

Primates arose shortly after the dinosaur mass extinction, but hominids are recent geologically.

First ancestral primates emerged ~58 Mya
Lineages of monkeys split off ~40 Mya
Lineages of apes split off between 35 and 7 Mya
First hominids arose about 6-7 Mya.
First ancient homo sapiens don’t appear until 400 – 200 kya.