
\qquad

This lecture describes the nearest stars to the Sun and beyond. \qquad
The closest star is Proxima Centauri, a red dwarf 4.24 light years away.

The nearest Sun-like star is α Centauri, 4.36 light years \qquad away, that is in a triple star system with Proxima Cen
\qquad
The Solar Neighborhood is the stars within about
\qquad
Most nearby stars are red dwarfs: cool M-type main sequence stars.

The Sun is part of the Milky Way Galaxy, a system of more \qquad than 200 Billion stars, made up of a disk and central bulge.

The closest star to the Sun is Proxima Centauri, a faint red dwarf located 4.24 light years away.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Even the fastest spacecraft to date, Voyager 1, would take millennia to reach Proxima Centauri.

Voyager 1 is now travelling at
\qquad 61,400 km (38,200 mph).

As of Feb 2012 it is 120 AU away (~18 Billion km)

Proxima is $4.024 \times 10^{13} \mathrm{~km}$ away.
Would take 74,000 years to reach Proxima Centauri.
Space is very empty, and the stars are very far apart.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Lecture 32: The Solar Neighborhood

So far we do not know of any planets around either α Centauri A or B, but we're still looking.

The Habitable Zones for α Cen A and B are in regions of orbital stability.

The Solar Neighborhood is the collection of stars within ~ 15 light years of the Sun.

Only about 4 stars per 1000 cubic light years.
The average distance between stars is about 6 light years in the local solar neighborhood.

The distribution of stellar luminosities in the Solar Neighborhood is dominated by low-mass stars.

\qquad

Most main-sequence stars are faint, cool M-type dwarfs (red dwarfs).

Stars like the Sun are relatively rare.

This means we must search out to greater distances to find planetary systems like our own.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Lecture 32: The Solar Neighborhood

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Milky Way is a rotating, flattened disk of stars \qquad with a central bulge.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Galactic Bulge is a roughly spherical population of older stars around the center of the Milky Way.

Most bulge stars are older
than those near the sun
~10 Gyr old (almost as old as the Universe!)

Much denser than the Solar Neighborhood:
~3 stars per cubic light year compared to
4 per 1000 cubic light year nearby.
The bulge is very populous - Tens of billions of stars

There are nearly 200 Billion Stars in the Milky Way, most of the M-type dwarfs.

