

This lecture describes the nearest stars to the Sun and beyond.

The closest star is Proxima Centauri, a red dwarf 4.24 light years away.

The nearest Sun-like star is α Centauri, 4.36 light years away, that is in a triple star system with Proxima Cen.

The Solar Neighborhood is the stars within about 15 light years of the Sun.

Most nearby stars are red dwarfs: cool M-type main sequence stars.

The Sun is part of the Milky Way Galaxy, a system of more than 200 Billion stars, made up of a disk and central bulge.

The closest star to the Sun is Proxima Centauri, a faint red dwarf located 4.24 light years away.

M5.5 main-sequence ("dwarf") star
0.12 M_{sun}
0.15 R_{sun}
0.0017 L_{sun}
More than 100x fainter than the naked eye can see.

If the Sun were a golf ball in Columbus, Proxima Centauri would be a 5mm pea in Salt Lake City Distance is 4.24 ly or 268,000 AU If the Sun were 4.27cm in diameter... Proxima Cen would be ~2500 km away Even the fastest spacecraft to date, Voyager 1, would take millennia to reach Proxima Centauri. Voyager 1 is now travelling at 61,400 km/h (38,200 mph). As of Feb 2012 it is 120 AU away (~18 Billion km) Proxima is 4.024×10¹³ km away. Would take 74,000 years to reach Proxima Centauri. Space is very empty, and the stars are very far apart. There are only 3 stars within 5 light years of the Sun: Proxima Centauri and α Centauri A & B. α Centauri A G2V Star 1.1 M_{sun} 1.23 R_{sun} Proxima 1.52 L_{sun} A binary star system located 4.37 light years away α Centauri B K1V Star 0.91 M_{sun} 0.86 R_{sun} Forms a triple star system with $0.5 \; L_{sun}$ Proxima Centauri

The Solar Neighborhood is the collection of stars within ~15 light years of the Sun.

56 stars in 38 systems
24 single stars
10 binary systems
4 triple systems

~1/2 of all stars come in multiples (doubles and triples)

Only about 4 stars per 1000 cubic light years.

The average distance between stars is about 6 light years in the local solar neighborhood.

Most main-sequence stars are faint, cool M-type dwarfs (red dwarfs).

Stars like the Sun are relatively rare.

This means we must search out to greater distances to find planetary systems like our own.

The Galactic Bulge is a roughly spherical population	
of older stars around the center of the Milky Way. Most bulge stars are older	
than those near the sun	
~10 Gyr old (almost as old as the Universe!)	
Much denser than the Solar Neighborhood:	
~3 stars per cubic light year compared to 4 per 1000 cubic light year nearby.	
The bulge is very populous – Tens of billions of stars	
T	1
There are nearly 200 Billion Stars in the Milky Way, most of the M-type dwarfs.	