
A Brief Note about Error Propagation 

Because many relations in astrophysics are scaling relations or use logarithmic units like 
magnitudes, the agony of propagating errors is greatly reduced, and the computations made 
much simpler, if you work in terms of the relative uncertainties, σx/x.  Relative uncertainties 
should already be familiar to you; it is what people have in mind when they say they've 
"measured something to 10%”. 

As an example, consider the following problem.  We want to estimate the total mass of a visual 
binary system using Kepler’s Third Law, which for this case is written in the form: 
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Here the “observables” are the angular semi-major axis, a", the parallax, ϖ, and the orbital 
period, P.  Each observable has an associated measurement uncertainty, σa", σϖ, and σP, 
respectively.  The usual formula for formally estimating the absolute uncertainty on the derived 
total mass (Mtot), assuming all errors on the observables are uncorrelated, is: 
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If you were to work this out algebraically you’d get an awful mess to evaluate numerically, 
raising the risks of making mistakes. 

However, if you were to instead divide through by Mtot and work through the algebra, you will 
get the following much simpler formula for the relative mass uncertainty, σM/M: 
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This is a lot simpler to evaluate, since written this way you are just propagating the relative 
errors as the sum of their squares, with all of the contributions of the observables to the mass 
uncertainty neatly separated out and weighted by their respective powers!  However, to get this 
formula took a lot of messy algebra... or did it? 

Here’s a dirty secret: I didn’t to show all the intervening algebra above because I didn’t do any 
algebra the first place… 

Let’s step back and look at the problem a little differently.  Let’s re-write the formula for the 
total mass in terms of logarithms of Mtot and the observables: 
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What is the uncertainty on log(Mtot)?  From the error propagation, it is just 
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But, what is σlog(x)?  

If y=ln(x), and x has uncertainty σx, then the uncertainty on y from the propagation formula 
above is 
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If y=log(x) (i.e., log base 10), it would be 
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[In general, logb(x) = ln(x)/ln(b)].  Substituting this into the error formula from above, we get: 
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and note that the constant factor (1/ln10) has conveniently divided out, so I don’t really need to 
make the distinction between log10() and ln() in this case (Beware! This is not always true)!  The 
coefficients of the relative errors on the right-hand side of the equation above are just the powers 
of the observables  (i.e., 3 for a" and ϖ because they appear as the cube, 2 for P because it 
appears as the square).  This is the secret to propagating relative uncertainties without recourse to 
truly ugly algebraic manipulation (and the risk of mistakes that introduces). 

In general, you can always write down the correct formula for the propagation of relative 
uncertainties by looking at the powers on the observables.  For example, if you are given this 
formula for z in terms of observables, a, b, and x: 
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The relative uncertainty on z, assuming uncorrelated errors is: 
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All written directly, with no messy algebraic manipulation required! 

But what about a formula like this one? 
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The sum of the K’s cubed and sin3i make propagating the errors ugly.  Or do they?  Try this 
simplification of the problem: compute the uncertainty of the sum of the K’s, 
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and leave sin(i) term as is, instead estimating σsin(i).  The relative uncertainty on Mtot can now be 
written as: 
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This is a lot simpler than bashing out the full formula, and it gives the same answer numerically! 

The last bit (σsini) looks like I cheated, but I haven’t: the observable quantity really is sin(i), not i 
itself (think about how i is measured and why will be come clearer). 

One final point: why do astronomers continue to insist on using the archaic and frankly obtuse 
system of stellar magnitudes instead of physical units like fluxes or luminosities?  Among other 
things, using magnitudes (i.e., logarithmic fluxes or luminosities) makes the error propagation 
simpler.  For example, the uncertainty of a magnitude is just (to within a factor of 1.086) the 
fractional error in the flux!  Thus if you say you want to measure an apparent magnitude to 0.1 
mag, you immediately know that you need to measure the fluxes to 0.1% (or 1 part in 1000).  
Thus magnitude errors are more immediately intuitive than errors on the fluxes. 

Similarly, most corrections to measurements of brightness involve attenuation, either geometric 
attenuation due to the inverse-square law of brightness or line-of-sight absorption (i.e., “optical 
depth”).  Consider the luminosity Lλ you would estimate given an object with an observed flux 
Fλ a distance D away and behind τλ

e

 of interstellar extinction: 
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The observables on the right-hand side all have associated measurement uncertainties, and in this 
form the uncertainty on your derived Lλ would be something of a mess to be sure, unless you 
knew the relative uncertainties trick described above.   

However, recast as magnitudes, 
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(note: Aλ=1.086τλ, and I’ve converted D into units of parsecs), the uncertainty on the absolute 
magnitude would be: 
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All the uncertainties propagate as the sums of the squares of the various observables (although 
the last looks a little ugly because of the log10 business). 
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