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III Ionized Hydrogen (HII) Regions 

Ionized atomic Hydrogen regions, broadly termed “HII Regions”, are composed of gas ionized by 
photons with energies above the Hydrogen ionization energy of 13.6eV.  These objects include 
“Classical HII Regions” ionized by hot O or B stars (or clusters of such stars) and associated with 
regions of recent massive-star formation, and “Planetary Nebulae”, the ejected outer envelopes of 
AGB stars photoionized by the hot remnant stellar core.  While the physical origins of these types of 
gaseous nebulae are very different, the physics governing them is basically the same.  We will refer to 
all of these as “HII Regions” generically in this section. 

The UV, visible and IR spectra of HII regions are very rich in emission lines, primarily collisionally 
excited lines of metal ions and recombination lines of Hydrogen and Helium.  HII regions are also 
observed at radio wavelengths, emitting radio free-free emission from thermalized electrons and radio 
recombination lines from highly excited states of H, He, and some metals (e.g., H109 and C lines). 

Three processes govern the physics of HII regions: 

1. Photoionization Equilibrium, the balance between photoionization and recombination.  
This determines the structure of the nebula and the rough spatial distribution of ionic states 
of the elements in the ionized zone. 

2. Thermal Balance between heating and cooling.  Heating is dominated by photoelectrons 
ejected from Hydrogen and Helium with thermal energies of a few eV.  Cooling is 
dominated in most HII regions by electron-ion impact excitation of metal ions followed by 
emission of “forbidden” lines from low-lying fine structure levels.  It is these cooling lines 
that give HII regions their characteristic spectra. 

3. Hydrodynamics, including shocks, ionization and photodissociation fronts, and outflows 
and winds from the embedded stars. 

The first two will be treated here in some detail, while the hydrodynamics of HII regions is properly 
the topic of the Radiative Hydrodynamics course (Astronomy 825). 

III-1 Photoionization Equilibrium & Ionization Structure 

Photoionization Equilibrium 

Photoionization Equilibrium is the detailed balance between photoionization and recombination by 
electrons and ions.  We will start by considering the case of a pure Hydrogen nebula.  Such objects do 
not exist in nature, but they are useful for introducing the basic physics.  A simple order-of-magnitude 
treatment will suffice at this step to motivate the details to follow. 

At a given location within an HII region, the rate of photoionizations per unit volume is balanced by 
the rate of recombination per unit volume.   

The Volumetric Photoionization Rate is: 

0

0

04
 (#H  atoms/volume) (flux of ionizing photons)

                                                                  (photoionization cross-section)
H

J
n a d

h
n

n
n

p
n

n

¥
= ´

´
ò  



Ionized Hydrogen (HII) Regions 

III-2 

The integral is taken over all photons with 0 hh  , where h0 is the Ionization Potential of H0, 

13.59eV for ionization out of the 1s ground state. 
The Volumetric Recombination Rate is: 

0( , ) (# e /volume) (# protons/volume) (recombination coefficient)e pn n H T     

The recombination coefficient depends weakly on the temperature of the electrons.  Note that the 
photoionization and recombination rates have units of cm3 s1 (i.e., volumetric rates). 
To a first approximation, we will treat all ionizing photons as arising from a single central ionizing 
source (e.g., an O star), and we will ignore for now contributions from the diffuse radiation within the 
nebula.  At a distance r from the central star, the flux of photons at frequency  is: 
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The first term in the middle above is the geometric dilution factor, and the second is the photosphere 
flux.  The densities of the electrons, protons, and neutral Hydrogen atoms are all related via the 
Hydrogen Neutral Fraction, , such that 
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The neutral fraction  is defined such that 
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The ionization equilibrium condition at this location in the nebula is found by balancing the local 
photoionization and recombination rates: 
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For example, consider a region of gas with nH=10 cm3 located at r=5pc from a T=40,000 K star (an 
O6.5V star).  To work this out numerically we need two numbers. 

The first is the number of ionizing photons/second emitted by the central star: 

0

486.6 10  photons/sec
L

d
h
n

n
n

n

¥
= ´ò  

The second is the Photoionization Cross-Section for the H0 1s2S ground state: 
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Where a0=6×1018 cm2.  Evaluating these quantities at r=5pc, the number of ionizations per second is 
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This implies a characteristic ionization timescale of ~108 sec or a little over 3 years. 

For typical nebular conditions, the recombination coefficient is: 
0 13 3 1( , ) 4 10  cm  sH T     
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This corresponds to a characteristic Recombination Time of 
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For ne10 cm3 (assuming nearly completely ionized H) the recombination time is ~31011 sec or 
~104 years.  In such a region, once a neutral Hydrogen atom is photoionized it stays ionized for a long 
time before recombining, and when it recombines it is relatively quickly photoionized again.  This 
means that the instantaneous neutral fraction in this region should be very small.  Putting all of the 
pieces together for this parcel of gas 5pc from the central star the neutral fraction  is: 
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Thus this gas parcel is nearly completely ionized. 

The transition between ionized (1) and neutral (1) is very abrupt.  The mean-free path of an 
ionizing photon with =0 is 
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At the location where =0.5 (50% neutral), 5105.0 0  HH
nn   cm3 and the ionization cross 

section at the ionization threshold is 18106
0

a  cm2.  The resulting mean-free path is: 
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The size of the transition region is therefore only ~0.2% of the size of the ionized nebula (at least 5pc 
in this case), hence ionized nebulae around stars should be very sharp-edged. 

The radius of the fully ionized region is called the “Strömgren Radius”, and an idealized spherical 
pure-Hydrogen HII region is often called a “Strömgren Sphere” (Strömgren1939, ApJ, 89, 529).  
While in practice very few HII regions resemble Strömgren spheres in detail, the Strömgren radius is 
an excellent estimate of the size scale of an HII region, and so it remains in use in a variety of contexts. 

Ionization Structure 

The idealized case treated above made a number of assumptions that we need to explore before 
proceeding further. 

1. What photoionization cross-section should be used? 

The photoionization cross-section for HI in the 1s 2S ground state is used, ignoring ionizations out of 
any excited states.  This is often called the Nebular Approximation. 

When a proton recombines with an electron, the electron can end up in a highly excited state, followed 
quickly by a radiative cascade into the ground state. 

For small principal quantum numbers, the transition probability is Aij108 s1, corresponding to a 
lifetime in the excited state of tij108 seconds!  Even for n>30 quantum states, the lifetime is ~104 
seconds.  Compared to the typical photoionization time of ~108 sec, excited H atoms have plenty of 
time to cascade into the 1s 2S ground state following recombination. 

To first order all photoionizations in a nebula are from the 1s2S ground state. 

The exception is when the electron cascades into the metastable 2s 2S excited state.  The only 
downward radiative transition out of this state is a highly forbidden 2-photon decay into the 1s ground 
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state, which has a transition probability 23.822 1,2


SS
A  s1, implying a lifetime of ~0.12 seconds.  

Even this timescale is short compared to the photoionization time under most conditions.  As we’ll see 
later, this 2-photon transition is an important contributor to the nebular continuum. 

2. What happens to the electrons after being released photoionization? 

Photoionization ejects an electron from H0 with a kinetic energy of 
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The “spectrum” of electron kinetic energies immediately after photoionization thus reflects the energy 
spectrum of the ionizing photons.  However, electronelectron collisions are very efficient. 
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Figure III-1: Diagram of the geometry of an elastic electronelectron collision. 

If the impact parameter, b, is very small there is a strong encounter resulting in scattering (Figure 
III-1).  If b is large, there is no scattering.  The borderline case occurs when 
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The cross-section is  
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For thermal electrons with Te104K, 2 31
2 2ve em kT= , and the cross-section is 

21342 cm 10)10( Kb  
Thus the e-e collision cross-section is about 4 orders of magnitude larger than the photoionization 
cross-section at the ionization threshold (a061018 cm2).  The result is that the kinetic energies of the 
electrons will very quickly thermalize into a Maxwellian velocity distribution with TeTkin compared 
to other processes at work (recombination or ionization).  This is the situation that Spitzer has referred 
to as kinetic equilibrium. 

3. What is the Recombination Coefficient? 

Because the photoelectrons quickly thermalize, the recombination coefficient into the n2L state will be 
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where f(v) is a Maxwellian distribution.  The recombination cross section depends on velocity like 

2

2v
n L

   

A thermal distribution of electrons results in a recombination coefficient with a temperature 
dependence of 
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The recombination cross-section is 2
20 2110 10

n L
    cm2 for T104 K.  Compared to cross-sections 

of 6×1018 cm2 for photoionization and 1013 cm2 for e-e scattering, recombination is a very slow 
process and the electrons will have plenty of time to thermalize. 

In the nebular approximation, a rapid cascade of the electron follows recombination into the 1s 2S 
ground state.  We can thus define a Total Recombination Coefficient: 
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to describe the process.  For typical nebular conditions (T104 K), A41013 cm3 s1, and the 
recombination time, trec is: 
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The recombination time is generally long compared to either the ionization timescale or the electron 
thermalization timescale in most nebulae. 

The Pure Hydrogen Nebula 

We will now consider the case of a static, homogeneous, pure H nebula ionized by photons from a 
single star.  In Nebular Approximation all photoionizations will occur from the ground state.  The 
photoionization equilibrium condition for a pure H nebula will then a balance between 
photoionization of H0 and recombination of electrons and protons back into H0: 
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For photons with 0, the equation of radiative transfer is written 
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The radiation field, I, consists of two parts 

( ) ( )s dI I I stellar diffuse       

The stellar radiation field at a given location in the nebula, r, is given by 
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The optical depth at location r is the integral from the star to that location: 
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This optical depth can also be written in terms of the optical depth, 0, at the ionization threshold: 
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The diffuse part of the radiation field is found by solving the transfer equation: 
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In the limit that kT<<h0, the only source of diffuse ionizing photons is from recombinations directly 
into the ground state: 
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For 0, j(T) is strongly peaked at =0, and hence: 

0
14 ( )e p s

j
d n n T

h
n

n
p n a

n

¥
»ò  

Since 1s<A, the diffuse ionizing radiation field is always weaker than the stellar radiation field.  In 
practice it is solved for iteratively.  There are two relevant approximations: 

Optically Thin Nebulae 

Here Jd0, and we only consider the ionizing radiation from the photoionizing star. 

Optically Thick Nebulae 

In this approximation none of the ionizing photons can escape the nebula.  This means that all 
ionizing photons in the diffuse radiation field eventually get absorbed elsewhere in the nebula, 
hence: 
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The integral above is evaluated over the entire ionized volume of the nebula.  This leads to the 
On-The-Spot (OTS) Approximation in which each new ionizing photon emitted following 
recombination into the ground state is absorbed physically close to where it was created: 
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Near the ionization threshold, 0, the cross-section a is large and the mean-free path is very short, 
so this is a good approximation in general, not just in this idealized case. 

Returning to the pure Hydrogen nebula, since most nebulae will be optically thick, making the OTS 
approximation allows us to simplify the equation of photoionization equilibrium to 
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Here we have introduced a new recombination coefficient, B: 
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B is the total recombination coefficient A less contributions from recombinations directly into the 
ground state.  This form of the photoionization equilibrium condition means that the following 
conditions will prevail in an optically thick nebula: 

1. Photoionization by the stellar radiation field is balanced by recombination into excited 
states of H. 

2. Recombinations directly into the 1s 2S ground state emit ionizing photons that are quickly 
reabsorbed by the nebula, and so have no net effect on the overall ionization balance. 

In order to solve the photoionization equilibrium condition, two inputs are required: 

1. The stellar spectrum, )( *RF , usually derived from model stellar atmospheres. 

2. The density distribution in the nebula: )()()( rnrnrn peH   

The equations of photoionization equilibrium are then integrated outwards from the surface of the 
exciting star until the nebula becomes mostly neutral.  This transition point, which occurs very rapidly, 
defines the Strömgren Radius, r1, of an idealized Strömgren sphere.  If we are considering ionization 
of a plane-parallel slab of gas, the length scale is often called the Strömgren “depth” of the nebula.  In 
either case, the transition of the nebula from ionized to neutral defines the fundamental size scale of 
the nebula.  We will proceed to use the traditional spherically symmetric case for our discussion. 

We can estimate the radius of a Strömgren sphere as follows.  H is nearly completely ionized inside of  
r=r1 (ne=npnH), and essentially neutral for r>r1 (ne=np0).  r1 will be the radius of a spherical volume 
inside of which all ionizing photons are absorbed, that is 1 0( )r r    .  Since the optical depth to 

ionizing photons  is defined as 
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Imposing the boundary condition that  as rr1 leads to an ionization equilibrium condition of: 
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The first integral on the left can be rewritten in terms of the luminosity spectrum of the star L: 
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This is just the total number of H-ionizing photons emitted per second by the star: 
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For a homogenous density distribution, the right-hand side of the ionization equilibrium condition is 
easily integrated over radius, reducing the equation to: 
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Or, in words, 
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In the homogenous case, this can be solved for the Strömgren radius, r1, given the density of the 
nebula, nH, and the number of ionizing photons from the central star, Q(H0). 
In practice, values of Q(H0) are tabulated for model stellar atmospheres for O and B stars (this is 
pointless for cool stars that emit little or no ionizing radiation), and one usually assumes some constant 
density and temperature to use for the left side of the equation.  AGN2 Table 2.3 lists values of 
representative r1 computed for a variety of stellar effective temperatures.  These are useful for simple 
order-of-magnitude estimates of the sizes of ionized regions around stars. 

An implicit assumption of all of this is that we can treat photoionization equilibrium as a stationary 
(time-independent) problem, but is this true? 

Consider the timescale for ionizing a Strömgren Sphere – if we were to turn on an ionizing source in a 
homogeneous pure Hydrogen region, the time to ionize the volume is 
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however, for photoionization equilibrium, this becomes 
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Not too surprisingly, the ionization time is the recombination time in the region.  Putting in 
reasonable numbers for nH and B, the ionization time is 
 3 1

10010  yrionizationt n  

where n100 is the Hydrogen density in units of 100 cm3.  Compared to this, the lifetime of a 
typical ionizing O or B star is a few106 years.  The ionized gas region will be heated to ~104 K 
by photoionization, resulting in a higher pressure than the surrounding neutral medium.  The 
relevant timescale for hydrodynamical expansion is the sound-crossing time for the region: 
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For typical nebular conditions (T4=1, nH=100 cm3), 
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where Q49 is Q(H0) in units of 1049 photons/sec.  For typical nebular densities, both the OB star 
main-sequence lifetime and the sound crossing time are much longer than the ionization time, 
and our assumption of a stationary system is justified. However, at high densities (e.g., an 
embedded HII region in a very dense molecular region) the sound-crossing and recombination 
timescales become comparable and we must treat the system as a dynamic, time-dependent 
problem. 
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Nebulae with Hydrogen and Helium 

The next level of complexity is to consider the effect of adding Helium to the nebula.  Helium is the 
next most abundant element after Hydrogen, with typical abundances by number of He/H0.1 in the 
Galaxy.  The atomic physics of He is made more complex by its two electrons and three possible ionic 
forms, He0, He+ and He++. 

The ionization potentials (I.P.’s) for H0, He0, and He+, are as follows: 

Element/Ion I.P. 

H0H+ h1=13.6 eV 

He0He+ h2=24.6 eV 

He+He++ h3=54.4 eV 

The photoionization cross-sections are plotted in Figure III-2.  Despite the fact that nHe0.1nH, the 
cross-section for He0 ionization at its threshold is ~10 times larger than the H0 ionization cross-section 
at the same frequency.  This means that ionizing photons with hh2 will primarily ionize He0 
instead of H0.  This has a significant impact upon the ionization equilibrium balance, and the nebular 
structure will be strongly dependent on the details of the stellar ionizing continuum spectrum. 

 
Figure III-2: Photoionization cross-sections for H0, He0, and He+, reproduced from Osterbrock (AGN2). 

For normal O and B stars, He+ opacity in the stellar atmospheres produces a sharp, deep absorption 
edge in the emergent continuum for hh3, and so there is little or no He++ in classical HII regions.  
No such strong He++ edge exists in the atmospheres of the central stars of planetary nebulae, Wolf-
Rayet stars (massive stars with tremendous wind-driven mass loss), or in Active Galactic Nuclei, and 
many of these objects show strong HeII recombination lines in their spectra as a result. 

There are three regimes of stellar temperature that illustrate the interplay between H and He ionization 
in determining the detailed structure of HII regions. 

"Cool" Stars (T<40000 K): 

These are stars later than about O6.  These stars have many photons in the regime 

21  hhh   capable of ionizing H0, but few with 2 hh   capable of ionizing He0.  He0 
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will thus absorb most of the photons with hh2, resulting in a central He+ zone surrounded by 
an H+ zone with He0 mixed in.  The fraction of photons with hh2 absorbed by H is 
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and the fraction absorbed by He0 is (1y). 
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Figure III-3: Schematic of a nebula surrounding a cool (T<40000 K) star. 

Recombination of He0 can result in the emission of photons with hh1 that can ionize H0, so 
some H+ will be mixed in with the He+.  Of these recombinations, ~3/4 are into triplet states of 
He0 and the remaining ~1/4 are into singlet states.  Since collisions with electrons can modify the 
mix of triplet and singlet states in He0, the contribution to the H0 ionizing radiation field is density-
dependent with a critical density of ~4104 cm3 (see AGN2, section 2.4 for a detailed discussion). 

Hot Stars (T=40,000 – 100,000 K): 

These are stars earlier than O6 with a strong absorption edge in the stellar atmospheres above the 
He+ ionization threshold (54.4eV).  In these nebulae, both He0 and H0 are ionized throughout the 
volume of the nebula. 

H+, He+
H0, He0

 
Figure III-4: Schematic of a nebula surrounding a hot star (40,000K < T < 105 K). 

Near the edge of the ionized zone, the photons with the smallest cross-sections for photoionization 
also have the highest energies, thus higher energy photons have a greater mean-free path.  Recall 
that for an H+ Strömgren Sphere the width of the partially ionized transition zone at the edge was 
of order the mean-free path for ionizing photons.  This means that the He+ zone boundary is 
slightly fuzzier than the H+ zone boundary because the radiation field at the edge is slightly 
hardened by radiative transfer through the nebula (see AGN2, Fig 2.4). 

Very Hot Stars (T>105 K): 

These include the central stars of planetary nebulae and Wolf-Rayet stars.  In this case an inner 
He++ zone forms immediately around the ionizing star.  Some He++ recombinations emit photons 
capable of ionizing H0, so that H+ is mixed in with He++. 
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H0, He0

H+

He++

H+, He+

 
Figure III-5: Schematic of an He++/He+/H+ nebula around a very hot star. 

The effect of adding Helium to a pure Hydrogen nebula is a tight coupling between ionization and 
recombination from Helium and Hydrogen.  That some Helium recombination photons can ionize 
Hydrogen means we must solve for coupled ionization equilibrium equations for both elements to 
derive the full structure of a nebula.  This is best done numerically by photoionization equilibrium 
codes like CLOUDY.   

The Effects of Metals 

The important elements (“metals”) to consider next are those species with abundances of 
(X/H)103104 by number, specifically C, N, O, S, Ne, Fe, and Si. 

For any two successive stages of ionization (r to r+1) of element X, the ionization equilibrium 
equation is 
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where G is the recombination coefficient for the species.  Each of these equations, together with the 
densities of all of the ionic species of X present: 

)()()()()( 20 XnXnXnXnXn n     
Assuming an overall abundance of element X, in principle you can completely determine the 
ionization equilibrium at each point in the nebula. 

Metals have low abundances relative to Hydrogen and Helium (Xr/H1), so absorption by the 
different ionization stages of the metals does not significantly modify the radiation field of low-
density nebulae.  This is unlike what happens in dense stellar atmospheres or interiors where metals 
are important and sometimes dominant sources of opacity.  Similarly, the low relative abundances of 
the metals mean that H is the primary source of electrons in the nebula, followed by electrons from He 
ionization.  In typical HII regions, therefore, the electron density, ne, is primarily coupled to the H+He 
density with negligible contributions from the metals. 

There are, however, cases where radiative transfer in specific resonance lines could be important, 
especially at higher densities.  One area of concern in detailed nebular modeling is the degree to which 
our neglect of the opacity of the metal species is leading to systematic errors in the model predictions.  
This may be an issue when one considered HII regions deeply embedded within dense molecular 
clouds, or at the boundaries of molecular clouds where high densities (~104–6 cm3) prevail. 

Ionization Cross-Sections 

The relative gain in simplicity derived from being able to neglecting radiation field coupling is offset 
by the very complex electronic structure of the metal ions.  Metal ions have many different thresholds 



Ionized Hydrogen (HII) Regions 

III-12 

for photoionization, depending on which of the many electrons present is being kicked out of the 
atom.  This results in the ionization cross-sections having “edges”. 

For example, consider the ionization of neutral oxygen, O0.  There are several terms of similar energy 
in the ground state, each of which contributes to the ionization cross-section: 
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Figure III-6: Crude schematic of how individual ionization edges “add” to give the total photoionization 
cross-section for O0, following Osterbrock (AGN2). 

An additional complicating factor is that many metal ions have complex photoionization resonance 
structures that can lead to dramatic changes in a over small ranges of  (e.g., autoionizing 
resonances).  The treatment of metals requires detailed numerical calculations, embodied in 
photoionization equilibrium programs like CLOUDY. 

Charge-Exchange Reactions 

A final process that affects the coupling between the various ionic components of the gas in ionized 
nebulae is charge-exchange reactions.  A particularly important reaction is due to collisions between O 
and H: 

)()()( 20430 SHSOHPO    

This reaction is important near the outer ionization boundaries of optically thick nebulae (that is, most 
real ionization-bounded nebulae).  The ionization potential of O0 in the 3P ground state is 13.62eV, 
while that of H0 is 13.59eV, a difference of only 0.03eV, so this reaction occurs in near resonance, 
enhancing its efficiency.  At temperatures large compared to the difference in the ionization potentials 
of the two species, an equilibrium is established in which the ratios of the ionic fractions of O and H 
are driven towards the ratios of their statistical weights: 
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The result is that the H+ and O+ ionization boundaries of the nebula are coupled, and the O+/O0 
transition region boundary steepens until it nearly matches that of the H+/H0 boundary.  This is shown 
schematically in Figure III-7. 

 

Radius, r  

1 

0 

Ionization Fraction 

O+/O0 w/o
C.E 

H+/H0

O+/O
w/C.E 

 
Figure III-7: Effect on O+/O0 ionization fraction (dotted curve) with and without charge exchange.  
With charge exchange, O+/O0 tracks H+/H0 closely (solid curve), but the edge is fuzzier without charge 
exchange. 

Other charge exchange reactions are possible where there are close coincidences of ionization 
potentials for particular levels, and must be factored into the coupled equations describing the 
ionization equilibrium.  This is why models of ionized nebulae (like CLOUDY) are large, fairly 
complex codes.  A big part of getting the models “right” depends on making sure all of the relevant 
input physics is treated. 

Dust 

Dust grains introduce a number of important effects on the ionization equilibrium and structure of 
nebulae.  In particular, dust strongly absorbs UV continuum and line photons, contributing to the 
optical depth that goes into the ionization equilibrium equations we have been considering: 
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When a dust grain absorbs a UV photon, the grain is heated to T50 K and then re-radiates the 
absorbed energy as Far-IR thermal continuum photons that escape from the nebula.  In effect, ionizing 
photons are “destroyed” by dust grains, substantially modifying the ionizing radiation field (both 
stellar and diffuse), and changing the ionization balance and structure of the nebula.  At the very least, 
the effect of mixing in dust decreases the size of the H+ zone. 
Other effects include absorption and subsequent re-radiation as Far-IR thermal continuum of the 
Lyman-series photons emitted by Hydrogen, and absorption of resonance-line photons capable of 
ionizing H that are emitted by other species (e.g., Helium).  This modifies the recombination side of 
the photoionization-equilibrium equations, and has an impact upon the emergent recombination-line 
spectrum, as we’ll see later in this chapter. 

A counterbalancing effect is that the ionizing radiation field, especially in the presence of very hot 
stars, is sufficient to photoevaporate dust grains.  The presence of dust is thus two-edged: dust can 
alter the ionization and recombination balance in a nebula, and the conditions can be hostile to the 
survival of the grains themselves.  Sorting out these effects has been observationally very difficult, and 
as a consequence it is very difficult to simply "insert" dust into detailed photo-ionization models a 
priori, and predict clear effects that may be tested observationally. 
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A final, often overlooked effect of dust is that some elements are strongly depleted from the gas phase 
and locked into grains, changing the mix of metals in the gas-phase of the nebula.  Similarly, 
photoevaporation of dust grains in a nebula might return elements to the gas-phase, enhancing the 
abundances.  Since metals are the primary coolants in nebulae, how one treats dust depletion or 
destruction has potentially important implications for the results of model nebula calculations.  The 
question of what abundances to use in nebular models, and the role of dust in determining those 
abundances, is a matter of considerable debate in the current research literature. 
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III-2 The Thermal Structure of Ionized Gas Regions 
The thermal energy balance in a static ionized nebula is governed by the interplay between 
photoionization heating and cooling by recombination and other radiative losses, primarily in the form 
of line emission.  The “nebular temperature” that we will speak of is the kinetic temperature of the free 
electrons, which electrons are quickly thermalized into a Maxwellian velocity distribution by electron-
electron collisions. 

Photoionization Heating 

The principal source of heating in an ionized region is photoionization.  The energy injected into the 
electron plasma by ionization is: 

21
02 v ( )e em h n n= -  

where h0 is the Ionization Potential of the atom (usually H0). The net photoionization heating rate 
(energy input/volume/sec) for hydrogen is G(H0): 
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The three terms inside the integral are the number of ionizing photons from the star, the energy 
injected per photoionization, and the photoionization cross-section.  The condition of photoionization 
equilibrium for a pure H nebula is: 
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The net heating rate therefore becomes: 
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The ratio of the integrals is the mean thermal energy of the photoelectrons, hence 

),()( 0
2
30 THnnkTHG Apeinit   

Tinit is the initial electron temperature. If the central source is a star with effective temperature T, then 
assuming that the stellar spectrum is approximately a blackbody, TinitT.  This gives us a reasonable 
limit on the initial temperature of the nebula. 

Cooling 

There are three principal sources of cooling in a normal HII region: Recombination Cooling, Free-Free 
continuum emission (bremsstrahlung), and line emission from collisionally excited ions. 

Recombination Cooling: 

The energy removed from the thermal electron plasma when electrons recombine with protons to 
form H0 is: 

),()( 0 THkTnnHL ApeR   

Here, A(H0,T) is the energy-averaged recombination coefficient: 
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The recombination cross-section nL(H
0,T) depends on the relative velocities of the electrons and 

protons: 
0 2( , ) vnL H Ts -µ  

Thus the recapture of slower electrons is favored over that of faster electrons.  This has interesting 
implications for the nebular temperature.  If recombination were the only cooling mechanism 
available to the gas, the resulting electron temperature, Te, would actually be slightly hotter than Tinit 
after recombination cooling.  This is because the slower electrons are preferentially recombined out of 
the free electron plasma, skewing the velocity distribution of the remaining free electrons towards 
higher energies and hence higher temperatures.  In effect, the temperature would be hotter than the 
effective temperature of the ionizing star! 
In the OTS approximation, emission and absorption of photons resulting from recombinations directly 
into the 1s2S ground state cancel out, so that 
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Adding He0 into the nebula is straightforward: 
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The contributions from other recombination cooling species (e.g., He+ in a hot PNe) are included 
similarly. 

Free-Free Cooling: 

Thermal electrons can scatter off ions in the plasma and emit free-free (bremsstrahlung) radiation, 
contributing to the nebular cooling.  The free-free cooling rate for an ion with nuclear charge Z is 
given by 
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Here n+ is the number density of ions with nuclear charge Z in the gas.  For an H+He nebula with no 
He++, this is 
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Evaluating all of the physical constants, the free-free cooling rate becomes: 


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gff is the free-free Gaunt Factor, which is a slowly varying function of density and temperature.  For 
UV-to-NIR wavelengths and typical nebular conditions, gff has values of 1.0< gff <1.5. 

Overall, free-free cooling is fairly inefficient, but it does contribute enough to make the resulting 
nebular temperature cooler than Tinit by a small amount when free-free emission and recombination 
are the only sources of cooling. 

Collisionally-excited line emission 

Metal ions like O+, O++, N+, and others, while relatively underabundant compared to H or He, turn out 
to be the most important coolants in nebulae.  Collisional excitation energies in the ground state fine 
structure levels of these ions have typical excitation potentials, , of a few eV.  The thermal energies 
of the electrons, kTe, are also of order a few eV for typical nebular temperatures of 104 K.  This makes 
electron-ion impact excitation of the metal ions very efficient. By contrast, the first excited levels of H 
and He are at ~10eV above the ground state, so that collisional excitation of these elements is very 
inefficient at typical nebular densities and temperatures. 

Proton-Ion and Ion-Ion impact excitation are inefficient because the Coulomb repulsion between the 
ions is so large.  However, when ions become neutral, some important ion-ion collisional processes do 
occur (e.g., charge-exchange reactions between O0 and H) that can contribute to the cooling. 

Electron-Ion impact excitation of metal ions followed by the radiation of line emission is the dominant 
cooling mechanism in ionized nebulae with metallicities greater than a few percent of the solar value.  
This cooling mechanism is so efficient that it drives the electron temperature to well below the stellar 
photosphere temperature.  For example, a nebula with roughly solar proportions of metals around a 
T=32,000 K star will a mean electron temperature of Te7000K.  A nebula with a lower metallicity 
will have a somewhat higher temperature for the same exciting star (fewer metals means fewer 
collisional coolants, and hence a higher equilibrium Te). The abundance of metals relative to H in a 
nebula thus plays a crucial role in determining the thermal structure of an HII region.  We will now 
consider the physics of this cooling mechanism in some detail. 

Collisional Excitation 

The cross-section for collisional excitation of an ion from a lower level to an upper level is ul(v) for 
an electron with velocity v.  Below the excitation threshold hul the excitation cross-section is 
identically zero.  Just above the threshold, Coulomb focusing gives 

2(v) vlus -µ  

The collisional excitation cross-section is usually expressed in terms of a dimensionless Collision 
Strength, : 
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[Note: Osterbrock in AGN2 uses 1 instead of gl for the statistical weight of the lower level, whereas I 
am endeavoring to adopt a consistent notation for statistical weights throughout these notes.] 
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Since luv2 near the threshold,  is approximately constant, or at least only a slowly varying 
function of v, away the threshold.  Beware, however, as resonance effects can cause  to vary 
radically as one gets further away from the threshold energy. 

The collisional de-excitation cross section, ul, is related to lu by a Milne Relation: 
2 2v (v ) v (v )l l lu l u u ul ug gs s=  

The velocities are related by energy conservation: 
2 21 1

2 2v vl u ulm m hn= +  

Collisional excitations are balanced by collisional de-excitations that produce electrons with the same 
velocity range, so that 

v (v ) (v ) v v (v ) (v ) ve l l lu l l l e u u ul u u un n f d n n f ds s=  

In thermal equilibrium, the relative level populations of the upper and lower states would be those 
given by the Boltzmann equation: 
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Where T is the kinetic temperature of the electrons.  Combining all of these with the Milne Relation 
and the energy conservation constraint, we can write the collisional de-excitation cross-section in 
terms of the excitation collision strength, lu, as follows: 
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The ’s are symmetric, ul=lu, so we only need to use ul. 

The total volumetric collisional de-excitation rate is thus 
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where ul(T) is the effective collision strength1, which is the collision strength ul averaged over a 
Maxwellian distribution for electrons with kinetic temperature T: 
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Here the average has been conventionally rewritten as an integral in energy units.  We can now solve 
for the q’s: 
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1 An unfortunate but unavoidable notational issue:  here is an effective collision strength, not the natural width we saw in the 
chapter on neutral hydrogen gas.  Notational consistency across ISM subfields is virtually non-existent. 
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In general, the effective collision strength ul(T) is only a very weak function of temperature, and most 
of the temperature dependence of qul is in the T1/2 term.  Tables of lu computed for typical nebular 
temperatures of T=104 K are of particular use for HII regions and PNe2.  However, it should be borne 
in mind that ul is not a smooth continuous function of energy: detailed quantum mechanical 
calculations show that there is considerable resonance structure, some of it very strong.  Work by Anil 
Pradhan and his collaborators have found that these resonances can be numerous and potentially very 
strong, in some cases introducing order-of-magnitude differences with older mean cross-sections 
found in the literature. 

Given these qualifications, it should be clear to the reader that while tabulated ’s are good starting 
points for most nebular work, they are subject to substantial revision, and may not be useful for other 
conditions beyond those found in nebulae (e.g., in high-temperature or high-density plasmas). 

Collisional Cooling 

If an electron collides with an ion and excites it, and then another electron comes along and de-excites 
the ion back into its original ground state before it can emit a photon, there is no net change in the 
energy content of the free-electron plasma.  However, if the electron can radiatively de-excite before 
the next collision, it emits a photon that escapes from the nebula, leading to a net loss of energy from 
the free-electron plasma (i.e., you have converted electron kinetic energy into photons that escape). 

Since the low-lying levels of most metal ions in nebulae arise from the same electronic configuration 
as the ground state, these lines are “forbidden” by the usual dipole selection rules.  This is primarily 
true of visible and IR lines, but in the UV some collisional excitations populate levels that emit 
permitted lines.  Since the nebula is optically thin in these lines, the photons escape from the nebula 
and carry off energy.   

The radiant energy carried off by a given optically thin emission-line is 

4 ul u ul ulj n A h   

An estimate of the total cooling by collisionally excited line emission requires computation of the 
upper level populations for all low-lying levels for each ion present at a given location in the nebula.  
This is usually done numerically by nebular model codes, but we can gain some insight with some 
relatively simple arguments. 

Consider a simple 2-level atom with ground state 1 and excited state 2.  Statistical equilibrium within 
this atom is defined as the balance between the rate of collisional excitation out of the ground state on 
the one hand, and the rate of collisional and radiative de-excitations out of the excited state: 

l e lu u e ul u uln n q n n q n A   

Because the emission lines are generally from forbidden transitions, we can ignore any contributions 
due to radiative excitation by absorbing photons from the radiation field (i.e., we don’t need to 
consider radiative transfer.  [Beware: this may not be strictly true of you are in high-density situations 
with permitted transitions instead of the usual low-density conditions and forbidden transitions].  In 
this case, solving for the relative level populations in statistical equilibrium gives: 

                                                 
2 Osterbrock uses (1,2) instead of lu(T) in his discussion in AGN2.  For typical nebular conditions lu(T)(1,2) to a reasonable 
approximation for some transitions, and one often sees the two used interchangeably literature.  In general, however, they are not 
strictly identical, and some care should be taken when doing detailed calculations. 
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There are two limiting cases of interest: 

Low-Density Limit: 

In this case, ne0, so that 
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This means that nearly all collisions are followed by radiative de-excitation and collisional de-
excitation is relatively unimportant. 

High-Density Limit: 

In this case, ne, so that 
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This is just the thermal equilibrium value.  At high densities collisional de-excitation completely 
dominates radiative de-excitation, and we say that the level populations have “thermalized”. 

In general, the cooling due to collisionally excited line emission from our 2-level atom is: 
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In the low-density limit, radiative de-excitation dominates, so that: 
24 ul l e lu ul ej n n q h np n µ  

In the high-density limit, where collisions dominate and the levels thermalize: 

4 ul u ul ul ej n A h np n µ  

In both cases, we have recast n1 in terms of (n1/ne) ne, where (n1/ne) is proportional to the ionic 
abundance relative to H (since most of the electrons come from H0).  The dividing line between these 
limits is the Critical Density for the line, ncrit: 
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As the density increases, the strength of a given collisionally excited line will increase as n2 until it 
reaches the critical density, beyond which it will then only increase linearly with n.  The overall effect 
is to “collisionally suppress” emission from the line at high densities ("high" now meaning greater 
than the critical density).  The maximum cooling provided by a given collisionally-excited line 
therefore reaches a maximum when the density is at or near the critical density for that line, and 
dropping off in effectiveness rapidly above the critical density. 

The simple 2-level atom description is a reasonable approximation for p1 or p5 ions like C+, N++, Si+, 
and so forth, but ions with p2, p3, and p4 ground-state configurations require at least 5 levels for a 
minimum description.  The 5-level atom approximation works reasonably well for ions like O++, N+, 
and other common ionic species that are observed in gaseous nebulae. 
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The derivation of collisional cooling for an N-level atom is similar to the 2-level treatment above, 
except now we need to solve five coupled equations to get the five (unknown) level populations. For 
the jth level, the condition of statistical equilibrium is: 
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Here all collisional excitations/de-excitations and radiative de-excitations that lead to population of the 
jth state (left) are balanced against all collisional excitations/de-excitations and radiative de-excitations 
that de-populate the jth state (right).  In this case, the collisional line cooling from a N-level atom or ion 
is given by the sum over all the emission-lines arising from that atom 
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Numerically, the procedure is to first solve the coupled statistical equilibrium equations for the level 
populations.  These are then plugged into the cooling equation along with the transition probabilities 
(A) and line energies (h) to derive the total cooling at a given density and temperature at a location 
within the nebula. 

The critical density for a particular excited state, ncrit(j) becomes, in general: 
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The sums are taken over all levels that interact with the jth state.  These are usually tabulated for 
different excited levels within an atom or ion of interest. 

As with the 2-level atom, when ne<ncrit the cooling contribution from that level scales as the density 
squared.  Similarly, above the critical density the cooling scales linearly with the density, leading to a 
net loss in cooling efficiency at high densities (“high” meaning substantially above ncrit).  In general, a 
collisionally excited line will make its greatest contribution to cooling at or near its critical density. 

Thermal Equilibrium 

Bringing together all of the heating and cooling physics we have been discussing, the resulting 
thermal equilibrium in a nebula is given by 

CffR LLLG   

Evaluating this equation entails solving the ionization equations at each point in the nebula to find out 
what ions are present, and then using these along with model atom calculations to evaluate the thermal 
balance at that location.  The condition of thermal equilibrium is often written in the form: 

CffR LLLG  )(  

(GLR) is the “Net Effective Heating Rate”, with recombination losses already factored in.  An 
example of a thermal balance calculation is shown in Figure III-8. 
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Figure III-8: Net effective heating rates (GLR) for various stellar spectra (dashed lines), and total radiative cooling rate 
(Lff+LC; upper solid line) for various nebular temperatures and assuming a density of ne=104 cm3.  The contributions from 
different metal-ion lines and free-free is shown below the cooling curve.  The equilibrium temperature will be where the 
heating and cooling curves cross.  [Reproduced from Osterbrock, AGN2, Figure 3.3]. 

In the low-density limit, since each term is proportional to ne and nx, the resulting temperature tends to 
be independent of density, but strongly dependent on the relative abundances of the elements, nX/nH. 

As the density increases, collisional de-excitation becomes important, and depending on the individual 
critical densities of the various cooling lines, various ionic coolants will decrease in effectiveness, 
increasing the equilibrium temperature. 

Overall, the principal factors that influence the nebular temperature are: 

1. The density through critical density effects suppressing different cooling lines 

2. The ionizing radiation field determines the input photoelectron energies and the mix of ionic 
states present. 

3. The elemental abundances determine the amounts of the various metal-line coolants present.  
In general, lower metallicity means hotter nebulae. 

Dust can modify the radiation field and cause other second-order effects.  For example, dust grains 
deplete the gas-phase abundances of important cooling ions, reducing the overall cooling efficiency 
for a given initial mix of metals.  Also, since the absorption cross-section for dust increases with 
higher energies, it can act to lower the mean energy of the input photoelectrons.  In short, dust makes 
things complicated, and modern photoionization models of nebulae are only just getting around to 
evaluating the effects of the dust content on the nebular conditions. 
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III-3 The Spectra of Ionized Hydrogen Regions 
Because emission-line spectra can be detected relatively easily even at faint levels (the bright emission 
lines contrast with the fainter continuum level), we can measure the spectra of ionized gas nebulae in 
other galaxies.  The emergent spectrum of HII regions gives us our principal probe of the physical 
conditions and gas-phase abundances in other galaxies. 

The Recombination Spectrum 

The recombination process in nebulae results in both line and continuum emission.  In nebulae, we 
observe recombination lines of HI, HeI, and HeII at UV, visible, IR, and radio wavelengths.  We also 
observe nebular continuum at all wavelengths, in the form of free-free, free-bound, and bound-bound 
(e.g., 2-photon) emission. 

HI Recombination Lines 

Recombination is the recapture of an electron into one of the excited states of the atom, followed by a 
“cascade” of radiative transitions into the ground state.  The population of any given excited state has 
contributions from both direct recombination into that state and cascades from recombination into all 
higher levels.  For typical nebular conditions, collisions are unimportant, and the level populations 
depend on the radiative transition probabilities for each cascade transition.  As a consequence, the 
level populations that are setup by recombination are very far from the LTE populations.  For a 
detailed treatment of the recombination process, particularly the calculation of cascade matrixes, see 
Osterbrock AGN2. 

There are two cases of interest in computing the recombination lines of H0: optically thin and optically 
thick, called Case A and Case B, respectively. 

Case A Recombination: 

Case A assumes that the nebula is optically thin in all of the HI resonance lines arising from the 1s 
ground state (Ly, Ly, etc.).  Case A, however, is rarely true for real nebulae as the optical depth in 
the Lyman resonance lines is very high.  For example, 
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where 912 is the optical depth at the HI ionization threshold (912Å or h=13.6eV).  Thus, photon-
for-photon, the optical depth for UV resonance absorption is much larger than the ionization optical 
depth.  This means that we cannot ignore contributions to the excited level populations by UV 
resonance absorption out of the 1s ground state, leading us to… 

Case B Recombination: 

In the case where the nebula is optically thick to UV Lyman resonance line absorption, each Lyman 
photon absorbed is quickly re-emitted (“resonantly scattered”) at the same wavelength.  In each 
subsequent scattering, however, there is a finite probability that the excited electron will choose a 
different path back to the ground state, with the result that the Lyman photon gets converted into a 
number of lower series line photons. 

For example, if an HI atom absorbs a Ly photon, the electron is excited from the 1s state into the 3p 
state.  The subsequent de-excitation has three possible paths back to the 1s state: 
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88% of the time the electron goes directly back to the 1s state and emits an Ly photon (resonant 
scattering) 

12% of the time the electron makes a 3p2s transition, resulting in the emission of a Balmer series H 
photon, followed (later) by 2-photon continuum emission from a forbidden 2s1s transition back to 
the ground state. 

The net effect is that after ~9 scatterings, each Ly photon is “degraded” into H plus 2-photon 
continuum photons.  This enhances the total emissivity in the H line over the predictions of Case A 
recombination.  A similar enhancement occurs for other higher-series HI lines (Balmer, Paschen, 
Bracket series, etc.) due to resonant absorption of higher-order Lyman series photons. 

To compute the Case B emissivities, the downward transitions into the 1s ground state are omitted 
from the equations of statistical equilibrium.  In practical terms, this amounts to replacing the 
recombination coefficients, nn’, with effective recombination coefficients, such that for a given line: 
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It is traditional to compute the emissivity of H, the n=4-2 transition in the Balmer series, and then 
tabulate the strengths of the other HI recombination lines in terms of their emissivity relative to H.  
As such, only the effective recombination coefficient of H is often tabulated, and all others may be 
inferred from the relative line strengths (this is what you will find, for example, in the extensive 
recombination calculations of Hummer & Story 1987, MNRAS, 224, 801). 

Nebular conditions most often favor Case B over Case A recombination. 

Case A vs. Case B: 

Predicted line emissivities for Case B are larger than the Case A predictions because the energy that 
would have come out as Lyman series emission-lines is now redistributed among the other series. 

Line ratios within a given series (e.g., Balmer line ratios like H/H) don’t change very much 
between Case A and Case B.  Between series, however, the effect is more pronounced.  For example, 
for Te=104K and low densities (Ne<100 cm3): 

Case A Case B 
H/H=2.86 H/H=2.87 

Pa/H=0.216 Pa/H=0.165 

It is important to recognize that Case A and Case B represent extremes. 

Case A: Optically-thin nebula, all Lyman-series photons escape the nebulae. 

Case B: Optically-thick nebula, all Lyman-series photons are absorbed in the nebula and re-
emitted as higher-order lines. 

While observed conditions tend to favor Case B, if intermediate conditions prevail a detailed radiative 
transfer treatment is required.  For a good overview, see AGN2, section 4.5. 

Sometimes the ratios of HI emission lines are observed to depart significantly from the Case B 
predictions (after correction for dust extinction).  The usual sense of the departure is for the observed 
line ratios to be driven their Case B values towards their Case A values.  These departures have been 
seen in everything from Active Galactic Nuclei to compact HII regions.  Possible physical causes of 
these departures include: 
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1. High densities (Ne=10812 cm3), leading to collisional excitation of HI (e.g., collisional 
excitation of Ly) and altering the basic assumptions of the collisionless Case A/B 
recombination computations. 

2. Optical depth effects, for example if the nebula starts becoming optically thick to Balmer 
series lines, or if the nebula is clumpy and Lyman-series photons escape in some regions 
but not in others.  Balmer continuum and (perhaps) Balmer line opacity can be important, 
for example, in the broad-line regions of AGN. 

3. Resonance fluorescence effects in which Lyman-series photons are resonantly absorbed 
by other species in the nebula (either due to wavelength coincidence with resonance lines 
in other species, or due to bulk motions of the gas Doppler shifting the resonance lines to 
the wavelengths of the Lyman photons).  These Lyman-series photons become 
unavailable to be “degraded” into higher series photons, resulting in lower emissivities 
than predicted by Case B (thus moving them back towards Case A values). 

4. Dust can similarly destroy Lyman-series photons before repeated resonant scattering with 
HI can degrade them into higher-series photons, also driving the line ratios away from the 
Case B values towards Case A. 

Recombination Lines of He and Metals 

Hydrogenic ions are those, like He++, C6+, etc. which recombine to have 1 electron and a nucleus with 
nuclear charge Z.  The transition probabilities, line energies, line emissivities, and transition 
probabilities are all related to the corresponding values for Hydrogen via powers of Z as follows: 
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This also means that the branching ratios are independent of Z. 

The most common Hydrogenic ion is He++, which is seen primarily in hot planetary nebulae, AGN, 
and Wolf-Rayet stars.  Taking into account the Z-dependencies of the line emissivities (jnn), the He++ 
line spectrum for a PNe with T=20,000K looks like that for H+ for T=5000K.  The difference is that 
the emissivities are 23=8 times larger and the lines are at bluer wavelengths by a factor of 1/4.  Thus, 
while He/H0.1 in nebulae, in PNe and the hot phases of nova outbursts, the HeII 4686Å emission 
line can be as bright as the H 4861Å line! 

Hydrogenic ions are relatively easy to work with, but the others are not.  For example, He+ 
recombination is made complicated by its complex 2-electron structure.  As such, HeI/HI line 
strengths tend to be comparable to the He/H0.1 ratio in regions in which most of the He is He+ and 
most of the H is H+.  Still, one can make analogous Case A and Case B calculations of the HeI 
recombination lines taking into account the effects of optical depth in the UV resonance lines of HeI.  
In general one finds that  

HeI triplet lines always follow Case B assumptions fairly closely, primarily because the 23S11S is 
dipole forbidden and therefore quite rare. 

HeI singlet lines do make it into the 11S state, and Case B is usually a good approximation.  The 
optical depths for the UV resonance lines are lower than those of HI by about a factor of 10 (the He/H 
ratio), and there are further complications because HeI n1P11S emission lines are energetic enough to 
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ionize H0.  Further complications come from collisional excitation that can modify the Case B 
assumptions at relatively modest densities (under ~104 cm3). 

In practice, if making back-of-the-envelope calculations, you can use the Case B recombination tables 
for HeI (like those in Osterbrock) for predicting the relative strengths of HI and HeI lines in low-
density HII regions and PNe (“low” means ne104 cm3).  For more sophisticated calculations, like 
deriving He/H abundances, a more sophisticated approach that includes collisional and other effects is 
required.  This is in part why nebular He abundances are so contentious; a detailed treatment is 
required to get a correct answer. 

In dense nebulae (e.g., AGN and the early phases of novae and some SNRs), the Case B assumptions 
are no longer adequate and more sophisticated treatments are required, usually in the form of full 
numerical modeling of the regions of interest (e.g., using CLOUDY). 

Nebular Continuum 

In addition to discrete line emission bound-bound-bound transitions, several processes also lead to the 
production of continuum emission in nebulae at visible and radio wavelengths.  We will treat each of 
these in turn, since different physics come into play in the different wavelength regimes. 

UV, Visible, and IR Nebular Continuum 

The principal sources of continuum emission in nebulae are: 
1. Free-Bound Emission (recombination continuum) 
2. Free-Free Emission (bremsstrahlung) 
3. 2-Photon HI Continuum Emission 

All three are primarily associated with Hydrogen and Helium, with negligible contributions from 
metals. 

Free-Bound Emission: 

Continuum radiation is emitted when a free electron with velocity v recombines into an excited level 
of HI with principal quantum numbers n  n1.  The energy of the photon is given by energy 
conservation: 
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The emission coefficient of this continuum radiation is given by: 
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The recombination cross-sections, nL can be derived from the photoionization cross-sections using 
the Milne Relations.  The complete spectrum is computed piece-wise for each quantum state of HI, 
with the result that the emergent continuum spectrum has large discontinuities (edges) at the ionization 
energies of the different excited states. 

Free-Free Emission: 

Free-free emission results from electrons scattering off the protons in an encounter that does not result 
in recombination.  We have seen this before in the discussion of the diffuse radiation field in nebulae: 
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gff is the Gaunt Factor, and represents the quantum mechanical corrections to classical bremsstrahlung 
emission. 

The bound-free and free-free terms are often combined into a single emission coefficient for HI 
recombination continuum: 

04 ( ) ( , )e pj HI n n H Tn np g=  

Similar terms can be derived for HeI and HeII: 
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In typical nebulae He/H is 0.1 by number.  If the He in the nebula is mostly He++ (e.g., in the cores of 
a PNe), the contribution to the continuum from HeII will be comparable to the HI continuum (modulo 
different edges due to different ionization thresholds for the different levels).  In nebulae where most 
of the He is He+, the contribution to the continuum from HeI is about 10% that of HI (i.e., about the 
relative abundances), again with edges at different wavelengths. 

2-Photon HI Continuum: 

The excited 2s 2S state can be populated by direct recombination, cascades following recombination to 
excited states, and resonant scattering of Lyman series photons in Case B recombination (e.g., Ly).  
The 2s 2S1s 2S radiative transition is forbidden by the dipole selection rules, but it can proceed via a 
2-photon emission process with transition probability 
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The energies of the two photons emitted must add up to the Ly photon energy: 

eV 2.1012   hhh  

The probability distribution of the photon frequencies is symmetric about the mean energy, 0.5h12, 
which corresponds to a wavelength of =2431Å.  If the distribution is expressed in wavelength units, 
the distribution will not be symmetric. 

The emission coefficient is for 2-photon continuum is: 
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Here P(y) is the normalized probability per decay that one photon will be emitted with an energy in 
the range 12)](,[  hdyyyh  . 

The emission coefficient can be written in terms of the electron and proton density by working out all 
of the contributions to the population of the 22S level from direct recombination and cascades (using 
effective recombination coefficients to account for Case B).  In addition, because the 2s 1S state is so 
long-lived compared to all other excited HI states (~0.1 seconds compared to ~108 seconds), it is 
necessary to take into account collisional de-excitation due to electron and proton collisions. 

The result is written in terms of  as was done did for the other continuum sources: 

4 (2 ) (2 )e pj q n n qn np g=  

where: 
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The q’s are the collision rates for collisions with electrons (qe) and protons (qp) respectively.  The 
effective recombination coefficient (eff) and the frequency dependence, g, are usually computed 
numerically for different conditions (see Tables 4.104.12 in AGN2). 

The Nebular Continuum: 

The emergent nebular continuum is the sum of the free-free, bound-free, and 2-photon contributions, 
resulting in a complex continuous spectrum crossed by sharp edges.  An example is reproduced in 
Figure III-9 (from Figure 4.1 of AGN2) for T=104K, showing  for HI, HeI, HeII bound-free and 2-
photon continuum.  The continuum emission coefficient for He+2 is about an order of magnitude 
larger than that for H+ on average, but this is compensated for by the nearly order of magnitude lower 
abundance of He relative to H.  In PNe or highly ionized nebulae (like Nova outbursts), the H and He 
nebular continuum contributions can be comparable in strength. 

 
Figure III-9: Nebular continuum emission coefficients  for HI, HeI, HeII, and HI 2-photon continuum 
processes computed for low-densities at 104K (reproduced from Osterbrock AGN2 Fig 4.1). 

The edges that appear in the continuum spectra correspond to the n limits of the various line series 
(e.g., the H+ continuum edge near =3640Å corresponds to the HI Balmer series limit).  The reasons 
they appear as discontinuous edges are twofold: 

At energies above an edge, captures into excited states have leftover energy that emerges in the 
continuum. 

At energies below an edge, there are many possible excited states that can take up most of the 
electron’s kinetic energy, and emission of energy into the continuum can be less effective by 
factors of ~10 or so. 

Also notice that for typical nebular conditions (low density, T104 K), the 2-photon continuum can be 
the dominant contributor above the Balmer discontinuity at 3640Å until ~5000Å. 
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Radio Continuum Emission 

Nebulae emit a thermal radio continuum spectrum due to free-free emission.  The emission coefficient 
is the same as at visible wavelengths, but h<<kT and the free-free Gaunt Factor is no longer of order 
unity.  Instead, at radio frequencies, the Gaunt Factor becomes: 
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Here =Euler’s constant (=0.577…).  Numerically, this is written: 
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For typical nebular conditions, T=104 K, gff10 at =1GHz for scattering off protons (Z=1).  Compare 
this to gff11.5 for UV and visible wavelengths. 

Free-free radiation is also absorbed at radio wavelengths.  Using Kirchoff’s Laws, the free-free 
absorption coefficient is: 
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Here  is an effective absorption coefficient that represents the difference between the true absorption 
coefficient and the stimulated emission coefficient. 

The optical depth to free-free absorption is 

ff ff

los

dsn nt k= ò  

This can be estimated to ~5% precision by fitting power-laws in T and  to the radio gff, resulting in 
the convenient formula: 
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The integral on the left-hand side is the Emission Measure 
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The Emission Measure has units of cm6 pc, and is an important observable that can be derived from 
the surface brightness of the nebula. 

At a sufficiently low frequency, the nebula is optically thick to free-free absorption.  For example: 

For an HII region with nenp100 cm3, T=104 K, and a thickness of d=10 pc, ff1 at =200 
MHz. 

For a PNe with ne3000 cm3 and d=0.1 pc, ff1 at =600 MHz. 

A radiative transfer calculation helps to work out some of the properties of radio thermal continuum 
emission from ionized gas nebulae.  Since we are at radio frequencies, we are in the Rayleigh-Jeans 
limit (h<<kT), and the total spectral flux density of the nebula, S of the nebula (intensity integrated 
over solid angle ) can be expressed in terms of the brightness temperature, Tb(): 



Ionized Hydrogen (HII) Regions 

III-30 

22
( )b

source source

k
S I d T d

cn n
n

n= W= Wò ò  

For an isothermal nebula, the brightness temperatures at the extremes of free-free optical depth are: 
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Since 2.1, each of these limits can occur in the same nebula at different frequencies.  Thus, 
2

0.1

at low ,  and 

at high , 0 and 

ff

ff

S

S

n n

n n

n t n

n t n-

¥ 

 
 

The transition between these two limits occurs at a critical frequency, crit, that is found by setting =1 
at =crit in the equation for the free-free optical depth, giving 

2.1 2 2 1.358.24 10  GHzcrit e en LTn - -» ´  

where L is the thickness of the nebula along the line of sight.  This is the “Turn-Over Frequency”, 
which is a function of density and temperature. 

 
Figure III-10:  Radio spectral flux density of the Orion Nebula HII region.  Reproduced from Terzian & 
Parrish (1970, ApLett, 5, 261). 

An example is shown in a radio flux-density spectrum of the Orion Nebula HII region reproduced in 
Figure III-10.  The spectrum rises like 2 at low frequencies (10100MHz) in the optically thick 
regime, and then flattens out and begins to fall like 0.1 at high frequencies (3 GHz) in the optically 
thin regime.  Note that the “turn-over” frequency occurs where =1, but not where the spectrum 
actually turns over (from increasing to decreasing flux density with frequency). 

This behavior provides a way to estimate the nebular electron density, ne.  If you can observe a nebula 
down to a low enough frequency, the nebula becomes optically thick and the brightness temperature 
measures the nebular temperature, Te directly.  Then finding the turnover frequency, crit, gives ne. 

Beware, however, that the calculations above all assume a homogenous nebula with a volume filling 
factor of 1.  If the nebula is clumpy (and real nebulae usually are), the equations must be modified and 
a filling factor assumed.  The typical filling factors for nebulae range between 0.01 to 0.5 for HII 
regions and PNe. 



Ionized Hydrogen (HII) Regions 

III-31 

Radio Recombination Lines 

In addition to the familiar recombination lines at UV, visible, and IR wavelengths, nebulae also emit 
lines arising in very highly excited states of H0 that emit photons at radio frequencies. 

At any instant, the level populations in highly excited states are small, usually 105 of the ground state 
populations.  However, nebulae are so large that there is enough H0 present that we can expect to 
observe lines from these levels. 

Calculation of the frequencies is simple, as levels with large principle quantum number, n, differ very 
little in energy.  While LS coupling does act in these highly excited states, its effect is very small and 
the high-n levels are effectively degenerate in L.  The frequencies of the levels are thus given by the 
Rydberg formula: 
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The Rydberg constant, R, depends on the species under consideration: 
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Thus, for HI, RH=1.09678105 cm1. 

For radio recombination lines, the lower principle quantum number and its change, n, identify the 
transition responsible for the line.  Examples are given in the table below. 

n Designation Example 

1  transitions (Xn) 
H106 

(n=107106) 

2  transitions (Xn) 
He109 

(n=111109) 
The maximum quantum number is estimated by finding that excited state for which the typical 
interval for radiative de-excitation is shorter than the orbital timescale for the electron. 
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For typical nebular conditions (Ne=1000 cm3 and Te=104 K) nmax740.  At this point, we enter a 
bizarre regime where the Hydrogen atom is on the borderline between the classical and quantum 
regimes (so-called mesoscale atomic physics). 

Since h<<kT, stimulated emission can be as important as spontaneous emission, quite unlike the case 
with the visible-wavelength recombination lines considered before.  The line absorption coefficient, 
l, for a radio recombination line arising from an nn transition is: 
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where * is the absorption coefficient in the thermal equilibrium case.  In the limit h<<kTe: 



Ionized Hydrogen (HII) Regions 

III-32 

2 2
* *

/7 2.5

( )
4

1.070 10 ( )n e

n nn
e

E kTnn
e i e

h
f n B

kT

f
n n n T e f

n

n

n
k n

p

n

¢

-¢

=

» ´ D



 

where f() is the Doppler Broadening function for the nebula.  For HI,  
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Assuming that the departure coefficients are slow functions of n for large n: 
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and, since h<<kTe, the exponential can be expanded to lowest non-trivial order, and we can solve for 
the optical depth: 
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Since both terms in the []’s are small, this can be either >0 or <0, depending on the relative dominance 
of absorption and stimulated emission. 

The emission coefficient, jl, for the line is given by 
*4 ( ) ( )en n n nj n A h f b B Tn n np n n k¢ ¢ ¢= =   

Since it is possible for  to be negative due to stimulated emission, the detailed behavior of the 
departure coefficients is what finally determines the emission-line strength. 

In the LTE limit, the line and continuum intensities are: 
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The line-to-continuum ratio is then 
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Since from the previous section 
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Using the * derived above, we get 
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The fraction NHe/NH takes into account contributions to the free-free continuum from interactions 
between electrons and He+. 

Observations of H and He radio recombination lines in Galactic HII regions has yielded NHe/NH0.08, 
which implies that the He free-free correction factor is about 10%. 

Why have we just gone through all of this? 

At radio wavelengths, the line-to-continuum ratio is what is easily observed, and the relatively 
complicated relation above reduced to 
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Measurements of radio recombination lines can therefore provide accurate estimates of the electron 
temperature in nebulae.  However, because the equation for the line absorption coefficient is sensitive 
to non-LTE effects, the relatively simple relations we have derived require subtle corrections to give 
accurate temperatures in practice.  Thus far, radio recombination lines have only been observed in 
Galactic HII regions as they are too faint to be detected in nearby galaxies with current technologies. 
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III-4 Nebular Diagnostics 
HII regions and PNe have spectra characterized by strong emission lines resulting from 

1. Recombination cascades in H and He (and to a lesser degree in metal ions) 

2. Electron-ion impact excitation of low-lying levels in metal ions. 

Collisionally-excited metal lines dominate the cooling of the nebula, and can often have an integrated 
luminosity that far exceeds that of the recombination lines of H and He. 

In this section, we will examine the emission-line spectra of ionized nebulae, and derive a number of 
important emission-line diagnostics that will permit measurement of the physical conditions within the 
nebula.  The diagnostics take a number of forms: 

The strengths of the H and He recombination lines are sensitive to both the total luminosity and the 
spectrum of the ionizing radiation field, and may be used as diagnostics of the global properties of the 
nebula. 

The relative level populations of a given ion (e.g., O++ or S+) depend critically on the local 
thermodynamic properties of the ionized gas, principally density and temperature.  These relative level 
populations are manifest in the intensity ratios of lines emitted by the ion.  We shall see how a number 
of readily observable line ratios provide powerful diagnostics of the nebular density and temperature 
in the line-forming regions. 

The strengths of the metal ion lines relative to Hydrogen are sensitive to the relative ionic and total 
abundances of these metals in the nebula (e.g., O/H), as well as to the shape of the ionizing continuum 
spectrum.  These provide a way to measure the gas-phase abundances of particular elements within 
the nebula.  Observations of HII regions in our own galaxy and other galaxies have been crucial in 
working out the chemical enrichment history of the ISM. 

The Spectra of Ionized Nebulae 

Classical HII Regions 

Classical HII Regions are diffuse ionized nebulae surrounding hot O and B stars.  They range in size 
from parsec-scale regions ionized by a few O or B stars (e.g., the Orion Nebula), up to giant HII region 
complexes ionized by clusters containing hundreds of O stars (e.g., 30 Doradus in the LMC).  The 
Orion Nebula is the nearest bright HII region (d450 pc), and is the prototype of an HII “blister” on the 
side of a giant molecular cloud.  Most of the ionizing photons (~95%) are from the bright O6.5V star 
1C Orionis, with the remaining ionization coming from the B0.5V star, 1D Orionis. 

 
Figure III-11:  Long-slit spectrum of the Orion Nebula taken in the region of the “Orion Bar” [1.8m 
Perkins Telescope, R. Pogge & S.R. Benfer] 
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This spectrum is dominated by H and He recombination lines, primarily H, H, H, and H, and the 
HeI lines (4471Å and 5876Å, plus an unlabeled line at 6671Å), and bright lines of O++, the 
[OIII]4959,5007Å lines seen adjacent to H, and N+, the [NII]6548,6583Å lines surrounding H. 
The [SII]6716,6731Å doublet is also apparent, and is an important density diagnostic. Scans along 
the Bar proper are reproduced on the following pages for each of the two long-slit spectra in Figure 
III-11.  In each, the bottom panel is scaled to show the bright emission lines visible in the long-slit 
spectra; this is how more distant HII regions often appear, with the fainter lines lost in the noise.  The 
upper panels show a highly compressed intensity scale, showing the many faint lines, many with 
strengths <1% of H, that appear throughout the spectrum at the high signal-to-noise ratios possible 
because Orion is so bright.  Many faint lines from He+ O0, S++, Ar++, Cl++, Si++, Fe+, and Fe++ are 
visible, and only a few have been identified for clarity. 

Below are spectra of the brightest HII complexes in the galaxies NGC 3413 and NGC 1819.  The 
spectra appear very different because of the large difference in nebular abundances; NGC 3413 is an 
Irregular galaxy with O/H ~8% solar, while NGC 1819 is an S0 galaxy with roughly solar O/H. 

 
Because of the lower metallicity in NGC 3413, there is less cooling in the gas, resulting in a hotter 
nebula (Te14000 K) and leading to greater excitation of metal-ion lines that are important for cooling 
like the [OIII] lines. 
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In NGC 1819, however, there are enough metals to effectively cool the nebula to Te<7000 K, leading 
to weaker [OIII] lines (most of the cooling is being done by far-IR fine structure lines of O and N 
instead of visible O lines). 

Planetary Nebulae 

Planetary Nebulae (PNe) are the ejected outer envelopes of AGB stars ionized by UV photons from 
the remnant stellar core.  These cores often have temperatures ranging from 50,000K up to 120,000K 
or more.  Such stars are capable of doubly ionizing Helium (h54.4 eV), as well as strongly ionizing 
many metals.  The figures below (taken from N. J. Lame’s OSU Ph.D. dissertation) show spectra of 
two PNe: the low-excitation PNe NGC 6720 (the Ring Nebula), and the high-excitation PNe NGC 
7662 (the Saturn Nebula). 

 

 

Notice how low-ionization potential ionic species like O0, N0, N+ and S+ are easily seen in NGC 6720, 
but nearly absent in NGC 7662. 
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Global Properties 

A number of global parameters, averages over the ionized volume of the nebula, may be estimated 
from the emission lines. 

The Emission Measure: 

The “emission measure”, EM, of a nebula is defined as the integral of the product of the electron and 
proton density along the line of sight: 

2
e p e
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EM n n ds n Lº »ò  

Here L is the thickness of the nebula along the line of sight.  The units of the emission measure are 
traditionally expressed in pc cm6.  The emission measure defined in this way arises naturally from 
estimates of the total luminosities of recombination lines in nebulae.  Consider, for example, the H 
recombination line: 

01
( ) ( , )

4
eff

h e p H H

los los

I H j ds n n h H T dsb b bb n a
p

= =ò ò  

In general, the densities and temperature can all vary along the line of sight.  In normal ionized 
nebulae, if the temperature is roughly constant in the fully ionized region (not a bad approximation), 
then setting T(s)T, we get: 
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Similar expressions can be derived for all of the other recombination lines.  Since in principle the 
emission measure is the same for all recombination lines, the HI recombination spectrum from a 
nebula simply scales as the emission measure, which is in principle an observable.  It is more 
commonly derived at radio wavelengths for radio recombination lines. 

Typical values of EM are: 

1. Orion Nebula & some PNe: EM107 pc cm6 

2. Faintest Radio HII Regions: EM200 pc cm6 

3. Warm Interstellar Medium (WIM): EM down to 0.1 pc cm6 

The latter represents about the current surface-brightness limits of the Wisconsin H-Alpha Mapping 
(WHAM) experiment in a 30-second integration in a 1 diameter beam with a 60-cm telescope.  
While we have largely concentrated on discrete HII regions in this chapter, keep in mind that 90% of 
the H+ in the Galaxy is in the form of the low EM H-emitting clouds of the WIM. 

The EM is often encountered in radio recombination-line studies of Galactic HII regions as it provides 
a reasonably robust estimate of the globally averaged electron density in the nebula.  This is especially 
useful since most Galactic HII regions are heavily extinguished by dust, and so only visible at radio or 
far-infrared wavelengths, rendering the more familiar density diagnostics from derived from UV, 
optical or near-infrared forbidden lines useless. 
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Lyman Continuum: 

In an ideal “ionization bounded nebula”, all ionizing photons with h13.6 eV (the “Lyman 
Continuum) will ionize H0 and none escape the nebula.  Since in photoionization equilibrium all 
photoionizations within the volume of the nebula are balanced by recombinations, we can use the 
strengths of the recombination lines to “count” the number of ionizing photons. 

As we saw before for a simple spherical HII region (Strömgren Sphere): 
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Q(H0) is the number of ionizing photons/sec emitted by the central source, and r1 is the radius of the 
Hydrogen Strömgren Sphere. 

The total luminosity of a recombination line like H is an integral over the ionized volume of the 
nebula: 
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L(H) is an observable, given an estimate of the distance to the nebula: 
2( ) 4 ( )L H d F Hb p b=  

Here F(H) is the observed flux of H from the nebula, and d is the distance.  Assuming that TT 
throughout the nebula is a good approximation, we find 
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For typical nebular temperatures of T104 K, 
0 50 2 -1( ) 2.5 10 ( )  photons spcQ H d F Hb» ´  

F(H) is in flux units of erg s1 cm2 integrated over the line.  In practice, you can use any 
recombination line, although H and H are the most commonly used as they are easily observed.  
Br (=4.05m) and Br (=2.16m) are sometimes used in highly obscured HII regions. 

The thermal free-free continuum emission at radio wavelengths can provide a similar estimate of the 
Lyman Continuum flux: 

0 46 2 0.1 0.45 -1( ) 7.5 10   photons spc GHz eQ H S d T     

The spectral flux density S is measured in units of Janskys (1023 erg s1 cm2 Hz1). 

Once Q(H0) is calculated, it can be compared to the predicted Q(H0) for stars of different spectral 
types (or, more precisely, different effective temperatures and metallicities).  An example of grids of 
simple LTE stellar atmospheres models for O and B stars that compute Q(H0) estimates are those of 
Panagia (1973, AJ, 78, 929).  Common observational problems where such a comparison is made 
include 

1. Estimations of the spectral types of stars embedded in dusty compact HII regions, where 
the star is effectively obscured and cannot have it spectral type determined by standard 
means, but it is possible to estimate Q(H0) from radio continuum measurements. 

2. Estimating the number of O stars in a giant extragalactic HII regions by estimating Q(H0) 
from L(H).  This is often a prelude to estimating the “instantaneous star formation rate” 
in a galaxy by predicting how many ionizing O stars should be present given an assumed 
initial mass function. 



Ionized Hydrogen (HII) Regions 

III-39 

3. Estimating the temperatures of Planetary Nebula central stars using the Zanstra Method.  
This method compares estimates of Q(H0) from measurements of the integrated H 
luminosity to continuum-band measurements of the brightness of the central star to give a 
distance independent estimate of the color temperature of the star.  The traditional Zanstra 
method assumes a blackbody spectrum for the central star, but more sophisticated modern 
forms numerically integrate synthetic spectra from model atmospheres calculations. 

The drawback of all of these techniques is that it really only gives a lower-limit on the number of 
Lyman continuum photons.  If any ionizing photons escape from the nebula, or are reprocessed by 
dust grains thermal IR emission, the recombination-line luminosity or radio free-free continuum flux 
will underestimate the number of Lyman continuum photons.  Nonetheless, reasonably well-defined 
lower limits are often better than no measurements at all 

Nebular Temperatures 

p2 ions, like O++ and N+, have a ground-state configuration like that sketched in Fig III-13.  All of the 
levels above the lowest ground state are populated by electron-ion impact excitations.  The 
populations of the 1S and 1D states depend critically on the temperature, and so the strengths of the 
emission lines arising from these levels will be temperature sensitive.  In particular, the relative 
strengths of the 1S1D and 1D3P lines will provide a measurement of the nebular temperature, with 
a slight additional density dependence because the different levels have different critical densities. 

1S0

1D2

3PJ

 
Figure III-12: Ground-state configuration for a p2 ion like O++, N+, or S++. 

While a detailed treatment requires at least a 5-level atom calculation, we can learn a few things from 
a simple treatment as outlined below. 

In the low-density limit, every collisional excitation into the 1D level results in the emission of a 
photon by a downward transition into either the 3P2 or 3P1 states, in proportion to their transition 
probability (A).  Similarly, every collisional excitation in the 1S level results in the emission of a 
photon by downward transition into either the 1D or 3P1 states, again in proportion to their A values.  
Each 1S1D is also followed by a 1D3P, but the contribution is small compared to direct excitation 
of the 1D state. 

The line ratio, in the limit ne0 is 
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The ’s are the effective collision strengths for the levels, and n  is the mean frequency of the 1D3P 
transition weighted by the transition probabilities: 
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and h is the excitation energy of the 1S1D transition.  This simple form works for densities up to 
about the critical density for collisional de-excitation of the 1D state, at which point you have to do the 
full statistical equilibrium calculation taking into account all collisional and radiative terms. 

In the visible spectrum, there are two common density diagnostic ratios derived from (usually) readily 
observable line ratios of [OIII] and [NII].  The first-order solutions of the level populations result in 
numerical formulae for these ratios in terms of the temperature with a weak density dependence: 

[OIII] Lines (Measures Te in O++ Zone): 
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[NII] Lines (Measures Te in N+ Zone): 
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These formulae are not exact, primarily because of resonances in the collision strengths, but in the 
temperature and density regimes of relevance for typical nebulae (Te500020000 K, ne1105 cm3) 
they will differ from the results of detailed 5-level atom calculations by far less than the typical 
measurement uncertainties for this range of parameters.  The observational uncertainties are primarily 
driven by the fact that the [OIII]4363Å and [NII]5755Å emission lines are very faint in typical 
nebulae, usually only a few percent the flux of H or H.  Measurement errors in the faintest lines 
thus drive the error in the final derived temperature. 

A number of assumptions are at work in these measurements.  Since the forbidden lines are optically 
thin, any measurement is an integral along the line of sight through the nebula.  In a reasonably 
homogenous nebula, the temperature measures a mean temperature along the line of sight.  In an 
inhomogeneous nebula, however, the integrated line fluxes are emissivity-weighted averages along 
the line of sight.  The interpretation of the temperature so derived in such a case depends critically on 
the nature of the inhomogeneity.  A number of methods have been suggested for trying to estimate the 
magnitude of the effect, especially as temperature estimates impact upon nebular abundance 
estimations. 

Nebular Densities 

Electron densities are measured by examining line ratios that are sensitive to collisional de-excitation.  
The usual method is to compare lines that arise in close-spaced doublet levels but which have very 
different critical densities.  The best (simple) density diagnostics are p3 ions like O+ and S+, which 
have ground state configurations like that shown in Figure III-13. 
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Figure III-13: Ground-state configuration of a p3 ion like S+ or O+. 

Particularly useful lines are those from the 2D5/2.3/24S3/2 transitions.  Because the energy spacing of 
the doublet excited states is so small compared to the temperature, the exponential factor in the 
relative level populations is negligible, leaving behind only a weak (Te

1/2) dependence from the 
collision strengths. 

What matters for using these lines as a density diagnostic is that they have very different critical 
densities.  Consider an idealized 3-level atom as shown in Figure III-14: 

2

1

3

 
Figure III-14: A simple 3-level atom with a doublet excited state.  The energy separation of the doublet 
levels (2 and 3) is exaggerated for clarity. 

We measure the intensity ratio of the two lines arising from the excited doublet state, I31/I32. 

Level 3 has a critical density 
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Similarly, the critical density of level 2 is 
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The intensity of a particular line, say I21, is 

21 2 21 21

2

,2

 as 0

 for 
e e

e e crit

I n A h

n n

n n n

n=

 

 
 

A similar condition holds for I31.  The behavior of these lines is best seen if we express the line 
intensities in terms of a “density normalized emissivity”: 
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Here (ni/ne) is approximately the ionic abundance relative to H.  A graph of the density normalized 
emissivities for the 31 and 21 transitions shows the behavior sketched in Figure III-15: 
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Figure III-15: Density dependence of the density-weighted emissivities for the doublet lines in our 
idealized 3-level atom shown in Figure III-14. 

The density-normalized emissivity for a given line stays roughly constant with density until it reaches 
its critical density, above which it begins to fall off, eventually falling as 1/ne when nencrit.  The line 
ratio, I31/I21 therefore behaves as follows: 

1. For ne  ncrit,3; I31/I21 has a constant value 
2. For ncrit,3  ne  ncrit,2; I21 is roughly constant, but I31 drops, causing I31/I21 to fall. 
3. For ne  ncrit,2; I21 begins to fall at the same rate as I31, so that I31/I21 becomes nearly 

constant again, but at a different value. 
A more careful treatment shows that for the low-density limit, the line ratio tends towards the ratio of 
the statistical weights: 
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Far above the critical densities for both lines, the line ratio tends towards the limiting value give by 
Boltzmann statistics for “thermalized” level populations: 
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The line ratio is sensitive to density (ratio  1/ne) within a relatively limited range of densities lying 
roughly between the critical densities of the two lines.  At the low- and high-density limits the line 
ratios are effectively constant, and the line ratio only indicates which limit prevails. 
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Figure III-16: Schematic density diagnostic curve for the doublet ratio in our 3-level atom. 

Two density diagnostic line ratios of particular importance for the study of nebulae at visible 
wavelengths are: 

[SII] 6716,6731Å Doublet (Measures ne in S+ Zone): 
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These lines are well separated in wavelength (~15Å), so you don’t need a high-dispersion 
spectrograph to measure them.  It provides a reasonably good measurement of the nebular 
density in the range ne102104 cm for Te=50000000 K.  The drawback is that S+/H is 
small so the lines tend to be weak.  A further drawback is that S+ is the primary ionic species 
of S only within a narrow region just inside the boundary of the ionized zone of the nebula. 
Throughout most of the fully ionized zone the dominant ionic species of S is S++. 

[OII] 3726,3729Å Doublet (Measures ne in O+ Zone): 
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(3726)OII

I
R
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=  

This ratio works in the same regime as the [SII] doublet, but now the lines are more closely 
spaced, so you need a high-dispersion spectrometer to resolve the doublet.  An advantage of 
using [OII] is that O+ is an abundant ionic species and so the lines are bright.  It does, however, 
share the drawback of the [SII] doublet in that O+ is the minority ionic species of O in the 
nebula, and it does not provide an accurate estimate of the density in the fully ionized zone 
that makes up the bulk of the nebula. 

Other ionic species can be used to measure densities.  For example, in high-excitation PNe with very 
hot central stars (T105 K), the [ArIV]4711,4740Å doublet in the visible and the 
[NeIV]2425,2422Å doublet in the satellite UV have been used successfully and are sensitive to a 
similar range of nebular density as the low-excitation diagnostics above. 

At much higher densities, lines of C++ in the satellite UV are useful for measuring densities.  The 
[CIII]1907/CIII]1909 doublet is sensitive to densities between 103 and 106 cm. 

At near-IR wavelengths, [FeII] and [FeIII] lines are observed in the 12m wavelength region that are 
sensitive to densities in the 103 to 106 cm range.  These have been used for measuring densities in 
nebulosity associated with the Galactic Center (e.g., by DePoy and collaborators). 
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Infrared Fine Structure Lines 

The temperature and density diagnostics described so far are from different ionic states, thus while 
you can measure Te in the O++ zone, the only accessible density diagnostic at visible wavelengths for 
O works in the O+ zone.  Ideally one would like diagnostics for the same ionic state, and hence the 
same physical region within the nebula. 

The Far-IR fine structure lines of many abundant ionic species are sensitive to ne but only very weakly 
sensitive to Te.  For example, for O++ there are two fine structure forbidden lines arising from 
transitions among the 3P ground-state levels: 

[OIII] 3P03P1 at =88.4m 
[OIII] 3P13P2 at =51.8m 

There are also lines of [SIII] that arise from the analogous transitions at 33.5m and 18.7m, 
respectively.  These have been measured with spectrometers on the Kuiper Airborne Observatory, and 
with the ISO spacecraft. 

The energy difference between the fine-structure levels is small, so that e/kT1, and there is virtually 
no temperature dependence on the [OIII] I(52m)/I(88m), so it depends only on density (both levels 
have similar critical densities). 

A transition from the 1D23P2 level in O++ emits a forbidden line at 5007Å, the decays via the 
3P23P1 transition to emit the 52m line. This ratio depends very strongly on temperature, but since 
ncrit(

3P2)<ncrit(
1D2), it also has a strong density dependence. 

By measuring two line ratios: I(5007Å)/I(52m) and I(52m)/I(88m), we can “cross” the Te and ne 
dependence of each to make an estimate of both parameters.  This was a technique pioneered by 
Harriet Dinerstein and her collaborators (Dinerstein, Lester, & Werner 1985, ApJ, 291, 561).  It avoids 
many of the uncertainties due to nebular inhomogeneities when estimating ne with one ionic species 
and Te with another.  Similar diagnostics have been applied to highly excited PNe using the [NeV] 
lines at 24.3m, 14.3m, and 3426Å (e.g., the ISO spectra of Pottasch et al. 1996, A&A, 315, L261 
for NGC 6302).  ISO and now Spitzer data have been particularly useful for extending the use of these 
diagnostics to more nebulae. 

The particular disadvantage of the far-IR lines is their relative inaccessibility in a spectral region can 
only be observed from space or high-altitude airborne observatories.  A further problem is that visible-
light spectrometers permit angular resolutions of an arcsecond or better, whereas far-IR observations 
are on scales of arcminutes or a little less (the diffraction limit at 5000Å is 100 times smaller than that 
at 50m for the same telescope), so in resolved objects it is difficult to compare far-IR and visible-
light measurements in detail. 

Abundances 

Abundances refer to the relative proportions of atomic species in the gas phase in a nebula.  These are 
usually expressed relative to Hydrogen.  There are two types of nebular abundances that can be 
measured from the emission-line spectra of nebulae: 

Ionic Abundances: 
These are the relative abundances of particular ionic species, e.g., O+/H+.  These are usually 
local measures as different ionization states of an element are found in different regions within 
a nebula due to its detailed ionization structure. 
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Total (Elemental) Abundances: 
These are relative abundances of particular elements, e.g., O/H, expressed as the sum over all 
ionic forms present in the nebula.  These provide a global estimate of the relative proportions 
of a given element in the gas-phase in the nebula. 

Ionized nebulae are our primary probes of the gas-phase abundances in regions of recent star 
formation, and are the primary tracers of the chemical evolution of the ISM in our Galaxy and other 
galaxies. 

Ionic Abundances 

The observed intensity of a particular ionic emission line, Iul, is given in general by 

( )ul ul e i ul e

los los

I j ds n n T dse= =ò ò  

where: 
density of the ion (e.g., O )

( )  line emissivity
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The line emissivity is function of the local electron temperature, Te.  For recombination lines, like H 
or He, the emissivity can be written in terms of the effective recombination coefficient, for example, 
the intensity of H is 
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Collisionally excited lines, like [OIII]5007Å, are expressed in terms of the collision strengths.  In the 
low-density limit, this is given by: 

1
( )

4ul e i ul ul e ul

los

I n n h q T b dsn
p

= ò  

Here ulb  is the fraction of excitations into the upper excited state that gives rise to the line (it is not a 

departure coefficient – beware!). 

Line ratios are measured instead of total line luminosities, primarily because they are distance 
independent and do not depend on absolute calibration (which is always much harder than relative 
calibration in spectroscopy).  For example, it is common practice at visible wavelengths to measure 
line strengths relative to H because this line is readily observed and generally unblended with other 
lines (unlike H, which is often blended with [NII] lines).  This ratio is usually written in terms of line 
emissivities, : 

( )

( )

e i ul eul

H e p H e

n n T dsI

I n n T dsb b

e

e
=
ò
ò

 

For a recombination line, like H: 
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For a collisionally-excited line: 
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The simplest assumption to make is that the nebula is homogeneous along the line of sight. In this 
case, the density of an ion relative to the density of protons (Hydrogen ions) is: 

( , )

( , )
H e ei ul

p H ul e e

T nn I

n I T n
b

b

e
e

= ´  

The emissivities are assumed to be known” functions of Te, and I’ve included ne to remind you of the 
weak density dependence of the recombination lines.  

Recombination and collisionally excited lines have different temperature dependencies.  In general: 
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The exponential dependence on temperature of the collisionally excited lines is of particular concern, 
and one has to know Te fairly accurately in order to derive good ionic abundances. 

In real nebulae (i.e., those outside of textbooks and computer codes), Te and ne will vary with position, 
so our assumption of homogeneity must be modified if we are to believe our derived nebular 
abundances.  A number of approaches have been proposed to account for the effects of 
inhomogeneities.  The temperature fluctuations method proposed by Manuel Peimbert (1967, ApJ, 
150, 825) has been used most frequently.  This uses the observed line ratios to derive an estimate of 
the extent of fluctuations in Te.  The emissivity is expanded as a power series in Te: 
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T0 is the emission-measure-weighted average T along the line of sight: 
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Temperature fluctuations along the line of sight are quantified by the parameter t2: 
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This is the normalized second-moment of Temperature along the line of sight. 

If all ions share a similar distribution in space in the nebula, then two line ratios that are diagnostic of 
temperature could in principle be used to measure both T0 and t2.  For example the emission line ratios 
[OIII](4959+5007)/4363 and [SIII](9069+9532)/6312 (an analog of the [OIII] ratio) are sometimes used 
for this purpose because they are found in the same regions of a nebula. 

Once these are estimated, we can then find the appropriate temperature to use for a given line.  For 
H, the appropriate temperature to use is 

2
0( ) [1 0.92 ]eT H T tb » -  

Thus, the recombination-line emissivities are weighted towards regions with cooler temperatures 
(recombination is more effective for lower temperatures). 

For collisionally excited forbidden lines, the steeper temperature dependence results in emissivities 
that are weighted toward higher temperatures (higher T means more electrons sufficiently energetic to 
collisionally excite the lines): 
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Where the ’s are the excitation potentials relative to the ground state for the lower (1) and upper (2) 
level responsible for the line of interest. 

Observational work in the visible and Far-IR has produced values of the temperature fluctuation 
parameter of t20.035 for Orion to t20.02 for PNe, but in general t2 is very hard to determine with any 
precision.  A non-zero t2 can change the inferred ionic abundances by factors of 23.  A good 
illustrative example of this kind of work is Nollenberg et al. 2002 [ApJ, 581, 1002], who combined 
optical and ISO spectra to study sulfur abundances and temperature fluctuations in two extragalactic 
HII regions. 

Total (Elemental) Abundances 

If you could measure the abundances of all of the ions of a given element, you could estimate the total 
abundances of that element with respect to H.  The elements that can be measured with various 
degrees of precision in nebulae are He, O, S, N, and Ne.  With good UV spectroscopy (especially with 
FUSE and HST), C, Ar, and Cl abundances are also being measured with greater precision. 

Oxygen is particularly important as the primary ionic species of O found in nebulae have strong 
optical and near-UV emission lines because O is relatively abundant and a primary coolant in most 
nebulae.  It is more difficult to determine the abundances of other elements because only one or two of 
the primary ionic forms are observable in a single wavelength band, and because the lines are often 
relatively weak and blended with other features (e.g., stellar absorption lines and continuum mixed 
with the nebular spectrum). 

Total abundances are estimated by adding up the contributions from all observed ionic species, and 
then correcting for the unobserved ions using an empirical Ionization Correction Factor (ICF).  Most 
ICFs use of easily observed ionic species, chiefly O and He ions, and exploit similarities in the 
ionization potentials to make the appropriate corrections.  The assumption is that ionic species with 
roughly similar ionization potentials should arise in the same physical regions.  This is a reasonable 
assumption for most nebular conditions, but can become problematic if there are large density 
variations, as lines from the different species can often have very different critical densities. 

Examples of commonly exploited ionization potential similarities are: 

He+ (IP=54.4eV) and O++ (IP=54.9eV), which differ by 0.5eV 
O+ (IP=35.1eV) and S++ (IP=34.8eV), which differ by 0.3eV 

The near coincidence in IP between O+ and S++, for example, can be used to correct the observed S++ 
ionic abundances for the unseen S3+ lines in terms of the observed O+ and O++ lines: 
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Lines of [SII], [SIII], [OIII], and [OII] are readily observed at visible/near-IR wavelengths, but no strong 
[SIV] lines are seen (they appear at satellite UV wavelengths).  Thus the S/H abundance, corrected for 
unseen ionic states of S should be: 
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Another example is in highly excited PNe, where there is significant He++ emission.  The fraction of O 
that is in the form of O3+ and O4+ should follow the relative fraction of He in He++: 
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The O ionic fractions in both examples are estimated from the observed strengths of [OII] and [OIII] 
lines relative to H.  Some schemes for estimating ICFs work better than others, depending upon how 
much one wishes to stretch the definition of “coincidence” when comparing the ionization potentials 
of different ions.  The best have usually been confirmed with detailed Monte Carlo analyses with 
model nebulae.  In general, the more ions of different species you have, and the greater the range of 
IP’s, the better you can constrain the derived abundances. 


