Neutron Stars and Gravity

• We have considered the extreme physical conditions produced within neutron star by the collapse of the core.
• Now consider the effect of the gravity itself.
 – Gravitational pull at surface of neutron star is incredibly strong.
 – It affects significantly the radiation emerging from the surface.

General Relativity

• Strong gravity means we must consider general relativity.
• This will lead us to the concept of black holes.

Review of Special Relativity

• Recall Einstein and special relativity.
• Speed of light is same for all (inertial) observers.
 – That led to time dilation and length contraction.
 – Also to $E = mc^2$.
• Refer to Ch. 24-1.

General Relativity: Principle of equivalence

• Another brilliant insight of Einstein.
• Has three parts:
 – Equivalence of inertial and gravitational mass (Galileo’s principle).
 – Laws of physics same in freely falling lab as in lab at rest far from any mass.
 – Physical laws in accelerating lab same as in stationary lab in gravitational field.

Fig. 24-3, The Equivalence Principle.
• First two seem obvious (now)
• Galileo dropped two different kinds of balls
 – both fell to the ground at the same time
• Astronauts in space don’t feel gravity
 – they are freely orbiting (falling) in a gravitational field

• All three points bring new consequence:
 – Light must also be subject to gravity
 – Otherwise, astronaut could tell if he/she was in accelerating space ship
 or subject to gravity on earth

Astronomy 162, Week 7
Black Holes
Patrick S. Osmer
Spring, 2006

Light and Gravity
• Consequence of General Relativity
• Light will be deflected (bent) by a gravitational field
• Light will have a redshift in a gravitational field (see Ch. 24-2)

Concept of Spacetime
• Light has finite speed
• No signal can travel faster than light
• We see sun as it was 8 minutes ago
 – some events can be outside our horizon
 – for example, we don’t know what the sun is doing at this instant
Heart of General Relativity

- Matter in universe affects (curves) spacetime
- Light follows geodesics (shortest paths)
- Path of light curved according to geometry of spacetime
 - Einstein worked to establish a geometric basis for physics and the effect of gravitation

Fig. 24-4, Gravitational Curvature of Spacetime

Tests of General Relativity

- Deflection of starlight near sun (Fig. 24-5)
 - Observed in famous eclipse of 1919
 - Confirmation made Einstein famous
- Change in orbit of Mercury
- Gravitational redshift
 - observed on earth in a brilliant experiment
 - observed on sun and in white dwarfs in binary systems

Fig. 24-5, Gravitational Deflection of Light
Fig. 24-6, Precession of Mercury’s Orbit
Fig. 24-7, Gravitational Redshift

- Now - also checked using time delay of light in a distant space probe
- So far - general relativity is confirmed

Gravitational waves and binary pulsar

- Gravitational field of moving object changes with time
- Fast moving, massive object can produce notable effect
- Discovery of binary pulsar (1979) with period of 8 hrs gave another key test of general relativity
Why?

- Orbital velocity high enough (0.1 c)
- Pulsar such a good clock - changes in orbit detectable
- Long-term observations of pulsar have now confirmed G.R. to high degree of accuracy
- Hulse and Taylor received Nobel prize for this work

- U.S. now has project to detect gravitational waves directly
 - LIGO
- Need to detect changes in separation of 1 part in 10^{20}!
- Should be able to detect gravitational waves from a supernova in our galaxy

Black Holes

- Suppose gravitational field of an object is so strong
 - escape speed is speed of light
 - then light would not be able to escape
- We would have a black hole

- Imagine what happens as we keep shrinking a star
 - For a neutron star - light passing by is bent by about 30 deg.
 - Keep shrinking the star - soon light will travel in a circular orbit - photon sphere
 - Eventually light will not be able to escape surface (Fig. 24-8)

Fig. 24-8, Light around a forming black hole

Schwarzschild radius

- Schwarzschild was first to calculate radius at which light could not escape
- Smaller objects are black holes!
 - Schwarzschild radius for 1 solar mass is 3 km (neutron star radius is about 10 km, not much bigger than a black hole)
 - Radius is proportional to mass
 - For 10 solar masses, radius is 30 km
Limits on Masses of Neutron Stars
- Neutron stars that weigh more than about 3 solar masses cannot support themselves against gravity
- They collapse to become black holes
- (This is analogous to Chandrasekhar limit for white dwarfs)

How to make a black hole?
- From stars - probably from supernova in very massive star
- How to observe a black hole?
 - Through its gravitational field
 - (Still the same outside the hole)
 - Also, matter gets very hot falling towards the black hole
 - Emits X-rays

How to detect a black hole?
- If light cannot escape, how can we find a black hole?
- Through its gravitational attraction
- And through emission from the hot gas falling towards it
- Thus, binary X-ray sources are candidates for black holes
- See Figs. 24-10 and 24-11

Fig. 24-10, Companion star to Cyg X-1

Fig. 24-11, The Star, Accretion Disk, and Black Hole

Falling into a black hole
- What happens as you approach a black hole?
 - Besides getting fried by the heat, blasted by the radiation, and torn apart by the tidal forces,
 it would be interesting
- Two parts to the question
 - What is seen by outside observer?
 - What is sensed by you?
• Because of relativistic effects, outside observer sees time slowing down for you
 – gravitational redshift becomes greater and greater
 – to outside observer, you never quite reach the event horizon
 (Schwarzschild radius)

• You, however, don’t see anything so unusual
 – you pass right through the event horizon (but can never get out again or send a signal out)
 – in principle, continue right through to center
 – the singularity
 – can only speculate on what happens inside the black hole

Fig. 24-18, Falling into a Black Hole

Fig. 24-9, Curved Spacetime around a Black Hole

Other origins of black holes
• Have seen how a supernova may produce a black hole
• Very massive black holes may occur in centers of galaxies (discuss later in course)
• Massive star clusters may collapse
• Intriguing possibility
 – formation of mini-black holes in big bang

Fig. 24-15, Structure of a non-rotating Black Hole

• See the book “Black Holes and Time Warps”
• by Kip Thorne

Fig. 24-15, A Rotating Black Hole

Properties of A Black Hole
• A black hole is characterized by 3 parameters:
 – Mass
 – Charge
 – Rotation (angular momentum)
Evaporation of black holes

- Stephen Hawking (Brief History of Time)
 - speculated on what happens near a black hole
 - realized there is a chance of particle creation from fluctuations in energy density
 - normally particles would annihilate
 - but, near a black hole, one particle might be captured
 - other particle escapes

 Fig. 24-17, Evaporation of a Black Hole

- the black hole slowly evaporates
- this can only occur (within lifetime of universe) for mini-black holes
- they might disappear in burst of gamma rays
- (enjoy the book - impress your friends)
The galaxy

• We will consider first
 – the basic structure and geography of the galaxy
 – the location of the center of the galaxy
 – spiral structure

Milky Way Galaxy

• Galaxy - derived from the Greek, meaning milky
 – Milky Way - Via Lactae
 – Galileo - 1610 - showed it was composed of stars (by looking through his telescope)
 – Still one of most majestic sights in (a dark) sky especially in the southern hemisphere
 – Look for Sagittarius, Scorpius this summer

Parts list

• We have learned about
 – stars, how they form, evolve, die
 – nebulae
 – interstellar gas (mostly hydrogen, helium)
 – interstellar dust
 – molecular clouds and regions of star formation

• Now we will start fitting everything together
 – the above parts are the building blocks of galaxies
 – galaxies, in turn, are the building blocks of the visible universe
Geography of Milky Way

• Our Milky Way:
 – disk
 – halo
 – spiral arms
 – diameter is about 30,000 parsecs
 – thickness is about 300 parsecs
 – our sun is about 8000 parsecs from center
 – has spheroidal nuclear bulge of stars near center

Herschel (1738-1822)

• Made first attempt to determine nature of Milky Way (Fig. 25-2)
 – developed method of star gauging (counting)
 – he believed we were at center of galaxy
 – but he was wrong - dust blocks our view of the true center of the galaxy
 – still, his technique was valid (and is basis of modern approach)

Shapley

• At beginning of 20th century, scale of Milky Way and universe was not known
• Harlow Shapley provided first leap in understanding in 1917
 – used globular clusters

Use of globular clusters

• Recall globular clusters are large, bright, can be seen to great distances
 – many are distributed away from galactic plane
 – thus, they avoid the obscuring dust

Distances to Globular Clusters

• Shapley used cluster variables (RR Lyrae stars) to find distances to nearer clusters
• Then he estimated distances to others from their sizes
• He mapped their distribution in space

Fig. 25-5, RR Lyr Variables in Globular Cluster
Distribution of Globular Clusters

- Shapley realized globular clusters were not centered on the sun
- He made the bold assumption that they were centered on the galaxy
 - thus showed that the sun is distant from center of galaxy
 - was first to establish the size and scale of the Milky Way

Fig. 25-3

Fig. 25-7, The Milky Way

Stellar Populations

- Establish connection between
 - Basic components of Milky Way
 Disk, with spiral arms
 Halo
 Nuclear bulge
- and their underlying properties
 - age, location, type of orbit in Milky Way, and composition

Disk of Milky Way

- Start with observed properties
 - location - bright band of Milky Way indicates that most stars in our neighborhood are in disk
 - velocities
 - most stars in neighborhood of sun travel with it
 - they have low velocities relative to sun
 - they are disk stars

Halo

- Some stars have high relative velocities
 - rotate more slowly about center of galaxy
 - often travel above/below disk
 - they are halo stars
Populations I and II

- Age, location, type of orbit, and chemical composition are often (but not always) correlated
- Walter Baade - Mt. Wilson - W.W. II
 - noted two populations of stars
 Pop. I - blue stars in spiral arms
 Pop. II - red stars in bulge, halo, globular clusters

- What are some of the differences between the two?
 - age, composition, orbit, location
- Baade’s work was important conceptual advance
 - preceded knowledge of stellar and galactic evolution
 - helped shape understanding of both

In reality

- The true situation is more complicated
 - still useful to think of Pop. I as a young, disk population
 - Pop. II as old, halo population
 - but, bulge can be old, rich in heavy elements
 - Small Magellanic Cloud is young but poor in heavy elements
 - Evolution was not uniform everywhere

Summary

- Population I
 - Young stars, clusters, emission nebulae; located in disk of galaxy, usually near spiral arms; have chemical composition like sun (metal rich)
- Population II
 - Old stars, globular clusters, little gas/dust; more evolved, lower abundance of heavy elements (metal poor); located in halo of galaxy; have different orbits in Milky Way
Galactic Disk

- Figs. 25-7, 25-8 show the disk in edge on view and the halo of the galaxy
- Both the observed motions of stars and considerations of gravity show the disk must be rotating about the center of the galaxy

Fig. 25-6, The Infrared Milky Way

Fig. 25-7, Schematic View of Milky Way

Rotation of Galaxy

- Sun is in orbit around center of galaxy
 - Moving at about 220 km/s
 - Distance is about 8000 pc from center
 - Takes about 225 million yrs to complete one orbit
 - Note rotation curve (Fig. 25-16)
 - From Kepler’s law, can estimate mass of galaxy to be about 2×10^{11} solar masses