Ch. 1: Introduction

Pg. 12, Section 1.8, Col.2, last line: ' Z ' should be ' $Z+1$ '.

Ch. 2: Atomic Structure

Pg.27, Section 2.8 Hund's Rules, Para 2, line 2 should read: ".....They may NOT apply to excited.....". The word 'not' is missing.

Pg. 37, Section 2.13 Relativistic fine structure, Eq. (2.135), in the denominator change: ' 1 ' $\rightarrow^{\prime} \ell^{\prime}$.
Pg. 40, end of Section 2.13.2 Dirac equation, last equation for $H_{n l}^{s o}$, delete one of the factors Z^{4}.
Pg. 41, Col. 2, after (2.179): Delete comma from "On the other hand..."

Ch.3: Atomic Processes

Pg.59, left column, $\S 3.5$ R-mateix method, the phrase in the middle of the paragraph should read "......(particularly exchange)...", (not 'exchanges'). The electron-ion exchange interaction is sufficiently weak in the outer region to be neglected.

Pg. 63, last line: delete 'above'.

Ch. 5: Electron-ion collisions

Pg.105, Footnote 4, line 2: Eq. 2.113 should read Eq. 2.115.

Ch. 6: Photoionization

Pg. 122, insert following paragraph at the end of $\S 6.2$ Photoionization cross section.
"In Eq. (6.11) for transition matrix elements $T_{i j}$ we retain the designation of initial and final states as i and j to be consistent with Chapter 4 on raditive transitions where they are both bound states. However, for photoionization the eigenket $\mid j>$ is an oscillating wave with energy ϵ, such as those for a Coulomb potential Eqs. 3.35-3.37. The corresponding radial function is designated as $R_{\epsilon \ell_{j}}(r)$, valid for a central potential discussed later in §6.4."

Pgs. 122-124, Replace subscript n_{j} with ϵ in the equations in $\S 6.3$, 6.4, i.e. $R_{n_{j}, \ell_{j}}(r) \rightarrow R_{\epsilon, \ell_{j}}(r)$.
Pg. 130, Fig. 6.5: The units on the abscissa "Photon energy (Ry)" include the ionization energy of the ground state of O I $\left({ }^{3} P\right)$, which is ~ 1 Ry and corresponds to the ground state of O II $\left({ }^{4} S^{o}\right)$ set at the origin.

Ch. 8: Multi-wavelength emission spectra

Pg. 193, Col.2, line 1: $157 \AA$ should be $157 \mu \mathrm{~m}$.

Ch. 9: Absorption lines and radiative transfer

Pg. 197, Eq. (9.20) should be: $\int_{-\infty}^{+\infty} I(\omega) d \omega=1$.
Pg. 198 - Section 9.2.2 Doppler Broadening, Eq. (9.32): change $v \rightarrow v_{0}$, i.e.

$$
\begin{equation*}
\Delta \nu_{D} \equiv\left(\frac{v_{0}}{c}\right) \nu_{o}, \tag{9.32}
\end{equation*}
$$

where v_{0} is defined in (9.29) as the averaged kinetic velocity of particles wtih mass M at temperature T . Pg. 199, line before Eq. (9.35): Delete ' $\mathrm{y}=\Delta \nu / \Delta \nu_{D}$ '; ' y ' is simply the variable of the integrand in Eq.

Pg. 205, Col. 2, Eq. (9.76) second line: Delete ' X '. It is redundant since the symbol \otimes already denotes additive/multiplicative properties of the different components of line broadening.

Pg. 216, left column, $\S 9.5 .1$, paragraph 1 , line 7 should have "...exp($-\epsilon / \mathrm{kT}$)...".

Ch. 10: Stellar structure and evolution

Pg. 226, right column, paragraph 1, lines 7 and 9 from bottom: ...cm ${ }^{-13} \ldots \rightarrow \ldots c m^{-3} \ldots$
Pg. 230, left column, §10.6.7, para 2, lines 5, 11, right column, para 4, line 3: Chandrasekhar limit should be $1.44 M_{\odot}$.

Pg. 237, left column, line 2: ...(Eq. 1.7)... \rightarrow...(Eq. 1.8)....

Ch. 11: Opacity and Radiative Forces

Pg. 247, left column, Eq (11.34): 'bb' should be 'bf'.

Ch. 12: Gaseous Nebulae and H II Regions

Pg. 257-Col. 1, line 2 from bottom: 'nebula' should be 'nebulae'
Pg. 265 - §12.4.3 Collisional excitation and photoionization rates, paragraph following Eq. (12.24), line 4 should read
$"$. excitation rate $\left(\mathrm{cm}^{-3} \mathrm{~s}^{-1}\right)=\mathrm{q}\left(\mathrm{cm}^{3} \mathrm{~s}^{-1}\right) \times n_{e}\left(\mathrm{~cm}^{-3}\right) \times n_{\text {ion }}\left(\mathrm{cm}^{-3}\right) . " . . .$.
Note that the rate is defined in units of per unit volume per second $\left(\mathrm{cm}^{-3} \mathrm{~s}^{-1}\right)$.

Ch. 13: Active Galactic Nuclei and Qusars

Pg. 282, Table 13.1, line with ' $\mathrm{H} \beta$ ', last column should be $2 s, 2 p-4 s, 4 p, 4 d$.
Pg. 282, Table 13.1, line with '[Fe xiv]', last column: right) missing — should be $3 s^{2} 3 p\left({ }^{2} P_{1 / 2}^{o}-{ }^{2} P_{3 / 2}^{o}\right)$.
Pg. 288, Col. 1, para 1, last line: should read "...more than that from a supernova."
Pg. 289, Fig. 13.5 caption, line 2: "galactice" \rightarrow "galactic"
Pg. 188, Eq. (8.40), denominator inside the integral: $j \nu \rightarrow h \nu$

Ch. 14: Cosmology

Pg. 305, Col. 2, line 6 from bottom: "Compton" \rightarrow "inverse Compton"
Pg. 306, Col. 2, Eq. (14.2) should be:

$$
z \equiv \frac{\lambda(\text { obs })-\lambda(\text { rest })}{\lambda(\text { rest })}
$$

Pg. 308, Col. 1, para 2, line 3 from bottom: "el" $\rightarrow \ell$
Pg. 314, Col. 2, para 2, line 3: $1 / 137036 \rightarrow 1 / 137.036$
Pg. 315, Footnote 7, line 4: should read "....or smilarly $3 \mathrm{p} \rightarrow 3 \mathrm{~s}$ doublets,..."

Pg. 320, Col. 1, para 1, line 4: 'former' should be 'latter'; should read "whereas the latter (curve(c)) do not show..."

Index

Pg. 363: "Sunayer-Zeldovich" \rightarrow "Sunyaev-Zeldovich" and Pg. 105 $\rightarrow 305$.

Appendix B

Pg. 327: Add after 'Rydberg energy',' 1 Rydberg $=3.2898419499 \times 10^{15}$ hz'

