
Notes

These notes are designed to supplement the material in the textbook. They generally complement or
elucidate a specific topic. References to individual chpaters, sections, equations, and figures are therefore
explicitly made. The titles below are notes posted thus far on the following pages. Readers are advised to
check this page periodically.

1. Cover: The Eta Carinae nebula and the central stellar system

Ch. 1. Introduction: Fermion and Boson Wavefunctions

Ch. 2. Atomic Structure: 1. Pauli Exclusion Principle and Spectral States, 2. Hydrogenic radial
wavefunctions and charge densities

Ch. 3. Atomic Processes: Detailed Explanation of Table 4.3

Ch. 12. Gaseous Nebulae and H II Regions: Emission Measure

Ch. 13. Active Galactic Nuclei and Quasars: Kα lines
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Figure 1: Singly ionized iron in Eta Carinae: allowed Fe II and forbidden [Fe II] lines

Cover: The Eta Carinae nebula and the central stellar system

We have referred to the image on the jacket cover several imes in the book. But it is worthwhile to begin
this series of notes by summarizing a few salient features, ith additional details and references to relevant
material in the text. specially so, since Eta Carinae displays the characterstics of several different types of
astronomical objects: stars, nebulae, and (pre)supernovae. It is instructive to see how spectroscopy might
reveal, or be complicated by, the dynamical nature of the source.

The Eta Carinae nebula is formed by one of the most massive and luminous stars known, more than 100
times the mass and over 5 million times more luminous than the Sun. It is almost 8000 light years away
and is a symbiotic star: a binary system with two stars in different stages of evolution (Ch. 10). Since it is
so massive, its inevitable end must be a Type II supernova explosion (Chs. 10 and 14). However, to avoid
that fate the star is ejecting mass rapidly in a pre-supernova (hypernova?) phase. Owing to its immense
brightness, it belongs to the class of stars known as Luminous Blue Variables (LBV). The LBVs are the
most extreme class of stars in mass and luminosity, inhabiting the upper-left corner of the HR diagram
(Fig. 10.2).

The nebula is also called the Homonculus nebula, and is unlike most nebulae in the variety of prevailing
physical conditions and material constituents. It is ionized and neutral gas with dust. The dumb-bell shape
is due to rapid rotation of the binary system at the core, surrounded by ejecta that dominates in the
equatorial regions.

Eta Carinae is an ideal laboratory for multi-wavelength analysis. Spectroscopic observations range from
typical nebular lines, forbidden and allowed, and up to X-ray spectra observed by the Chadra X-ray
Observatory. Singly ionized iron, Fe II, is particularly interesting (Fig. 1). It has been shown that some
transitions in Fe II could be pumped by the UV radiation background (Ch. 13) so as to emit laser-like
radiation. Even more energetic are the X-rays produced by the star, with vastly anomalous intensities.
Clearly, there is much to be learned about the dynamic coupling between the central star(s) and the huge
volume of gas being ejected (Davidson and Humphreys 1997, Ref. [278]).
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Ch. 1. Introduction

Fermion and Boson Wavefunctions:

Footnote 4. The ‘proof’ from Condon and Shortley [3] of the existence of two kinds of particles, fermions
and bosons, rests on the fact that probabilities of real observable quantities are obtained from the square of
the wavefunctions, and therefore there are two possible signs of the wavefunctions. Without loss of
generality we consider a two-particle system with associated coordinates λ1, λ2. Indistinguishablity then
implies

|ψ(λ1, λ2)|2 = |ψ(λ2, λ1)|2. (1)

The interchange does not affect the system except possibly through a phase factor, i.e.

ψ(λ2, λ1) = exp(iα)ψ(λ1, λ2). (2)

Experimentally however the two states ψ(λ1, λ2) and ψ(λ2, λ1) can not be distinguished. Now if we define
an exchange operator P12 such that

P12ψ(λ1, λ2) = ψ(λ2, λ1). (3)

If P12 operates on Eq. (0.2) then

P12ψ(λ2, λ1) = exp(iα)P12 = ψ(λ1, λ2), (4)

ψ(λ1, λ2) = exp(2iα)ψ(λ1, λ2). (5)

It follows that

exp(2iα) = 1 (6)

or

exp(iα) = ±1, (7)

and

ψ(λ2, λ1) = ±ψ(λ1, λ2). (8)

Thus the wavefunction ψ is constrained to two kinds of functions with signs: ‘+’ −→ symmetric, and ‘ - ’
−→ anti-symmetric with respect to interchange of the two coordinates. The argument above may be
generalized to any N-particle ensemble described by the wavefunction

Ψ(λ1, λ2, . . . , λN ).
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The principle of indistinguishablity then divides all kinds of particles into two classes depending on
whether the wavefunction is symmetric or antisymmetric. Those with anti-symmetric wavefunctions are
Fermions with non-integral spin and obey Fermi-Dirac statistics (§1.6.2). The Fermion wavefunction for a
two-particle system is written as:

ΨA(λ1, λ2) =
1√
2
[ψ1(λ1)ψ2(λ2)− ψ1(λ2)ψ2(λ1)]. (9)

Note that the particles are labelled 1 and 2, and that interchange of coordinates changes the sign, i.e.
Ψ(λ2, λ1) = −Ψ(λ1, λ2). As discussed in Ch. 1, the anti-symmetrization property of an N-fermion
system, such as an atom, manifests itself in atomic structure with quantized energy levels.

The second class of partcles with symmetric wavefunctions

ΨS(λ1, λ2) =
1√
2
[ψ1(λ1)ψ2(λ2) + ψ1(λ2)ψ2(λ1)] (10)

are Bosons, have integral spin, and obey Bose-Einstein statistics (§1.6.3). The two-particle and N-particle
wavefunctions are discussed in Ch. 2 on Atomic Structure.
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Table 2. Fifteen possible distributions for the np2 electrons.

MS / ML= 2 1 0 -1 -2

0 1+1− 1+0− 1+-1− -1+0− -1+-1−

1 1+0+ 1+-1+ -1+0+

0 1−0+ 1−-1+ -1−0+

-1 1−0− 1−-1− -1−0−

0 0+0−

Ch. 2. Atomic Structure

1. Pauli Exclusion Principle and Spectral States:

In §2.5 we discuss the formation of spectral states — LS terms — from a given configuration of electrons.
As described, when the electrons in a configuration are non-equivalent, that is when they have different
principal quantum numbers (viz. 2p3p), the Pauli exclusion principle does not exclude any combination of
quantum numbers. In general the two-electron configuration npn′p gives rise to six LS terms or states:
3D,1D,3 P,1 P,3 S,1 S. But when the electrons in a configuration are equivalent, with the same n, then one
needs to work out in some detail as to how the exclusion principle applies. That is exemplified in Table 2.1
for three p-electrons in configuration np3.

A simpler example is that of the configuration np2 discussed in this note. The distribution of the two 2p
electrons can be expressed as (1+0+), (1+1−) etc. Since electrons are indistinguishable they may be
permuted without affecting the distribution; thus (1+0+), (0+1+) are the same. These electrons are
grouped according to their respective values of ML and MS . Since

ML =
∑

i

ml; MS =
∑

i

ms (11)

a distribution of (1+0+) is associated with values ML = 1 and MS = 1. For the np2 configuration, Table 2
in this note shows all 15 possible distributions of (ml, ms) following the exclusion principle, ordered
according to ML and MS . The highest value of ML= ±2 allows only MS = 0 since the spin quantum
numbers must have opposite sign and cancel; hence they correspond to a single LS term 1D. But ML

components for a given term range from +ML to -ML. For 1D the remaining components are ML = 0,±1,
and therefore 5 intries in the table correspond to it, and can be excluded. The next highest value of ML=
±1 associates with MS = 0,±1. These entries belong to the 3P state, which takes out a total of nine entries
(ML = 0,±1 and MS = 0,±1). The single remaining entry with ML=0 and MS = 0 must then correspond to
the LS term 1S. Thus six possible states resulting from two non-equivalent p-electrons are reduced to three
LS states 3P,1D,1 S in the case of two equivalent electrons; the other three terms are excluded by the Pauli
exclusion principle. We have listed the terms in order in which they are observed, with the term of highest
spin-multiplicity, 3P , lying the lowest in energy, i.e. the ground state of all atoms with two equivalent
p-electrons (see Hund’s rules).

2. Hydrogenic radial functions and charge densities

In §2.1.4 the mathematical expressions for the radial part of the wavefunctions of hydrogen are given. For
the first few nl orbitals the spatial distributions are graphically illustrated in Fig. 2. On the top we have the
radial wavefunctions and on the bottom the probability distribution of each electron in respective orbitals.
In general the nodes in the radial wavefunctions are of crucial importance in the calculation of transition
amplitudes from one initial state to another, such as oscillator strengths (Ch. 4) and photoionization cross
sections (Ch. 6). The transition matrix elements contain an interaction operator and the overlap of the
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Figure 2: Top: Radial functions Rnl(r) for 1s, 2s, 2p, 3s, 3p, 3d orbitals. Bottom: Radial charge densities
[Pnl(r)]2], with radial distance r in bohr radii.

initial and final wavefunctions, discussed in Ch. 4. The nodes determine the extent of overlap, and may
lead to destructive interference due to cancellation and small transition amplitudes, or constructive
interference and large transition amplitudes. An exmaple of the former is the minimum in photoionization
cross sections of alkali atoms shown in Fig. 6.2.
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Ch. 3. Atomic Processes

Table 4.3 - Detailed explanation

It is necessary to specify several variables for full spectroscopic information involving many radiative
transitions. Table 4.3 is a small sample from a large-scale calculation for radiative transition probabilities
for boron-like ion Fe XXII. The iniital and final electronic configurations Ci − Ck are listed in Column 1.
The ground configuration is 2s22p and the next excited configuration is 2s2p2 (the superscript ’1’ in Col. 1
is usually omitted if there is only one electron in the orbital). The ground LS term and fine structure
J-components are 2P o

1/2,3/2 (the second column should be read with ’2’, ’4’ etc. as superscripts for (2S+1),
the spin-multiplicity). The third column labeled ’gi : I − gj : K’ denotes the statistical weight (e.g. gi = 2
for J = 1/2), and an index I or K which refers to the order in which the bound levels occur in the computed
energy spectrum. For example, in row 6, 2s2p2 − 2p3, and column 3, we have gi = 2, I = 1 and gk = 2, K
= 2. That means that the initial level 4P (column 2) belonging to 2s2p2 is the lowest energy level with SLJ
symmetry J = 1/2, i.e. 4P1/2. Likewise, the final level is 2p3 2P o

1/2, but with K =2, i.e. the second level
with J = (1/2)o (odd parity ’o’ is denoted with a superscript, but even parity superscript ’e’ is usually
omitted). Note that the lowest J = (1/2)o levels is of course the ground level 2s22p 2P o

1/2, with
corresponding index I = 1 (rows 1-5).
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Ch. 12. Gaseous Nebulae and H II Regions

Emission Measure

In spatially diffuse nebulae, generally H II regions, the total intensity emitted in a line depends on the
product of the number density of electrons ne and the number density of ions ni, integrated over the
volume of the emitting region. Since the abundnance of ions is related to electron density, it is useful to
define a quantity called the Emission Measure (EM)

EM ≡
∫

V
n2

edV. (12)

In H II regions the proton density tracks the hydrogen density N(H) and is close to ne. The element
abundnace N(X) and ion density N(Xz+) are relative to N(H), and hence EM ∼ n2

e. The EM is often used
to obtain the flux in an optically thin line. We ended Ch. 8 on multi-wavelength emission line analysis by
writing down Eq. (8.45) for a single [C II] line at 158 µm due to the forbidden transition
2s22p (2P o

3/2 −→
2 P o

1/2). More generally, for a transition j → i from an excited level j in an ion Xz+ to a
lower level i, we can write the number density as

Nj(Xz+) =
Nj(Xz+)
N(Xz+)

× N(Xz+)
N(X)

× N(X)
N(H)

× N(H)
ne

× ne. (13)

The flux in the line is then

Fij =
(

1
4πr2

) ∫
Nj(Xz+)AjidV, (14)

where r is the distance of the source from the Earth, Aji the radiative decay rate, and the integrand is the
emissivity per unit volume. Also recall that the flux is different from intensity in that it also considers
geometrical dilution with distance.
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Ch. 13. Active Galactic Nuclei and Quasars

Kα lines

The physics of Kα lines is rather more involved than appears at first sight. Although they correspond to the
simplest possible transition array, 1s-2p, the corresponding spectroscopic designations require some study.
Whereas Kα lines are ubiquitous in X-ray spectroscopy, we begin with their discussion in the context of
AGN spectra.

Table 13.3 lists the transitions for Fe Kα lines. Starting at the bottom, the two Kα1, Kα2 transitions for
H-like Fe XXVI are straightforward. However, note that for He-like Fe XXV there are also only two dipole
allowed transitions, 1s2 (1S0) → 1s2p (3P o

1 ,
1 P o

1 ) (recall the ∆J = ±1 selection rule from Table 4.4), in
spite of the fact that the 1s2p configuration gives rise to 4 levels; transitions from all other levels to the
ground state are forbidden (Fig. 4.3).

But it is the other ions, Li-like Fe XXIV to F-like Fe VIII, that are more complex. They correspond to
resonances, where the final state is an autoionizing state, unlike Fe XXVI and Fe XXV where the final level
is a bound state. Let us consider the six Fe XXIV Kα transitions corresponding to the transition array
1s22s→ 1s2s2p. These transitions are explicitly listed in Table 7.1, where they give rise to the
dielectronic satellite lines q, r, s, t, u, v, discussed in in §7.6. Note that there are only two final Jπ
symmetries for the 1s2p2s configuration with J-values 1/2 and 3/2. But the six final levels are
non-degenerate in energy because the parent levels are different. The 4 levels of the parent configuration
1s2p (1P o

1 ,
3 P o

0,1,2) yield 6 distinct levels when coupled with another 2s-electron in the final 1s2p2s (or the
equivalent 1s2s2p) configuration. Hence there are 6 Kα transitions for dipole allowed transitions in
Fe XXIV, as listed in Table 13.3. Note that the J = 5/2 - 1/2 transitions 1s2p2s (4P o

5/2) → 1s22s(2S1/2) is
forbidden. The six transitions refer to the other 1s2s2p levels with J = 1/2 and 3/2.

Proceeding in this way for the other ions with an L-shell vacancy, we find that there are no less than 112
Kα transitions, not only for iron but for all elements and ions with more than 10 electrons, all the way up to
uranium. This fact is also of great importance in other fields, as diverse as biomedicine and
nanotechnology, where X-ray interaction with high-Z atoms entails Kα transitions. This is one of the
reasons we discuss the atomic structure of gold (Z = 79) in §5.9 on the Auger effect in Ch. 5. The
ionization structure of gold atoms (see Table 5.3) may potentially lead to their use as nanoparticles in
cancer research (Ref. Pradhan et al. , J. Phys. Chem. A 113, 12356, 2009 and Montenegro et al. , J. Phys.
Chem. A 113, 12364, 2009).

N.B. There is a typo in listing the parent level of six lines q, .., v in Table 7.1. For example, 1s2p 1(P o)
should be 1s2p (1P o), i.e. the superscript for spin multiplicity should be inside the parenthesis (..).
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