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Abstract. A general formulation is employed to study and quantitatively ascertain

the effect of plasma broadening of intrinsic autoionizing (AI) resonances in

photoionization cross sections. In particular, R-matrix data for iron ions described

in the previous paper in the RMOP series (RMOP-II, hereafter RMOP2) are used to

demonstrate underlying physical mechanisms due to electron collisions, ion microfields

(Stark), thermal Doppler effects, core excitations, and free-free transitions. Breit-

Pauli R-matrix (BPRM) cross section for the large number of bound levels of Fe

ions are considered, 454 levels of Fe XVII, 1,184 levels of Fe XVIII and 508 levels of

Fe XIX. Following a description of theoretical and computational methods, a sample of

results is presented to show significant broadening and shifting of AI resonances due to

Extrinsic plasma broadening as a function of temperature and density. Redistribution

of AI resonance strengths broadly preserves their integrated strengths as well as the

naturally intrinsic asymmetric shapes of resonance complexes which are broadened,

smeared and flattened, eventually dissolving into the bound-free continua.

1. Introduction

Resonances arise in most atomic interactions. They are especially important in

processes such as (e + ion) scattering and photoionization. At the same time,

plasma perturbations markedly affect atomic spectra susceptible to varying temperature,

density, and other factors. Whereas a vast body of literature exists on line broadening

in laboratory and astrophysics plasma environments [1, 2, 3, 4, 12, 10], there is relatively

little work on systematic theoretical treatment of autoionizing resonances that are more

readily susceptible to plasma interactions [6, 38], though results have been obtained

for K-shell spectra (viz. [23]) observed astrophysically [24]. Stark broadening and

other broadening mechanisms for plasmas have been reviewed from the perspective of

individual lines and spectrum [21, 8], and in non-local-thermodynamic-equilibrium [11].

However, opacity calculations require a statistical treatment such as implemented in the

Opacity Project (hereafter OP [29, 30, 12, 31]).

Resonances are ubiquitous in cross sections, measured and calculated in a variety of

ways with ever-increasing precision and resolution. State-of-the-art experimental devices
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such as synchrotron based ion storage rings and narrowband photon sources can now

resolve resonances in many atomic systems. Coupled-channel calculations, mainly using

the R-Matrix method, have been carried out for nearly all elements and ions up to at

least iron under OP [12, 13] and, more extensively, the Iron Project (hereafter IP [14]).

A prime feature of these calculations is the presence of resonances all throughout the

energy ranges of interest. However, resonances are of different types, and exhibit varying

shapes, sizes and heights. Their overall resonance strengths may also be computed in

analogy with line oscillator strengths for modeling of radiative processes [15].

But the question remains: how are resonance profiles affected by plasma

perturbations? To be more precise, how would the intrinsic autoionization shape be

modified by extrinsic particle interactions in a given environment? The complexity

of the problem becomes evident when one considers that autoionization profiles are

inherently asymmetric, described by the Fano formula for isolated resonances in terms

of an asymmetry parameter and energy [17]. But, any singular expression is insufficient

to treat infinite overlapping series of AI resonances which, in fact, range from extremely

narrow Rydberg resonances approaching series limits, to huge photoexcitation-of-core

resonances that span hundreds of eV in energy and considerably alter the background

continuum below core excitation threshold [15, 34]. Previous works and conventional

approach to plasma modeling of resonances, and collisional-radiative models, generally

follow the ’isolated resonance approximation’, which treats autoionizing resonances as

discrete bound levels and entail the calculation of the oscillator strength at a single

energy, followed by a perturbative plasma broadening treatment based on independently

calculated autoionization and radiative rates (viz. the Cowan code [41]). Although a

physical explanation is lacking, arbitrarily increasing line broadening factors of all lines

by up to a factor up to ∼100 in atomic structure calculations is found to recover missing

solar opacity quantitatively [20].

Ideally, what is needed is a theoretical method that can be translated into a

computational algorithm taking into account the variety of resonance shapes and their

positions relative to the excited ion core level. Electron-ion interactions in a plasma lead

to dominant forms of broadening: Doppler, Stark and electron impact. The Doppler

width is approximated by Gaussian that is more narrowly peaked around the line center,

and falls off faster, than the other Lorentzian profiles due to Stark and electron impact.

The Stark effect due to ions is particularly important for hydrogenic systems when it

is linear due to l -degeneracy; a static approximation is sometimes employed since ions

move much slower than electrons [1, 16]. In contrast, the electron impact broadening

profile is a Lorentzian with much wider effect on the line wings, and as the electron

density and the temperature of the plasma increases, electron collisions become the

dominant source of broadening. That would especially be the case for weakly bound

electrons in doubly-excited autoionizing states, which would be perturbed more than

bound electrons considered in line broadening theories.

In this paper we present a computational methodology that aims to incorporate

electron impact broadening in a generally applicable manner suitable for laboratory
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and astrophysical plasma sources. Without loss of generality, and based on large-scale

coupled channel R-matrix calculations ([5, 34]), we consider the photoionization of a

complex atomic system, neon-like to fluorine-like iron, Fe xvii −→ Fe xviii , in this

study as exemplar of applicability to atomic processes in plasmas.

2. Theoretical formulation

We first sketch out the theoretical outline for channel coupling that gives rise to

resonances and then the resonance broadening modeled after line broadening due to

electron impact.

2.1. Resonances and channel coupling

Autoionizing resonances manifest themselves via inter-channel coupling in the coupled

channel (CC) framework. In the CC approximation the atomic system is represented

as the ’target’ or the ’core’ ion of N-electrons interacting with the (N+1)th electron.

The (N+1)th electron may be bound in the electron-ion system, or in the electron-ion

continuum depending on its energy to be negative or positive. The total wavefunction,

ΨE, of the (N+1)-electron system in a symmetry Jπ is an expansion over the

eigenfunctions of the target ion, χi in specific state SiLi(Ji)πi, coupled with the (N+1)th

electron function, θi:

ΨE(e + ion) = A
∑

i

χi(ion)θi +
∑

j

cjΦj , (1)

where the
∑

i is over the ground and excited states of the target or the core

ion. The (N+1)th electron with energy k2
i corresponds to a channel labeled

SiLi(Ji)πik
2
i ℓi(SL(J)π). The Φjs are bound channel functions of the (N+1)-electron

system that account for short range correlation not considered in the first term and the

orthogonality between the continuum and the bound electron orbitals of the target.

Depending upon the total energy E of the (e + ion) system, and the channel energy

k2
i > 0 or k2

i < 0, a channel may be open or closed relative to an ion level Ei. Inter-

channel interactions between open and closed channel wavefunctions result in resonances

below the excitation threshold at Ei. If E < 0 for all channels then the (e + ion) system

is in a pure bound state; otherwise we have a free state with an electron in the continuum

and some channels open and some closed. Therefore, the CC wavefunction expansion

Eq. (1) may be used to obtain either (e + ion) collision strengths or bound-bound and

bound-free radiative parameters such as oscillator strengths and photoionization cross

sections.

With reference to Fig. 1, we have the position of a given resonance ωr corresponding

to an excitation threshold Ei in terms of its effective quantum number νi as

ωr = ωg + Ei −
(z + 1)2

ν2
i

. (2)
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That yields

νi(ωr) =

[

(z + 1)2

ωg + Ei − ωr]

]1/2

. (3)

Typically, there are many excited levels Ei included in coupled channel calculations

and may number in the hundreds. Infinite series of resonances Eiνnℓ arise and converge

on to each level Ei. There can be considerable overlap between weakly bound narrow

high-ν Rydberg resonances converging on to and immediately below a given threshold,

and deeply bound strong and wide resonances with low ν-values belonging to higher

levels. A computational algorithm must successively convolve groups of resonances

identified with respect to all ion core levels.

Let σ̃(ω′) be the computed cross section and σ(ω) the convolved cross section such

that

σ(ω) =
∫

σ̃(ω′)φ(ω, ω′)dω′, (4)

where the profile factor is

φ(ω, ω′) =
γ(ω)/π

(ω − ω′)2 + γ(ω)2
. (5)

2.2. Resonance broadening mechanisms

A general theoretical approximation for scattering of a free electron with an electron

in doubly-excited quasi-bound states is necessarily computationally intensive since it

needs to be incorporated within a coupled channel framework, and superimposed on ab

initio calculations of cross sections. Primary broadening mechanisms such as electron

collisions, Stark broadening due to ion microfields, and Doppler broadening due to

thermal motions need to considered a priori. We develop a theoretical treatment

that accounts for these physical effects independently within a computational viable

procedure.

The parameters in the formulation are derived in analogy with line broadening but

modified significantly to apply to AI resonances. In the present formulation we associate

the energy to the effective quantum number relative to each threshold ω′ → νi to write

the total width as:

γi(ω, ν, T,Ne) = γc(i, ν, νc) + γs(νi, ν
∗
s ) (6)

+ γd(A, ω) + γf(f − f ; νi, ν
′
i),

pertaining to collisional γc, Stark γs, Doppler γd, and free-free transition γf widths

respectively, with additional parameters as defined below. Without loss of generality

we assume a Lorentizan profile factor that describes collisional-ion broadening which

dominates in HED plasmas. We assume this approximation to be valid since collisional

profile wings extend much wider as x−2, compared to the shorter range exp(−x2) for
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Figure 1. Left: Schematic diagram of a coupled channel calculation for

photoionization of bound states (solid lines) of an ion Xz+ → Xz+1 — AI resonances

(dashed lines) correspond to Rydberg series converging on to excited levels of

the residual ion with E = −(z + 1)2/ν2; Right: ion thresholds of convergence

Ei, Ei+1, Ei+2, Ei+3.... and a Lorentzian profile with lower and upper energy limits

(Eℓ, Eu) spanning narrow high-n resonances below Ei and broader ones above.

thermal Doppler, and x−5/2 for Stark broadening (viz. [29]). In principle the limits

of integration in Eqs. (4-6) are ∓∞, which are replaced in practical calculations by

∓γi/
√
δ, where δ is chosen to ensure full Lorentzian profile energy range and for accurate

normalization. Convolution by evaluation of Eqs. (3-6) is carried out for each energy ω

throughout the tabulated mesh of energies used to delineate all AI resonance structures,

for each cross section, and each core ion threshold.

2.2.1. Electron impact broadening At sufficiently high densities collisional broadening

is dominant and mathematically represented by a Lorentizan function (Eq. 5) that

correctly approximates the slowly varying behaviour in the line wings. We develop a

numerical procedure for convolving cross sections including resonances over a Lorentzian

damping width. Given energy dependent cross sections tabulated at sufficiently fine

mesh, we first switch the energy variable to the effective quantum number ν = z/
√

(E),

where E = h̄ω. In photoionization, we take ω to be the photon frequency; henceforth

we shall also employ ω as the energy variable assuming atomic units h̄ = 1. The ν is

more appropriate since for a resonance it is defined relative to the excited core ion level,

as illustrated in Fig. 1.

We consider photoionization of an ion of element X with charge z in an initial state

by photon of energy h̄ω into the ground or excited level of a residual ion of charge (z+1)

h̄ω +Xz+ −→ e+Xz+1. (7)
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It is assumed that unperturbed photoionization cross sections σ̃PI(h̄ω) are

theoretically computed with sufficient resolution in energy to delineate autoionization

profiles. According to the impact approximation [12] we may then represent the damping

profile with a Lorentzian expression

φω(E) =
γ/π

[(E + x−Eo)2 + (γ2]
. (8)

In analogy with electron impact damping of bound-bound line transitions, we define

Eo as the resonance center, γ as the width and x the energy shift (later we shall assume

that |E − Eo| >> x). We may further express

Neγ = γ + ix, (9)

where Ne is the electron density and γ is the damping constant which may be

written in terms of the electron distribution f(ǫ, T ) at a given temperature T as

γ(T ) =
∫ ∞

0
vQD(ǫ)f(ǫ, T )dǫ. (10)

Given QD as the electron impact cross section and a Maxwellian distribution we

may obtain the thermally averaged damping rate coefficient

ΥD(T ) =
∫ ∞

0
ΩD(ǫ)exp(−ǫ/kT )d(ǫ/kT ), (11)

where Ω(ǫ) is the collision strength. Then

γ(T ) = 2
h̄2

m

(

π

mkT

)1/2

ΥD (12)

.

In Eqs. (8-12) the ΥD is a complex quantity. However, for small δω = (ω − ωo)

in the one-perturber approximation ([12] and references therein), we have γ = Neγ and

φω = (γ/2π)/(ω − ωo)
2.

Now we establish a correspondence between γ(ω) and the electron impact rate

coefficient Υ according to the relation

γ(ω) = 2
(

π

kT

)1/2

a3oNeΥ(ν), (13)

where Υ(ν) is computed at the resonance energy corresponding to ν = z/
√

(E),

with E in Rydbergs and atomic units ao = h̄ = 1. We now approximate

Υ(ν) ≈ G(z) < r2ν >= G(z)
5ν4

2(z + 1)2
. (14)

G(z) is an effective Gaunt factor for electron impact excitation of positive ions,

empirically determined for line broadening work in OP [12] to be

G(z) = 6.3− 5.9

(z + 1)
. (15)
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Table 1. Gaunt factor for electron impact collisional broadening: dependence on

temperature T(K), ion charge z and effective quantum number ν of excited levels

(Eq. 16) T = 2× 106K, z = 16.

ν G(T,z,ν)

3.0 1.75

4.0 2.52

5.0 3.12

6.0 3.60

7.0 4.02

8.0 4.37

9.0 4.69

10.0 4.97

The behavior of G(z) with ion charge z and temperature T has been further studied

for electron impact broadening, and we adopt an improved expression ([29, 18, 38])

G(T, z, νi) =
√
3/π[1/2 + ln(νikT/z)]. (16)

For example, in Table 1 we compare the two expressions and find that they differ

significantly for ν < 10, but G(T, z, ν → G(z) as ν → 10, and exceeds marginally for

ν > 10 when BPRM resonance structure calculations are truncated.

Here ωg is the ionization energy of the ground state of the photoionizing ion Xz+.

Then from Eq. (18) we obtain the temperature-density dependent width at each energy

γi(ωr;Ne, T ) = 5
(

π

kT

)1/2

a3oNeG(z)
ν4
i (ωr)

(z + 1)2
. (17)

Evaluating the constants with T(K) and Ne cm(−3), we obtain

γi(ωr;Ne, T ) = 5.2184× 10−22
(

Ne

T 1/2

)

(

G(z)

(z + 1)2

)

ν4
i (ωr). (18)

With the transformation of the unbroadened cross section using Eq. (18),

σ̃(ω) −→ σ(ω;T,Ne), (19)

we obtain the temperature-density-energy dependent functional representing the

photoionization cross section broadened by electron impact. This greatly expands the

scope of the calculations since Eq. (19) implies that the convolution must be carried out

at each energy in the tabulated energy mesh (transposed as E(ω) → ν) of unbroadened

function σ̃(ω), with another tabulation for the Lorentzian profile Eq. (8), and for

each temperature and electron density. In the next section we describe the procedure

developed for such numerical calculations.
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Given N core ion levels corresponding to resonance structures,

σ(ω) =
N
∑

i

[

∫

σ̃(ω′)

[

γi(ω)/π

x2 + γ
(
iω)

]

dω′

]

. (20)

With x ≡ ω′ − ω, the summation is over all excited thresholds Ei included in the

N -level CC or RM wavefunction expansion, and corresponding to total damping width

γi due to all broadening processes. The profile φ(ω′, ω) is centered at each continuum

energy ω, convolved over the variable ω′ and relative to each excited core ion threshold

i .

We employ the following expressions for computations:

γc(i, ν) = 5
(

π

kT

)1/2

a3oNeG(T, z, νi)(ν
4
i /z

2), (21)

where T, Ne , z, and A are the temperature, electron density, ion charge and

atomic weight respectively, and νi is the effective quantum number relative to each core

ion threshold i : ω ≡ E = Ei − ν2
i /z

2 is a continuous variable. A factor (nx/ng)
4

is introduced for γc to allow for doubly excited AI levels with excited core levels nx

relative to the ground configuration ng (e.g. for Fe xviii nx = 3, 4 relative to the

ground configuration ng = 2).

2.2.2. Stark broadening A treatment of the Stark effect for complex systems entails

two approaches, one where both electron and ion perturbations are combined (viz.

[19, 38]), or separately (viz. [12, 29]) employed herein. Excited Rydberg levels are nearly

hydrogenic and ion perturbations are the main broadening effect, though collisional

broadening competes significantly increasing with density as well as ν4
i (Eq. 14). For

bound levels in a plasma microfield of strength F, the Stark sub-levels of a level n span

a range given by the highest component (n, kmax) with energy (viz. [12, 29])

E(n, kmax) = − z2

n2
+

3

z
n(n− 1)F (22)

and the lowest component of sub-level ((n+ 1), kmin) with energy

E(n+ 1, kmin) = − z2

(n + 1)2
− 3

z
n(n + 1)F. (23)

In deriving occupation probabilities in the Mihalas-Hummer-Däppen equation-of-

state (MHD-EOS) [31] used in OP work [12], a critical field strength Fc is calculated

when Stark broadening renders these two components equal, and Stark ionization

dissolves level n into the continuum. The total Stark width of a given n -complex

is ≈ (3F/z)n2. Assuming the dominant ion perturbers to be protons and density equal

to electrons, Ne =Np, and replacing n by the effective quantum number νi relative

to each excited threshold of an ion with charge z, we take F = [(4/3)πa3oNe)]
2/3, as

employed in MHD-EOS for Stark broadening in Eq. (6)

γs(νi, ν
∗
s ) = [(4/3)πa3oNe]

2/3ν2
i . (24)
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In addition, in employing Eq. (6) a Stark ionization parameter ν∗
s = 1.2 ×

103N−2/15
e z3/5 is introduced such that AI resonances may be considered fully dissolved

into the continuum for νi > ν∗
s , analogous to but distinct from the Inglis-Teller series

limit [32], or the Stark ionization of bound (not AI) energy levels as considered in the

MHD-EOS [31].

All calculations are carried out with and without ν∗
s as shown later in Table 2,

and illustrated in the Figs. 3, 4, 5 presented herein (red and blue curves respectively).

Results are practically indistinguishable with and without Stark ionization cut-off, and

effect on redistribution of differential oscillator strength or opacities. However, ν∗
s is a

parameter that should prove to be useful in further extension of plasma effects including

Debye screening, as discussed later.

2.2.3. Thermal Doppler broadening The Doppler width is:

γd(A, T, ω) = 4.2858× 10−7
√

(T/A), (25)

where ω is not the usual line center but taken to be each AI resonance energy.

2.2.4. Free-free transitions broadening The last term γf in Eq. (6) accounts for free-

free transitions among autoionizing levels with νi, ν
′
i such that

Xi + e(Ei, νi) −→ X ′
i + e′(E ′

i, ν
′
i). (26)

The large number of free-free transition probabilities for +ve energy AI levels

Ei, E
′
i > 0 may be computed using RM or atomic structure codes (viz. [33, 37]).

Free-free transitions are not considered in the results in Figs. 2 and 3 but included in

the results discussed in Table 1, although it is found to be practically negligible.

3. Computational algorithm

In order to elicit and illustrate important physical features of the formulation, we

sketch a few salient features of the mathematical algorithm developed to implement the

procedure (numerical details and the computer program will be presented elsewhere).

We have re-defined the Lorentzian profile Eq. (5) as in Eq. (8), using a damping

rate coefficient Eqs. (10-13) and Maxwellian electron distribution, dependent on electron

density and temperature as in Eqs. (17-18). Numerical evaluation scheme based on

this formulation requires several practical considerations to be incorporated in the

computational algorithm and computer program.

3.1. Profile limits

The limits of integration in Eq. (4) are determined by the extent of the Lorentzian factor

in Eq. (8). It needs to be ensured that the profile extends into the resonance wings

and/or approaches the background continuum without loss of accuracy. Measuring the
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energy spread relative to the resonance center ω = ωr, we note that according to Eq. (13)

ω = ωg + Ei, with respect to the ionization potential and the target excitation energy

Ei above the ground state of the residual ion. Then the profile maximum is (Eq. 8)

φmax(ω = ωr) =
1

πγ(ω)
. (27)

We introduce an accuracy parameter δ and choose the profile limits ±ωo such that

φ(ω = ωo) = δφmax =
δ

πγ(ω)
. (28)

Then,

δ

πγ(ω)
=

γ(ω)/π

(ω − ωo)2 + γ2(ω)
. (29)

Or,

(ω − ωo)
2 = γ2(ω)

(

1

δ
− 1

)

. (30)

For small δ,

(ω − ωo)
2 ≈ γ2(ω)

δ
. (31)

Therefore, |ω − ω| limits the convolution profile such that

ω − ωo = ± γ

δ1/2
. (32)

Whereas Eq.(4) using Eq. (5) has an analytical solution in terms of tan−1(x/γ)/γ

evaluated at limiting values of x → ∓γ/
√
δ, its evaluation for practical applications

entails piece-wise integration across multiple energy ranges spanning many excited

thresholds and different boundary conditions. For example, the total width γ is very

large at high densities and the Lorentzian profile may be incomplete above the ionization

threshold and therefore not properly normalized. We obtain the necessary redward left-

wing correction for partial renormalization as

lim
a→−γ/2

√
δ

∫ +γ/
√
δ

a
φ(ω, ω′)dω′ =





1

4
−

tan−1( a
γ/2

√
δ
)

π



 , (33)

where a is the lower energy range up to the ionization threshold, reaching the

maximum value −γ/2
√
δ. The parameter δ is generally chosen to be 10−2 so that the

total profile ranges over 10γ.
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Figure 2. Left: Tabulated cross sections at energies (hbar = 1) ω1, .....ωN spanning

a resonance centered at ωo, and Lorentzian profile with lower and upper limits

ωℓ = ωo−γ/sqrt(δ), ωu = ωo+γ/sqrt(δ). Point-by-point normalized profile convolution

ensures a complete quadrature. Right: Incomplete profile centered at ω = Ek

with lower energy redward cut-off at ionization threshold on the left and partial

renormalization as in Eq. 31.

3.2. Convolution quadrature

The complexity of the problem arises from the following main factors: (i) wide variety

of narrow and broad resonances, (ii) overlapping infinite Rydberg series belonging to a

large number of excitation thresholds of the target ion, and (iii) Lorentzian profiles that

vary at each energy on a mesh that is independent of the tabulated energy mesh for the

original cross section. The schematics are described in Fig. 2.

Numerically, we need to evaluate the integrand in Eq. (20) using Eq. (9), i.e.

σ(ω) =
∑

i

[

∫

σ̃(ω′)

[

γi(ω)/π

(ω − ω′)2 + γ
(
iω)

]

dω′

]

. (34)

Here the summation is over all excitation thresholds Ei included in the CC

wavefunction expansion (Eq. 1) and corresponding damping widths γi. The profile

φ(ω′, ω) is centered at ω; we define x ≡ ω′ − ω (note change of order of variables which

is immaterial), then

σ(ω) =
∑

i

[

γi
π

∫ +
γi
√

δ

−
γi
√

δ

σ̃(x)

x2 + γ2
i

dx.

]

(35)

This equation requires discrete summation over all target ion thresholds, and

piecewise integration over normalized profile at each energy. First, we consider the

endpoints with lower energy limit xℓ ≡ −(ωo − ω) = −γi/
√
δ, and upper limit

xu ≡ +(ωo − ω) = +γi/
√
δ. Let the tabulated energy mesh be ω1, ω2, .....ωN . Then
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x1 = ω1 − ω, x2 = ω2 − ω, ........,xN = ωN − ω. Assuming the lower limit xℓ to lie

between x1 < xℓ < x2; and the upper limit xu between xN−1 < xu < xN , we have

σ(ω) =
∑

i

[

γi
π

∫ x2

xℓ

σ̃(x)

x2 + γ2
i

dx+
∫ x4

x3

(...)dx+ ...

]

(36)

+ .... +

[

∫ xN

xN−1

(.....)dx

]

. (37)

3.3. Interpolation and evaluation

Each of the raw originally tabulated unbroadened cross sections σ̃(ω′) needs to be

interpolated on to the resonance profile mesh. A linear interpolation is sufficient

for precision since the CC calculations are usually carried out at a fine mesh to

resolve most autoionizing resonances up to νi ≤= νmax = 10 below each target

threshold Ei. Suppose the transposed energy mesh ω on to the resonance profile is

represented by linearly interpolated segments aj + bjx with aj , bj coefficients such that,

xℓ = −γ/
√

(δ) < x < x2 −→ σ1(ω) = a1 + b1x, b1 = [σ̃(ω2) − σ̃(ω1)]/(ω2 − ω1)

; x2 < x < x3 −→ σ2(ω) = a2 + b2x, b2 = [σ̃(ω3) − σ̃(ω2)]/(ω3 − ω2);.............

x(N) < x < xu = +γ/
√

(δ) −→ σN (ω) = aN+bNx, bN = [σ̃(ωN)−σ̃(ωN−1]/(ωN−ωN−1)

. Then for all thresholds i,

σ(ω) =
∑

i

γi
π
[σ1(ω) + σ2(ω) + .......... + σN(ω)] . (38)

It is understood that the interpolation and summation is carried out with respect to

profiles corresponding to all target ion thresholds at Ei. Having determined coefficients

aj , bj we need to evaluate expressions for each segment as

σj(ω) =
γi
π

∫ i

xj

xj+1 (aj + bjx)

x2 + γ2
dx. (39)

Evaluating separately,

σj(ω) = aj

[

tan−1(x/γi)

γi

∣

∣

∣

xj+1

xj

]

+
bj
2

[

ln(x2 + γ2
i )
∣

∣

∣

xj+1

xj

]

. (40)

For clarity we have avoided the use of double scripts (i, j), one with respect

to thresholds Ei and the other for interpolation between respective resonance profile

segments. But in principle we may represent the final values of the cross sections

convolved over all resonances at the transposed energy mesh ω′ → ω as

σ(ω) =
∑

i,j

σi
j(ω), (41)

subsuming all target ion levels (Fig. 1 and Eq. 1) and interpolation into the

computational algorithm. Finally, we compute broadened cross sections at the same

energy mesh as the unbroadened cross sections σ̃(ω′) so that there is one-to-one

correspondence ω′ → ω. However, we note that the intermediate energy mesh of the

Lorentzian profile is independent, and interpolated in accordance with the damping

width Eq. (11-12) at each energy.
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3.4. Computer program

A general program for convolving AI resonances has been written and will be reported

elsewhere. Here we note a few of the main features. The primary loops in the program

are over electron temperature Te, density Ne, and target thresholds Ei. The input is the

unbroadened CC cross sections tabulated at a sufficiently fine mesh to resolve resonances

so that convolution, interpolation and integration do not result in loss of accuracy. The

accuracy parameter δ is chosen to be in the range 10−2 − 10−6; more importantly, it

is ensured that the convolved cross sections have converged, physically implying that

the resonance wings have merged into the continuum. The CPU time required depends

mainly on the density which determines the total width γ; for example, in the reported

calculations for Fe xvii at T=2× 106K it is few minutes for Ne = 1021 cc and ∼3 hours

for Ne =1024cc.

The program is suitable as a module within a post-processing program for

CC cross sections with AI resonances for photoionization, electron-ion collisions and

recombination, intended for practical application in specified temperature-density range.

4. Results and discussion

The complexity and magnitude of RMOP computations has been studied using

photoionization data for a large number of bound levels of the three Fe ions described

in RMOP2. Since AI plasma broadening must be carried at each temperature-density

pair, the resulting cross sections constitute a huge amount of data required for opacities

calculations in HED plasma sources. In this section we discuss a small sample of results

for those Fe ions to illustrate some physical features.

4.1. Fe xvii : Temperature-Density dependence

Owing to its closed shell ground configuration and many excited n-complexes

of configurations, Ne-like Fe xvii is of considerable importance in astrophysical

and laboratory plasmas, as described in a number of previous works ([35] and

references therein). The Fe xvii BPRM calculations are carried out with 218

fine structure levels dominated by n = 2, 3, 4 levels of the core ion Fe xviii .

The computed Fe xvii bound levels (E < 0) are dominated by configurations

1s22s22p6(1S0), 1s
22sp2pqnℓ, [SLJ ] (p, q = 0 − 2, n ≤ 10, ℓ ≤ 9, J ≤ 12). The core

Fe xvii levels included in the CC calculation for the (e + Fe xviii ) →Fe xvii system

are:1s22s22p5(2P o
1/2,3/2), 1s

22s22pq, nℓ, [SiLiJi] (p = 4, 5, n ≤ 4, ℓ ≤ 3). The Rydberg

series of AI resonances correspond to (SiLiJi) nℓ, n ≤ 10, ℓ ≤ 9, with effective quantum

number defined as a continuous variable νi = z/
√

(Ei − E) (E > 0), throughout the

energy range up to the highest 218th Fe xviii core level; the n = 2, 3, 4 core levels

range from E=0-90.7 Ry ([34, 35]). The Fe xvii BPRM calculations were carried out

resolving the bound-free cross sections at ∼40,000 energies for 454 bound levels with

AI resonance structures (in total 587 bound levels are considered, but the higher lying
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Figure 3. Plasma broadened photoionization cross sections for h̄ω + Fe xvii →
e + Fe xviii of the bound level 2s22p5[2P o

3/2]4d(
1F o

3 ) (left, ionization energy

17.626 Ry), level 2s22p5[2P o
3/2]3p(

3D2) (right, ionization energy 37.707 Ry) along two

isotherms T = 1 × 106K (left) and T = 2 × 106K (right), and electron densities as

shown in each panel: black — unbroadened, red — broadened, blue — broadened with

Stark ionization cut-off ν∗s (Table 1). Rydberg series of AI resonance complexes with

νi ≤ 10 belonging to 217 excited Fe xviii levels Ei broaden and shift with increasing

density, also resulting in continuum raising and threshold lowering.

levels are included to ensure convergence and completeness as discussed in paper P4,

and do not significantly contribute to opacities calculations). Given 217 excited core

levels of Fe xviii , convolution is carried out at each energy or approximately 109 times

for each (T,Ne) pair.

Fig. 3 (left) displays detailed results for plasma broadened and unbroadened

photoionization cross section of one particular excited level 2s22p5[2P o
3/2]3p(

3D2) (left,

ionization energy 37.707 Ry) of Fe xvii along isotherm T = 106K at three representative

densities (note the ∼10 orders of magnitude variation in resonance heights along the

Y-axis). The main feature evident in the figure are as follows. (i) AI resonances begin to

show significant broadening and smearing of a multitude of overlapping Rydberg series

at Ne = 1021cc. The narrower high-n l resonances dissolve into the continua but stronger

low-n l resonance retain their asymmetric shapes with attenuated heights and widths.

(ii) As the density increases by one to two order of magnitude, to Ne = 1022−23cc,

resonance structures not only broaden but their strengths shift and redistributed over

a wide range determined by total width γ(ω, νi, T, Ne) at each energy h̄ω (Eq. 6).

(iii) Stark ionization cut-off (Table 1) results in step-wise structures that represent
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the average due to complete dissolution into continua. (iv) The total AI resonance

strengths are conserved, and integrated values generally do not deviate by more than

1-2%. For example, the three cases in Fig. 3 (left): unbroadened structure (black),

and broadened without (red) and with Stark cut-off (blue), the integrated numerical

values are 59.11, 59.96, 59.94 respectively. This is also an important accuracy check

on numerical integration and the computational algorithm, as well as the choice of the

parameter δ that determines the energy range of the Lorentizan profile at each T and

Ne; in the present calculations it varies from δ = 0.01-0.05 for Ne =1021−24cc.

Fig. 3 (right) shows similar results to Fig. 3 (left) for another excited Fe xvii level

2s22p5[2P o
3/2]4d(

1F o
3 ) (ionization energy 17.626 Ry), along a higher temperature 2×106K

isotherm at different intermediate densities. Both Figs. 2 and 3 show a redward shift

of low-n resonances and dissolution of high-n resonances. In addition, the background

continuum is raised owing to redistribution of resonance strengths, which merge into

one across high lying and overlapping thresholds.

4.2. Fe xviii : Scaling and delineation of resonances

Next, we employ plasma broadened cross sections for Fe xviii to highlight the scale,

shape, scope, width and magnitude of AI resonances.

The scale of unbroadened AI features is evident upon a comparison on log and linear

scales as in Fig. 4 (black curves), considered for two excited Fe xviii levels. The top and

bottom panels on left and right exhibit LogσPI(MB) and σPI(MB) respectively. Whereas

the log-scale in top panels appropriately displays the full extent of AI resonances, it

appears with equal weight for both positive values that rise up to 106 MB, and for

negative values down to 10−6 MB that are not significant contributors, as shown in the

bottom panels on a much smaller linear scale going from zero only up to 2.5 MB.

Attenuation of AI features due to plasma effects are shown in red and blue curves

at two different T-D pairs; cross sections on the left are at a lower temperature and

more than three times lower electron density than the ones on the right. Consequently,

the AI features on the right in Fig. 4 are much more broadened that the ones on the left.

Two other noticeable features are the closing of ”opacity windows” in the unbroadened

cross sections, and shift of AI resonances leading to temperature-density dependent

redistribution of differential oscillator strengths and opacity with energy.

4.3. Conservation of differential oscillator strength

It is important to ensure the numerical accuracy of AI plasma broadening in

temperature-density-energy space. Theoretically and computationally, that implies an

investigation of integrated differential oscillator strengths proportional to σPI for all

levels of a given ion for the three forms computed: (i) unbroadened (black curves), (ii)

with all plasma broadening effects included as in Eq. (6) (red curves), and (iii) as in

(ii) but with Stark ionization cut-off that leads to sharp step-wise structures below each
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Figure 4. Plasma broadened photoionization cross sections on Log and linear

scales, σPI(MB) (top panels) and LogσPI(MB) (bottom panels) for h̄ω + Fe xviii →
e + Fe xix of the bound level 2s2p5 2P o

1/2 (left, ionization energy 98.903 Ry), and level

2s22p4(1De
2)3p

2F o
5/2 (right, ionization energy 39.1204 Ry): black — unbroadened, red

— broadened, blue — broadened with Stark ionization cut-off ν∗s (Table 1). Rydberg

series of AI resonance complexes with νi ≤ 10 belonging to 276 excited Fe xix levels.

ionization threshold (blue curves). We had quoted these values for one level of Fe xvii

above in Fig. 3.

In Fig. 5 we present σPI for the ground state of Fe xix 2s2p4 3P 3 (ionization

energy 104.956 Ry), as well as an excited state 2s2p4(2S)3s 1Se (ionization energy 24.186

Ry). For these two cross sections of Fe xix we find integrated values over the entire

energy range shown to be 21.74, 22.98 and 22.90 for the unbroadened, broadened, and

broadened with Stark ionization cut-off, respectively for the ground state, and 12.48,

13.57 and 13.56 respectively for the excited state (units are in MB-Ry though only

the relative values are indicators of accuracy). The numerical agreement between the

three sets of values is well within ∼10% indicating conservation of oscillator strength,

despite some uncertainty in integration over extensive narrow and broad resonance

structures that vary by nearly 20 orders of magnitude in height for σPI(2s2p
4(2S)3s 1Se),

and widely disparate width distribution among Rydberg vs. Seaton PEC resonances

described in RMOP2.

Generally, the agreement between the three sets of calculations for each level of

each ion at each temperature-density is also an accuracy check of the plasma broadening

treatment presented. Since there are hundreds of levels or each ion considered, there is
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Figure 5. Plasma broadened photoionization cross sections on Log and linear

scales, σPI(MB) (top panels) and LogσPI(MB) (bottom panels) for h̄ω + Fe xix →
e + Fe xx of the ground state 2s2p4 3P e (left), and 2s2p4(2S)3s 1Se (right): black

— unbroadened, red — broadened, blue — broadened with Stark ionization cut-off ν∗s
(Table 2). AI resonances in the unbroadened σPI on the right range over 20 orders of

magnitude.

more than 10% difference in integrated cross sections for highly excited levels at very

high densities where the total AI width (Eq. 6) is very large. However, the highly excited

levels are cut-off by the MHD-EOS and not considered in opacity calculations.

4.4. Plasma opacity parameters

Table 2 gives plasma parameters corresponding to Figs. 3. Their physical significance

is demonstrated by a representative sample tabulated temperature T(K) and Ne . The

maximum width γ10 corresponding to νi = 10 in Eqs. (3,6) is set by the CC-BPRM

calculations which delineate unbroadened AI resonance profiles up to ν ≤ 10, and

employ an averaging procedure up to each threshold 10 < ν < ∞ using quantum

defect (QED) theory (viz. [36, 12, 15] and references therein). γc(10) and γs(10) are

the maximum collisional and Stark width components. The Doppler width γd is much

smaller, 1.18×10−3 and 1.67×10−3 Ry at 106K and 2×106K respectively, validating its

inclusion in Eq. (6) in HED plasma sources but possibly not when γd is comparable to γc
or γs. The ν∗

s and νD are effective quantum numbers corresponding to Stark ionization

cut-off and the Debye radius respectively. We obtain νD =
[

2
5
πz2λ2

D

]1/4
, where the

Debye length λD = (kT/8πNe)
1/2. It is seen in Table 2 that νD > ν∗

s at the T, Ne

considered, justifying neglect of plasma screening effects herein, but which may need to
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Table 2. Plasma parameters along isotherms in Fig. 2 and 3; νD corresponds to Debye

radius; R is the ratio of Fe xvii Rosseland Mean Opacity with and without broadening

[39]; γ10 is the maximum AI resonance width at ν = 10.

T(K) Ne(cc) γ10(Ry) γc(10) γs(10) ν∗
s νD R

ν = 10

2× 106 1021 3.42(-1) 8.55(-2) 2.57(-1) 10.4 28.1 1.35

2× 106 1022 2.05(0) 8.55(-1) 1.19(0) 7.7 15.8 1.43

2× 106 1023 1.41(1) 8.55(0) 5.53(0) 5.6 8.9 1.55

2× 106 1024 1.11(2) 8.55(1) 2.57(1) 4.1 5.0 1.58

106 3.1× 1021.5 8.17(-1) 2.71(-1) 5.46(-1) 9.0 17.8 1.47

106 3.1× 1022.5 5.25(0) 2.71(0) 2.53(0) 6.6 10.0 1.13

106 3.1× 1023.5 3.89(0) 2.71(1) 1.18(0) 4.8 5.6 1.06

be accounted for at even higher densities.

The aggregate effect of AI broadening for large-scale applications is demonstrated in

Table 2 by the ratio R of the Rosseland Mean Opacity (defined and discussed in RMOP1

Eqs. 1-4), at different temperatures and densities, using broadened/unbroadened cross

sections for 454 Fe xvii levels with AI resonances (other higher bound levels have

negligible resonances) [39, 35]. For any atom or ion R is highly dependent on T and

Ne ; for Fe xvii R yields up to 58% enhancement due to plasma broadening with

increasing Ne along the 2×106K isotherm, but decreasing to 6% along the 106K isotherm.

Approximately 70,000 free-free transitions among +ve energy levels are included in the

calculation of R, but their contribution has no significant broadening effect since they

entail very high-lying levels with negligible level populations. However, different plasma

environments with intense radiation fields, or a different equation-of-state than [31]

employed here, may lead to more discernible effect due to free-free transitions. AI

broadening in a plasma environment affects each level cross section differently, and

hence its contribution to opacities or rate equations for atomic processes in general. A

critical (T,Ne ) range can therefore be numerically ascertained where redistribution and

shifts of atomic resonance strengths would be significant and cross sections should be

modified. Overall opacity enhancement depends not only on AI resonance broadening

at a given temperature-density but also on the equation-of-state [40].

4.5. Relative broadening effects

Following Table 1 we can examine the individual effects of including different broadening

mechanisms separately in the combined total (Eq. 6). Fig. 6 shows the cross sections

including the three dominant mechanisms. Referring to Fig. 3 for photoionization of

Fe xviii and Table 1, the contributions are shown due to Eq. (21) for collisional (cyan),

Eq. (25) for thermal (magenta), and Eq. (24) for Stark (green) effects respectively.

Results are given in Fig. 6 for T = 2× 106K at two electron densities 1021/cc (left) and
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Figure 6. Effect of including individual broadening mechanisms on photoionization

cross sections in Fig. 3 for isotherm T = 2 × 106 K, Ne = 1022/cc (Left) and

Ne = 1023/cc (Right): unbroadened (black), total broadened (red), C—Collisional

(cyan), D—Doppler Thermal (magenta), S—Stark (green).

1023/cc (right). From Table 1 we see the relative widths due to collisional and Stark

broadening; thermal (Doppler) broadening is much smaller and manifests itself for only

for very narrow resonances and high-lying thresholds. At the lower density (left) much

of the unbroadened resonance structures (black) are discernible although significantly

dissolved, and collisional width is less than Stark width which is larger (Table 1) and

closer to the total broadened cross sections (red). At the higher density (right) the

effects of collisional and Stark are reversed; the former is more prominent though quite

comparable to the latter. More detailed studies on a number of cross sections for different

ions would be needed to ascertain precisely the broadening effects in each case. However,

from the limited results presented herein a conservative estimate is that the lower density

limit for broadening mechanisms to manifest themselves is Ne > 1020/cc. Table 1 also

indicates probable high density limit at Ne > 1024/cc based on two reasons: (i) the

total combined AI broadening widths become very large and comparable to the entire

energy range of the resonance structures included in computations of cross sections, and

(ii) the Debye lengths are comparable to or shorter than bound electronic orbital radii,

and atomic configurations are no longer a viable description which would require dense

plasma effects to be considered non-perturbatively.

5. Conclusion

The main conclusions are: (I) The method described herein is generally applicable

to AI resonances in atomic processes in HED plasmas. (II) The cross sections become
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energy-temperature-density dependent in a critical range leading to broadening, shifting,

and dissolving into continua. (III) Among the approximations necessary to generalize

the formalism is the assumption that thermal Doppler widths are small compared

to collisional and Stark widths as herein, but given the intrinsic asymmetries of AI

resonances it may not lead to significant inaccuracies (although that needs to be verified

in future works). (IV) The treatment of Stark broadening and ionization cut-off is ad

hoc, albeit based on the equation-of-state formulation [31] and consistent with previous

works [12]. (V) Since it is negligibly small, the free-free contribution is included post-

facto in the computation of the ratio R in Table 2 and not in the cross sections and

results shown in Figs. 2 and 3, but may be important in special HED environments with

intense radiation and should then be incorporated in the main calculations of total AI

width (Eq. 6). (VI) The predicted redward shift of AI resonances as the plasma density

increases should be experimentally verifiable. (VII) Redistribution of AI resonance

strengths should particularly manifest itself in rate coefficients for (e + ion) excitation

and recombination in plasma models and simulations, and for photoabsorption in

opacity calculations, using temperature-dependent Maxwellian, Planck, or other particle

distribution functions. (VIII) The treatment of individual contributions to AI

broadening may be improved, and the theoretical formulation outlined here is predicated

on the assumption that external plasma effects are perturbations subsumed by and

overlying the intrinsic autoionization effect. (IX) The computational formalism is

designed to be amenable for practical applications and the computational algorithm

and a general-purpose program AUTOBRO are optimized for large-scale computations

of AI broadened cross sections for atomic processes in HED plasma and astrophysical

models.

Data Availability statement

The unbroadened cross section data are available as reported in RMOP2.

Broadened cross sections may be computed by contacting the author.
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