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Plasma Effects on Resonant Phenomena

Anil Pradhan

Abstract:

The effect of autoionizing resonances in atomic systems and processes is reviewed.
Theoretical framework for treating resonances in the coupled channel approximation
using the R-matrix method, as well as approximations related to plasma applications are
described. The former entails large-scale atomic computations, and the latter is based on a
new method for including collisional, Stark, thermal and other broadening mechanisms. We
focus particularly on the problem of opacities calculations in high-energy-density (HED)
plasmas such as stellar interiors and inertial confinement fusion devices. The treatment is
generally relevant to radiative and collisional processes as the cross sections become energy-
temperature-density dependent. While the computational difficulty increases considerably, the
reaction rates are significantly affected. The related issue of the Boltzmann-Saha equation-
of-state and its variants in local-thermodynamic-equilibrium (LTE) is also explored as the
intermediary between atomic data on the one hand and plasma environments on the other.

PACS: 32.80.-t; 32.80.Fb; 33.60.+q

1. Introduction

Resonant phenomena are ubiquitous in physics and stem from correlation effects. In AMO physics

autoionizing resonances are due to electron correlation effects among bound and continuum states.

They manifest themselves prominently in cross sections of various atomic and molecular processes

in laboratory and astrophysical plasma sources. The shapes, magnitudes, and extent of resonances

determines associated rates for spectral formation and experimental and observed spectra. The well-

known Fano profile [1, 2, 3] is widely used to analyze isolated resonance structures, with parameters

that may be compared with theoretical calculations.

On the other hand, overlapping infinite series of autoionizing resonances converging on to large

numbers of excited levels are also of great importance. In general, they are not amenable to analytic

formulation and require computationally intensive coupled channel calculations, the most powerful of

which is the R-matrix method by P.G. Burke and collaborators [4].1 Whereas the R-matrix method has

long been utilized for a variety of atomic processes and applications, I focus on a large-scale application

to plasma opacities that is of immense importance in astrophysics and nuclear fusion sources, but where

R-matrix atomic calculations including resonant phenomena in an ab initio manner, and taking account

of plasma effects, are exceedingly difficult [8, 9, 10, 11].

Opacity determines the light we see or detect. All radiation-matter interactions need to be consid-

ered in order to determine the opacity of a given plasma source or medium. Primary physical processes

1 Following the original suggestion by U. Fano about the R-matrix theory of nuclear reactions by A.M. Lane and R.G. Thomas

[5], P.G. Burke introduced it for atomic and molecular processes, as described in [4]. Later, M.J. Seaton and collaborators

adapted the R-matrix method for large-scale calculations required for the Opacity Project [6].

Received . Accepted .

Anil Pradhan. Department of Astronomy, Chemical Physics Program, The Ohio State University, Columbus,
OH 43210, USA

Can. J. Phys. : 1–9 () NRC Canada



2 Can. J. Phys. Vol. ,

contributing to opacity are:

κijk(ν) =
∑

k

Ak

∑

j

Fj

∑

i,i′

[κbb((i, i
′; ν) + κbf (i, ǫi′ ; ν) + κff (ǫi, ǫ

′′
i; ν) + κsc(ν)] . (1)

The first two are the dominant processes; bb refers to bound-bound and bf to bound-free transi-

tions or photoionization. The other two, free-free transitions and photon scattering, are generally much

smaller and may be treated by simple approximations (viz. [6, 7]). In Eq. 1, Ak is the abundance of

an element k, its ionization fraction Fj at a given temperature-density, i, i′ are initial bound and final

bound/continuum states, and ǫ represents the free electron energy.

2. Coupled channel R-matrix method and atomic-plasma effects

The state-of-the-art R-matrix (RM) method provides a powerful computational tool to implement the

general coupled-channel theoretical framework. An atomic systems is represented by a N-electron

core or target ion wavefunction χi coupled with an (N + 1)th free electron wavefunction θi in a

bound or continuum state of the (e + ion) system. The total (e + ion) wavefunction is then a quantum

superposition expressed as

Ψ(E) = A
∑

i

(Ei)χiθi(k
2
i ) +

∑

j

cjΦj(Ej). (2)

When the free electron kinetic energy k2i > 0, the first sum on the RHS of Eq. 2 represents a coupled

channel system for electron-ion scattering or half-scattering photoionization process [3]. Each channel

is defined by the spin-orbital quantum symmetries (SiLiJi) ℓisi[SLJ ]. Rydberg series of resonances

arise from photoexcitation of bound energy levels into (e + ion) continua comprising of coupled thresh-

olds of the core ion. A particular type of resonances due to photoexcitation-of-core (PEC) or Seaton

resonances are due to strong dipole transitions in the core ion where the continuum electron in a Ryd-

berg level remain a ’spectator’. The Seaton PEC resonances constitute the detailed balance inverse of

the dielectronic recombination process, wherein an (photo-)excited core ion undergoes radiative decay

by emission of photons redward of the core transition wavelength. It is found that the huge Seaton

resonances dominate the bound-free opacity in a plasma.

If the first summation on the RHS of Eq. 2 is neglected then the coupling effects in the (e + ion)

wavefunction are excluded, yielding the distorted wave (DW) approximation that does not include

autoionizing resonances in an ab initio manner as the RM method. Owing to its simplicity, the DW

method has been employed in existing opacity models. While resonant phenomena are not included

in the DW calculations, that contribution may be included perturbatively by considering autoionizing

resonances on par with lines as bound-bound transitions and employing line broadening theory for

plasma broadening. However, the detailed auotionization shapes over extended energy ranges and their

precise effect on atomic rates is not taken into account in DW models.

The Opacity Project (OP [6]) was originally developed to implement the RM method but was com-

putationally intractable for most complex atoms. In particular, it was found that inner-shell transitions

from closed electronic shells into outer open subshells implies a large number of channels to be in-

cluded in Eq. 2. In recent years, a renewed and extended version of OP has been initiated [14] and is

now in progress for improved opacities with higher accuracy [8, 9, 10, 11].

For opacity calculations, the transition matrix elements are obtained with dipole operator D =
∑

i ri, where the sum is over all electrons, which gives the generalized line strength as,

S =

∣

∣

∣

∣

∣

∣

〈

Ψf |
N
∑

j=1

rj|Ψi

〉

∣

∣

∣

∣

∣

∣
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The oscillator strength (fij), radiative decay rate (Aji), photoionization cross section (σPI ), and mass

attenuation coefficient then can be expressed as follows

fij =

[

Eji

3gi

]

S, Aji(sec
−1) =

[

0.8032× 1010
E3

ji

3gj

]

S, σPI(Kα, ν) =
4π2a2oα

3

Eij

gk
S (4)

The Breit-Pauli R-matrix (BPRM) method incorporates relativistic effects using the Breit-Pauli

(BP) Hamiltonian for the (e + ion) system in intermediate coupling, with a pair-coupling scheme

SiLl(Ji)li(Ki)si(SLJπ), whereby states SiLi is split into fine-structure levels SiLiJi, and SLJπ
is the total spin-orbital symmetry. Consequently, the number of channels becomes several times larger

than the correspondingLS coupling case. A considerable body of work with the BPRM codes has been

carried out under the follow-on project to OP, the Iron Project [15]. The IP work is based on BPRM

codes and archived in the large amount of radiative and collisional data in databases NORAD [19] and

OP/IP database Topbase [16].

3. Plasma environment and approximations

The practical limitation of the RM method for plasma applications is evident from Eq. 2. Computational

constraints imply that only a finite and usually small number of excited core ion states and resulting

channels may be explicitly included in the wavefunction expansion. This has implications in high-

energy-density (HED) plasmas such as in stellar interiors or fusion devices, wherein a large number of

excited states exist and differentially perturbed. The temperature regime may be in excess of 106− 107

K, with electron densities up to 1027 cm−3. Among the largest R-matrix calculations carried out thus

far are the recent ones for Fe ions Fe XVII , Fe XVIII and Fe XIX that constitute ∼85% of iron opacity

at the boundary between the solar radiative and convection zones at radius R⊙ = 0.713±0.001, where

T=2 × 106K and electron density Ne = 1023 cm−3 [8]. The number of core levels included in the R-

matrix (e + ion) wavefunction expansion were 218 levels of Fe XVIII for the (e+Fe XVIII ) → Fe XVII

bound and continuum states, 276 levels of Fe XIX for the (e+Fe XIX ) → Fe XVIII , and 99 LS terms

of Fe XX for (e+Fe XX ) → Fe XIX [9].

3.1. Equation-of-state

In addition to the theoretical limit of the RM method, an obvious limit is imposed by perturbations

on atoms by the plasma environment depending on the specific temperature-density. That manifests

itself via the equation-of-state that determines the atomic ionization state and level populations. The

generally employed approximation is to assume local-thermodynamic-equilibrium (LTE), as defined

by the Saha-Boltzmann equations. From an atomic-plasma physics point of view, a widely employed

formulation (such as in OP) is the Mihalas-Hummer-Däppen (MHD) equation of state in the so-called

”chemical picture”[13]. It is based on the concept of occupational probability w of an excited level

being occupied at a given temperature and density such that the level population is

Nij =
Njgijwije

−Eij/kT

Uj
, (5)

where wij are the occupation probabilities of levels i in ionization state j, and Uj is the atomic

internal partition function. The occupation probabilities do not have a sharp cut-off, but approach zero

for high-n as they are dissolved due to plasma interactions. The partition function is re-defined as

Uj =
∑

i

gijwije
(−Eij/kT ). (6)

Eij is the excitation energy of level i, gij its statistical weight and T the temperature. The wij

are obtained by free-energy minimization, and taking into account Stark ionization due to plasma
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microfields [13]. Hence, the exact form of the equation-of-state numerically determines how many and

how much the excited states of an atom contribute to opacity and radiation transport.

3.2. Broadening of autoionizing resonances

Unlike line broadening intrinsic autoionization (AI) decay rates are much larger relative to radiative

rates. Therefore, one expects resonances to broaden, smear out, and dissolve into the continuum much

more than lines when subjected to extrinsic HED plasma environments. Also, unlike line broadening

for which theoretical formulations are well developed and long employed, there is no ab initio and

general treatment for AI broadening. Even for line broadening the most elaborate methods are are

precise only for hydrogenic and simple atomic systems and several approximations are necessary to

apply those to complex atoms in realistic sources [6].

Recently, a general theoretical and computational formalism has been introduced for AI resonance

broadening [10]. Analogous to line broadening, the physical mechanisms considered are: electron colli-

sions (pressure broadening), ion microfields (Stark broadening), Doppler effect (thermal broadening),

and free-free transitions. It has been shown that extrinsic plasma effects redistribute and shift reso-

nance strengths, even as the broad intrinsic asymmetries of resonance profiles is discernible as in Fano

profiles. Furthermore, while the shapes, magnitudes and extent of resonances is affected, the total in-

tegrated resonance oscillator strengths are conserved, independent of temperature and density. The

energy-temperature-density dependent cross sections would elicit and introduce physical features in

resonant processes in photoionization, (e + ion) excitation and recombination. The method should be

generally applicable to atomic species in high-energy-density (HED) sources such as fusion plasmas

and stellar interiors.

Whereas the main broadening mechanisms in AI broadening are physically similar to line broad-

ening, their theoretical and computational treatment is quite different. Superimposed on intrinsic AI

broadening in atomic cross sections the extent of resonances owing to extrinsic plasma effects renders

much of the line broadening theory inapplicable, particularly for multi-electron systems. The unbroad-

ened AI resonances themselves vary by orders of magnitude in width, shapes and heights, and incor-

porate two types: large features due to photoexcitation-of-core (PEC) below thresholds corresponding

to dipole core transitions [12], and infinite Rydberg series of resonances converging on to each excited

core level of the (e + ion) system. The generally employed Voigt line profiles obtained by convolution

of a Lorentzian function for radiative and collisional broadening, and a Gaussian function for Doppler

or thermal broadening, are found to be practically inapplicable for AI broadening. Numerically, the

Voigt kernel is ill-conditioned since the collisional-to-Doppler width ratio Γc /Γd varies over a far

wider range for resonances than lines and therefore unconstrained a priori.

The physical processes for broadening of AI resonances differ from lines qualitatively and quanti-

tatively. However, line broadening processes and formulae may be generalized to develop a theoretical

treatment and computational algorithm outlined herein (details to be presented elsewhere). The con-

volved bound-free photoionization cross section of level i may be written as:

σi(ω) =

∫

σ̃(ω′)φ(ω′, ω)dω′, (7)

where σ and σ̃ are the cross sections with plasma-broadened and unbroadened AI resonance struc-

tures, ω is the photon energy (Rydberg atomic units are used throughout), and φ(ω′, ω) is the normal-

ized Lorentzian profile factor in terms of the total width Γ due to all AI broadening processes included:

φ(ω′, ω) =
Γ(ω)/π

x2 + Γ2
, (8)

where x ≡ ω−ω′. The crucial difference with line broadening is that AI resonances in the (e + ion)

system correspond to and are due to quantum mechanical interference between discretized continua
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defined by excited core ion levels in a multitude of channels. The coupled channel (CC) approximation,

such as implemented by the R-matrix (RM) method (viz. [4, 6, 7]), accounts for AI resonances in an

(e + ion) system with generally asymmetric profiles (unlike line profiles that are usually symmetric).

Given N core ion levels corresponding to resonance structures,

σ(ω) =

N
∑

i

[

∫

σ̃(ω′)

[

Γi(ω)/π

x2 + Γ
(
iω)

]

dω′

]

. (9)

With x ≡ ω′ − ω, the summation is over all excited thresholds Ei included in the N -level CC

or RM wavefunction expansion, and corresponding to total damping width Γi due to all broadening

processes. The profile φ(ω′, ω) is centered at each continuum energy ω, convolved over the variable ω′

and relative to each excited core ion threshold i . In the present formulation we associate the energy to

the effective quantum number relative to each threshold ω′ → νi to write the total width as:

Γi(ω, ν, T,Ne) = Γc(i, ν, νc) + Γs(νi, ν
∗
s ) (10)

+ Γd(A,ω) + Γf (f − f ; νi, ν
′
i),

pertaining to collisional Γc, Stark Γs, Doppler Γd, and free-free transition Γf widths respectively,

with additional parameters as defined below. Without loss of generality we assume a Lorentizan profile

factor that describes collisional-ion broadening which dominates in HED plasmas. We assume this

approximation to be valid since collisional profile wings extend much wider as x−2, compared to the

shorter range exp(−x2) for thermal Doppler, and x−5/2 for Stark broadening. In evaluating Eq. (10)

from Eq. 9 the limits ∓∞ are replaced by ∓Γi/
√
δ; δ is chosen to ensure the Lorentzian profile

energy range for accurate normalization (see Eq. 15). Convolution by evaluation of Eqs. (7,9) is carried

out for each energy ω throughout the tabulated mesh of energies used to delineate all AI resonance

structures, for each cross section, and each core ion threshold. We employ the following expressions

for computations:

Γc(i, ν) = 5
( π

kT

)1/2

a3oNeG(T, z, νi)(ν
4
i /z

2), (11)

where T, Ne , z, and A are the temperature, electron density, ion charge and atomic weight re-

spectively, and νi is the effective quantum number relative to each core ion threshold i : ω ≡ E =
Ei − ν2i /z

2 is a continuous variable. The Gaunt factor G(T, z, νi) =
√
3/π[1/2 + ln(νikT/z)]. A

factor (nx/ng)
4 is introduced for Γc to allow for doubly excited AI levels with excited core levels nx

relative to the ground configuration ng (e.g. for Fe XVIII nx = 3, 4 relative to the ground configuration

ng = 2). A treatment of the Stark effect for complex systems entails two approaches, one where both

electron and ion perturbations are combined (viz. [18]), or separately (viz. [6, 10]) employed herein.

Excited Rydberg levels are nearly hydrogenic and ion perturbations are the main broadening effect,

though collisional broadening competes significantly increasing with density as well as ν4i (Eq. 5). The

total Stark width of a given n -complex is ≈ (3F/z)n2, where F is the plasma electric microfield.

Assuming the dominant ion perturbers to be protons and density equal to electrons, Ne =Np, we take

F = [(4/3)πa3oNe)]
2/3, as employed in the Mihalas-Hummer-Däppen equation-of-state formulation

[13].

Γs(νi, ν
∗
s ) = [(4/3)πa3oNe]

2/3ν2i . (12)

In addition, in employing Eq. (6) a Stark ionization parameter ν∗s = 1.2 × 103N
−2/15
e z3/5 is

introduced such that AI resonances may be considered fully dissolved into the continuum for νi > ν∗s
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(analogous to the Inglis-Teller series limit [17, 13]). Calculations are carried out with and without ν∗s
as shown later in Table 1. The Doppler width is:

Γd(A, T, ω) = 4.2858× 10−7
√

(T/A), (13)

where ω is not the usual line center but taken to be each AI resonance energy. The last term Γf in

Eq. (5) accounts for free-free transitions among autoionizing levels with νi, ν
′
i such that

Xi + e(Ei, νi) −→ X ′
i + e′(E′

i, ν
′
i). (14)

The large number of free-free transition probabilities for +ve energy AI levels Ei, E
′
i > 0 may be

computed using RM or atomic structure codes.

Whereas Eq.9 has an analytical solution in terms of tan−1(x/Γ)/Γ evaluated at limiting values

of x → ∓Γ/
√
δ, its evaluation for practical applications entails piece-wise integration across multiple

energy ranges spanning many excited thresholds and different boundary conditions. For example, the

total width Γ is very large at high densities and the Lorentzian profile may be incomplete above the

ionization threshold and therefore not properly normalized. We obtain the necessary redward left-wing

correction for partial re-normalization as

lim
a→−Γ/2

√
δ

∫ +Γ/
√
δ

a

φ(ω, ω′)dω′ =

[

1

4
−

tan−1( a

Γ/2
√
δ
)

π

]

, (15)

where a is the lower energy range up to the ionization threshold, reaching the maximum value

−Γ/2
√
δ.

4. Results and discussion

All atomic cross sections with resonant phenomena are modified by the plasma environment. An ex-

emplar from large-scale opacity calculations [8, 9, 10, 11] is presented in Fig. 1. The complexity and

magnitude of computations is demonstrated for the (e + Fe XIX ) −→ Fe XVIII system in an highly

excited level 2s22p4 [3P e
0 ] 5s(

2P1/2) with ionization energy = 13.79 Ry, compared to the ground level

2s22p5 2P o
1/2) = 98.9 Ry. We utilize new results from an extensive BPRM calculation with 276-levels

dominated by n = 2, 3, 4 levels of the core ion Fe XIX [9], resulting in 1,601 bound levels of Fe XVIII

with configurations up to n ≤ 10, ℓ ≤ 9, J ≤ 12). Rydberg series of AI resonances correspond

to (SiLiJi) nℓ, n ≤ 10, ℓ ≤ 9, with effective quantum number defined as a continuous variable

νi = z/
√

(Ei − E) (E > 0), up to the highest 276th Fe XIX core level. AI resonances are resolved

for all cross sections at ∼45,000 photon energies [9, 11].

Fig. 1 displays detailed results for plasma broadened and unbroadened photoionization cross sec-

tion of one particular excited level 2s22p5[2P o
3/2]4d(

1F o
3 ) (ionization energy = 17.626 Ry) of Fe XVII

at four densities. The main features are as follows: (I) orders of magnitude variation in resonance

heights and extent. (II) For Ne > 1020/cc AI resonances begin to exhibit broadening and smearing of

overlapping Rydberg series. Ne = 1021cc. The narrower high-n l resonances dissolve into the continua

but stronger low-n l resonance retain their characteristic asymmetric shapes. With increasing density

Ne = 1021−23cc, resonance structures not only broaden but their strengths shift and redistributed over

a wide range determined by the total width Γ(ω, νi, T,Ne) at each photon energy h̄ω (Eq. 9). (III) The

averaged step-wise structure due to Stark ionization cut-off (Table 1) represents complete dissolution

into continua. (IV) It is numerically ascertained that total AI resonance strengths are conserved, and

integrated values generally do not deviate by more than 1-2%. This is also an important accuracy check

on numerical integration and the computational algorithm, as well as the choice of the parameter δ that

determines the energy range of the Lorentizan profile at each T and Ne. In the present δ = 0.01 for all

Ne =1020−23/cc.
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Fig. 1. Plasma broadened photoionization cross sections for h̄ω + Fe xviii → e + Fe xix of the bound level

2s22p4 [3P e
0 ] 5s(

2P1/2) (ionization energy 13.79 Ry), along the isotherm T = 2 × 106K and electron densities

Ne = 1020,21,22,23 /cc: black — unbroadened, red — broadened, blue — broadened with Stark ionization cut-off

ν∗

s (Table 1). Rydberg series of AI resonance complexes with νi ≤ 10 belonging to 276 excited Fe XIX levels

broaden and shift with increasing density, also resulting in continuum raising and threshold lowering. The two

large features around 68 RY and 85 Ry are combinations of Seaton PEC and Rydberg series of resonances.
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Table 1. Plasma parameters along isotherms 106K and 2×106K, and electron densities Ne = 1020−23/cc for the

(e + Fe XIX ) −→ Fe XVIII system w.r.t Fig. 1. Total AI resonance widths are shown at ν ≈ 10, with corresponding

collisional widths Γc (10) and Stark width Γs (10). Effective quantum number ν∗

s refers to Stark ionization, and

νD corresponds to the Debye radius. AI broadening widths are very weakly dependent on temperature and thermal

Doppler widths are negligible in comparison with Γc and Γs .

T(K) Ne(cc) Γ(ν = 10) Γc(10) Γs(10) ν∗

s νD

Ry Ry Ry

106 1020 5.98(-2) 7.56(-3) 5.23(-2) 14.6 43.2

106 1021 3.18(-1) 7.56(-2) 2.43(-2) 10.8 24.3

106 1022 1.88(0) 7.56(-1) 1.13(0) 7.93 13.7

106 1023 1.28(1) 7.56(0) 5.22(0) 5.83 7.68

2× 106 1020 5.97(-2) 7.45(-3) 5.23(-2) 14.6 51.4

2× 106 1021 3.17(-1) 7.45(-2) 2.43(-1) 10.8 28.9

2× 106 1022 1.87(0) 7.45(-1) 1.13(0) 7.93 16.2

2× 106 1023 1.27(1) 7.45(0) 5.23(0) 5.83 9.13

Plasma effects on AI features Fig. 1 show a redward shift of low-n resonances and dissolution of

high-n resonances. In addition, the background continuum is raised owing to redistribution of reso-

nance strengths, which merge into one across high lying and overlapping thresholds. The shifts in AI

resonance strengths, akin to line shifts but much more pronouned, is particularly important since cross

sections are integrated over plasma particle distributions in order to obtain rates for atomic proceses.

Also noteworthy is the height and extent of prominent resonances features dominated by Seaton PEC

resonances. cross sections may range up to 10 orders magnitude in height and hundreds of eV in energy.

Table 1 gives plasma parameters corresponding to Fe XVIII at along two plasma isotherms and

varying densities. The maximum width Γ10 corresponding to νi = 10 in Eqs. 11,11,12 corresponding

to the ν-mesh at which the unbroadened AI resonance profiles are delineated up to ν ≤ 10; an averaging

procedure is employed up to 10 < ν < ∞ using quantum defect (QD) theory (viz. [6, 7]). Γc(10) and

Γs(10) are the maximum collisional and Stark width components. The thermal Doppler width Γd is

much smaller, as may be inferred from the fact that the total width Γ (10) ≈ Γc + Γs . However, in

lower density plasmas Ne < 1020/cc, Γd may be comparable to Γc or Γs.

In Table 1, the ν∗s and νD are effective quantum numbers corresponding to Stark ionization cut-off

and the Debye radius respectively. For HED plasmas with Ne > 1023, one needs to examine if the

bound orbitals are penetrated by the free electrons as the Debye length increases, and plasma screening

effects may need to be considered. We therefore calculate the corresponding effective quantum number

νD =
[

2
5πz

2λ2
D

]1/4
, where the Debye length λD = (kT/8πNe)

1/2. It is seen in Table 1 that νD > ν∗s
for all T, Ne considered, justifying neglect of plasma screening effects herein, but which may need to

be accounted for at even higher densities.

AI broadening in a plasma environment affects each level cross section differently, and hence its

contribution to opacities or rate equations for atomic processes in general. A critical (T,Ne ) range can

therefore be numerically ascertained where redistributed resonance phenomena would be significant

and cross sections should be modified.

5. Conclusion

Atomic cross sections and rates in HED plasma sources at sufficiently high densities may be signifi-

cantly affected by attenuation and broadening of AI resonant features. Precise evaluation of equation-

of-state of the plasma determines the number of levels in predicting macroscopic properties such as
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opacity and radiation transport. A computationally viable theoretical tratment taking account of plasma

effects is reviewed. The method generalizes the description of AI phenomena of isolated Fano profiles

in plasmas. Analogous to line shapes, atomic cross sections with resonant features become energy-

temperature-density dependent, leading to broadening, shifting, and dissolving into myriad (e + ion)

continua. However, unlike symmetric line profiles, the intrinsically asymmetric AI resonance shapes

are attenuated over extended energy ranges. The predicted energy shifts of AI resonances as the plasma

density increases should be experimentally verifiable. Redistribution of AI resonance strengths should

manifest itself in rate coefficients for (e + ion) excitation, (e + ion) recombination, photoionization,

opacities and radiation transport in HED plasma models, using temperature-dependent Maxwellian,

Planck, or other particle distribution functions. The computational algorithm and a general-purpose

program has been developed for large-scale computations.
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