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ABSTRACT 
We define stellar envelopes to be those regions of stellar interiors in which atoms exist 
and are not markedly perturbed by the plasma environment. Availability of accurate 
and extensive atomic data is a prime requirement for the calculation of envelope 
opacities. For envelopes we adopt the criterion of mass density p<0.01gcm"3. 

We present radiative Rosseland mean opacities for envelopes obtained using 
atomic data calculated in an international collaboration referred to as the Opacity 
Project, or op. Equations of state are calculated using an occupation-probability 
formalism. To a good approximation, ionization equilibria and level populations in 
envelopes depend only on the temperature T and electron density 7Ve and are insensi- 
tive to chemical mixtures. Monochromatic opacities for all abundant chemical 
elements are therefore calculated on a grid of ( T, Nc) values and are archived. Rosse- 
land mean opacities are then readily calculated for any chemical mixture. Tables of 
Rosseland means, for any required mixtures and as functions of p and T, are available 
on request in computer-readable form. 

The present, op, results are compared with those from another recent study, 
referred to as opal , by C. A. Iglesias and F. A. Rogers at the Lawrence Livermore 
National Laboratory. The agreement between the op and opal calculations is 
generally good, although there are some differences. Both calculations give results 
larger than those obtained in earher work, by factors of up to 3 or more. 

Key words: atomic processes - radiative transfer - stars: interiors. 

1 INTRODUCTION 

1.1 Basic definitions 

Let Iv{s, ñ) be the intensity of radiation at frequency v in a 
direction n as a function of distance 5. The equation of radia- 
tive transfer is 

dljás=-KvIv+jv, (1) 

where kv is the opacity and jv the emissivity. For a blackbody 
enclosure at temperature T, Iv is equal to the Planck function 

ÆV(T) =(2/zv3/c2)[exp(/zv/fcr)-l]-1, (2) 

and, since àljàs = 0, 

jv/Kv=Bv(T), (3) 

which is Kirchhoff’s law. Inside a star, conditions are very 
close to those for a blackbody enclosure, and equation (3) 

can certainly be used. The radiation is not, however, 
completely isotropic since there is a net outwards radiative 
flux. Using Iv{r, 6) for the intensity at a distance r from the 
stellar centre and making an angle 0 to the direction r, the net 
flux is 

Fv{r) =2jt 
'+1 

/v(r, 0)cos(0)dcos(0). 
J -1 

(4) 

Equation (1) may be solved in a diffusion approximation 
(see Mihalas 1978), assuming small anisotropy, to obtain 

Fv(r) 
4jt 1 dBv dT 
3 kv dT dr 

(5) 

The flux integrated over all frequencies, 

^Present address: Department of Radiation Oncology, Thomas 
Jefferson University, 111 South 11th Street, Philadelphia 
PA 19107, USA. 

F{r) Fir) dv. (6) 
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is given by 

; , An 1 dB(T) dr 
F(r)=~—   —, 

3 kr dT dr 

where 

B(T) = BÂT)dv 
_2n\kTf_ 

15c2 h3 

and where the Rosseland mean opacity, kr, is defined by 

J_ dB(T) 
kr dT 

1 dBv  dv. 
k„ dT 

(7) 

(8) 

(9) 

In the above equations tcv is the total opacity for extinction, 
that is to say including the processes of absorption and 
scattering. The Planck mean, kv, is defined by 

kvB(T) kvBv dv, (10) 

where is the opacity for absorption processes only. 
We introduce the variable 

hv 
~kT' 

(ID 

Convenient working formulae are 

1 
Kr K{U) 

-fR[u)du, (12) 

KP = k(u)fP(u) du, 

where 

/r(w) u4 exp( - u)[l - exp( - u) 
4jt 

and 

fp(u) n3 exp( ■ 3X 
■ u)[l -exp( - u)] 

(13) 

(14) 

(15) 

The calculation of Planck means is straightforward in that 
they do not depend on line profiles (so long as Bv does not 
vary significantly over the profiles), and kp for a mixture is a 
simple linear combination of the contributions from the 
constituents. Calculations of kr, a weighted harmonic mean, 
are more difficult. Information about line profiles is required 
(a delta-function line gives a zero contribution to kr). There 
is no simple expression giving kr for a mixture - the integral 
in (9) or (12) must be evaluated separately for each mix. 
Particular attention must be paid to regions in which k(u) is 
small since such regions can give large contributions to the 
integrals. 

In this section, and throughout this paper, we give all 
formulae for opacities per unit length. In giving numerical 
results, however, we follow the usual practice of giving 
opacities per unit mass (in units of cm2 g_1). The relation is 

7c(per unit length) = p x ^(per unit mass), where p is the mass 
density. 

The monochromatic opacity is given by 

k(u) A^a(
¿
abs)(w)[l -exp(— u)] + a(¿scatt)(w)}, (16) 

where TV-is the number density of particles of type i, cr(abs) 

and c4scatt) are cross-sections for absorption and scattering 
processes, and [1 - exp( - u)] is a correction factor for stimu- 
lated emission. Three steps are involved in making opacity 
calculations: (i) determination of the level populations (the 
problem of the equation of state); (ii) determination of the 
atomic cross-sections a,; and (iii) calculation of mean 
opacities for all required values of temperature, density and 
chemical composition. 

1.2 Previous opacity calculations 

Over the years there have been many discussions of dis- 
crepancies between ‘astrophysical opacities’ (those adjusted 
so as to give the best agreement between observations and 
astrophysical theory) and ‘physical opacities’ (best estimates 
from physical theory). Such discrepancies were discussed by 
Eddington (1926), who considered them to be one of the two 
clouds obscuring theories of stellar structure.1 The other 
cloud, concerning the nature of stellar energy sources, was 
dispersed long ago in consequence of fundamental new 
discoveries in physics. The fundamental physics required to 
disperse the opacity cloud has all been known for a long 
time. The difficulty has been in coping with the sheer 
complexity of the problem. 

In his book ‘The Structure and Evolution of the Stars’, 
Schwarzschild (1958) considered the determination of 
opacities to be ‘by far the most bothersome factor in the 
entire theory’. He took account of just three processes 
contributing to opacities: bound-free transitions (photo- 
ionization), free-free transitions (inverse bremsstrahlung) 
and electron scattering. Subsequent work has shown that a 
fourth process, bound-bound transitions (spectrum lines), 
can make major contributions. That process was first 
discussed in some detail by Mayer (1948) at the Los Alamos 
National Laboratory, and some early calculations including 
lines were made by Moszkowski & Meyerott (1951) and 
Meyerott & Moszkowski (1951) at the Ar gönne National 
Laboratory. During the past 30 years very extensive opacity 
calculations have been made at Los Alamos [see Cox & 
Stewart (1962) and Cox (1965) for discussions of the earlier 
work and Hübner (1985) and Weiss, Keady & Magee (1990) 
for references to later work]. Results have been made 
available through the Los Alamos Opacity Library (Hübner 
et al. 1977), which we refer to as laol . Extensive calculations 
have also been made at St Andrews in Scotland (see Carson, 
Mayers & Stibbs 1968; Carson 1976). 

Despite all of these advances, discussion of discrepancies 
between ‘physical’ and ‘astrophysical’ opacities has 

1 Eddington said that he was recalling a classic phrase of Kelvin. He 
probably had in mind a lecture which Kelvin gave at the Royal 
Institution on 1900 April 27, in which reference was made to two 
clouds obscuring the dynamical theory of heat and light. We are 
indebted to Dr D. W. Dewhirst for this information. 
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continued, with particular reference to work on pulsating 
stars (Fricke, Stobbie & Strittmatter 1971; Petersen 1974; 
Stellingwerf 1978; Simon 1982; Becker 1985; Andreasen 
1989). Simon’s (1982) paper was entitled A Plea for Re- 
examining Heavy Element Opacities in Stars’. He showed 
that several problems in the theory of pulsating stars would 
be resolved if envelope opacities 2 to 3 times larger than 
those from laol were used. There were two responses to this 
plea, both taking advantage of advances in computational 
plasma physics and atomic physics and of the availability of 
powerful computers. One was work at the Lawrence Liver- 
more National Laboratory (Iglesias, Rogers & Wilson 1987, 
1990, 1992; Iglesias & Rogers 1991a,b; Rogers & Iglesias 
1992), which is referred to as opal, the name of the com- 
puter code used. The other was the international Opacity 
Project, which we refer to as op and which is the subject of 
the present paper. 

The opal paper by Iglesias et al. (1990) was the first to 
give, for a Cepheid model, opacities enhanced by amounts at 
least as large as those postulated by Simon (1982). 

1.3 Stellar interiors 

In stellar interiors both temperatures and densities decrease 
outwards. In discussing the problems that arise in calculating 
opacities, it is convenient to regard interiors as being divided 
into two regions. 

(1) Deep interiors are regions of high T and p. In calcu- 
lating opacities for these regions the main problem is to allow 
correctly for plasma correlation effects. In so far as bound 
states of atomic ions exist at all in deep interiors, they exist 
only for fairly simple states of highly ionized atoms (such as 
hydrogenic and He-like). Such states may be highly 
perturbed by the plasma environment. In deep interiors, 
conductive opacity may also be important. 

(2) Stellar envelopes are outer regions with lower values of 
T and p, and are of particular importance for giant stars and 
for studies of stellar pulsations. In envelopes, complex 
atomic ions, containing many electrons, exist and can make 
important contributions to opacities. Such states are not 
markedly perturbed. For envelopes a main requirement is 
accurate and very extensive data for free atoms. 

Whereas the opal work is concerned both with deep 
interiors and with envelopes, the op work is concerned only 
with envelopes. The two approaches may be compared as 
follows. If, as in the opal work, one allows for plasma effects 
in calculating atomic radiative properties, then one has to use 
comparatively simple atomic models. The procedure in opal 
is to use central potentials which are adjusted empirically so 
as to give accurate values for atomic energy levels, and which 
can be modified so as to allow for plasma effects. The atomic 
data may then depend on the plasma conditions of tempera- 
ture and density. In the opal work all atomic data are calcu- 
lated on-hne as required, and are not archived. By contrast, 
the op work is restricted to envelope regions for which the 
effects of plasma perturbations on optical properties are not 
of much importance. All atomic data are calculated once 
only for unperturbed free atoms, using fairly sophisticated 
methods which will be described in Section 4. Thus in the 
envelope regions the op atomic data should be more 
accurate than the opal data, but this advantage is gained at 
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the expense of restricting the range of densities for which the 
op calculations are valid. An incidental advantage of the op 
approach is that we obtain an extensive archive of accurate 
atomic data which may be of value for various other investi- 
gations. 

For the presentation of results it is convenient to use the 
variable 

R=Pin (i7) 

introduced in the opal work; p is the mass density in g cm-3 

and T6 the temperature in 106 K. Figs 1 and 2 show values of 
log(R) against log(T) for various stars, using data from 
stellar models provided by Dr Achim Weiss of the Max- 
Planck-Institut für Astrophysik, Garching (private communi- 
cation). Fig. 1 shows results for stars on the initial main 
sequence with masses 1, 2.5, 10 and 50 M0. The outer part 
of the 1-M0 star is convective (shown by a long-dashed line 
in Fig. 1). In that region the temperature gradient is given by 

Log(T) 
Figure 1. Plots of log(R) against log(T) for stars on the initial 
main sequence. The quantity R is defined by equation (17). Details 
for the models are M = 1 M0, log(L/L0)=-0.1057, log(Teff) = 
3.7342; M = 2.5M0, log(L/L0) = 1.5081, log(Teff) = 3.9821; M = 
10 M0, log(L/L0) = 3.7394, log(Teff) = 4.3695; and M=50Mo, 
log(L/L0) = 5.5597, logfL^) = 4.6354. Compositions are 2^= 0.64, 
Z=0.04 for the 1-M0 model and 2f=0.70, Z = 0.02 for the other 
three models. 

Figure 2. Plots of log(/?) against log(T) for two red-giant models: 
M= 1 M0, log(L/L0) = 3.0105, log(Teff) = 3.4552; and M = 2.5 M0, 
log(L/L0) = 3.2418, log(Teff) = 3.5089. Both models are for stars 
with initial compositions of 2Í=0.70, Z = 0.02. 
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the adiabatic gradient, and not by equation (7) which 
involves the Rosseland mean opacity. In the convective 
region, knowledge of the Rosseland opacity is not of so much 
interest. For the other three models (2.5, 10 and 50 M0), 
envelope convection does not occur and it is seen that, for a 
given model, R is approximately constant - at least to within 
an order of magnitude or so. For such stars, plots of opacities 
against log( T ) for fixed values of log(R) give an impression 
of how the opacity varies with depth. Fig. 2 shows results for 
two red-giant models, omitting regions of degenerate cores. 
For those models log(R) shows larger variations as a function 
of log( T ). Supergiants can have very small values of log(R), 
of - 5 or less. 

Use of the quantity log(R) is also convenient if, as in the 
opal work, one wishes to print rectangular tables of 
opacities; and it is convenient in making interpolations. 

2 THE OPACITY PROJECT 

The Opacity Project is an international collaboration 
concerned with the calculation of opacities for stellar 
envelopes. Work on equations of state (EOS) is described in 
four papers in the series ‘Equations of State for Stellar 
Envelopes’ (EOSSE) listed in Table 1. Work on the compu- 
tation of atomic data is described in the series ‘Atomic Data 
for Opacity Calculations’ (ADOC) listed in Table 2. 

We allow for plasma correlation effects in the work on 
equations of state (in order to obtain convergent partition 
functions) and in calculating the pressure-broadening of 
spectral lines. However, we make the assumption, valid for 
envelopes, that the initial states producing absorption are not 
significantly perturbed by the plasma environment (the exact 
procedures used are discussed in Section 5.4). A main objec- 
tive of our work is to make extensive calculations of accurate 
atomic data. All of our atomic data will be made generally 
available: selected data in a book to be published by the 
Institute of Physics, and all data in a data base system 
top base (Cunto & Mendoza 1992). Implementation of 
top base at the Centre des Données Astronomiques de 
Strasbourg (CDS) is described by Cunto et al. ( 1993). 

Hummer & Mihalas, in EOSSE I (see Table 1), tentatively 
adopt p<0.01 for envelopes. That condition will be adopted 
here and will be discussed further in Section 5.4. With that 
condition, envelopes are the regions to the left of the dashed 
lines marked ‘p = 0.01’ in Figs 1 and 2. 

Table 1. Papers in the series ‘Equations of State for Stellar Envelopes’ 
(EOSSE), published in the Astrophysical Journal. 

I Hummer D. G., Mihalas D., 1988, An occupation probability 
formalism for the truncation of the internal partition function, 
ApJ, 331, 794 

II Mihalas D., Däppen W., Hummer D. G., 1988, Algorithms and 
selected results, ApJ, 331,815 

III Däppen W., Mihalas D., Hummer D. G., Mihalas B. W., 1988, 
Thermodynamic quantities, ApJ, 332, 261 

IV Mihalas D., Hummer D. G., Mihalas B. W., Däppen W., 1990, 
Thermodynamic quantities and selected ionization fractions for 
six elemental mixes, ApJ, 350, 300 

3 EQUATIONS OF STATE 

In this section we use the indices i for the energy level, j for 
the ionization stage and k for the chemical element. We take 
the energies Eijk to be increasing in order of increasing i. We 
define the ionization stage j to be such that an ion at stage j 
has a net charge of z; =y- 1: then the neutral atom has y = 1 
and charge zero, and the fully ionized atom has j = Zk+l 
and charge Zk, the nuclear charge. The index y is numerically 
equal to the Roman numeral used in spectroscopic notation. 
Number densities are Nijk for level ijk; Njk =YJi^ijk f°r 

ionization stage y/c; Nk = f°r element k; and N=YJk^k 
for the total number of nuclei. The electron density is 

N^Yz^N,-,. (18) 
j k 

Table 2. Papers in the series Atomic data for Opacity Calculations’ 
(ADOC), published in the Journal of Physics B (Atomic, Molecular 
and Optical Physics). 

I Seaton M. J., 1987, General formulation, J. Phys. B, 20,6363 
II Berrington K. A., Burke P. G., Butler K., Seaton M. J., Storey 

P. J., Taylor K. T., Yan Y, 1987, Computational Methods, J. 
Phys. B, 20,6379 

III Yan Y, Taylor K.T., Seaton M.J., 1987, Oscillator strengths for 
C ii, J. Phys. B, 20,6399 

IV Yan Y, Seaton M. J., 1987, Photoionization cross sections for 
C ii, J. Phys. B, 20,6409 

V Seaton M. J., 1987, Electron impact broadening of some C m 
lines, J.Phys.B, 20,6431 

VI Thornbury J. K, Hibbert A. H., 1987, Static dipole polaris- 
abilities of the ground states of the helium sequence, J. Phys. B, 
20,6447 

VII Fernley J. A., Taylor K. T., Seaton M. J., 1987, Energy-levels, 
f-values and photoionization cross sections for He-like ions, J. 
Phys. B, 20, 6457 

VIII Seaton M. J., 1988, Line-profile parameters for 42 transitions 
in Li-like and Be-like ions, J. Phys. B, 21,3033 

IX Peach G., Saraph H. E., Seaton M. J., 1988, The lithium iso- 
electronic sequence, J. Phys. B, 21, 3669 

X Luo D., Pradhan A. K., Saraph H. E., Storey P. J., Yan Y, 1989, 
Oscillator strengths and photoionization cross sections for 
O in, J. Phys.B, 22,389 

XI Luo D., Pradhan A. K., 1989, The carbon iso-electronic 
sequence, J. Phys. B, 22, 3377 

XII Seaton M. J., 1989, Line-profile parameters for neutral atoms 
of He, C, N and O, J. Phys. B, 22, 3603 

XIII Seaton M. J., 1990, Line profiles for transitions in hydrogenic 
ions, J. Phys. B, 23, 3255 

XIV TullyJ. A., Seaton M.J., Berrington K. A., 1990, The beryllium 
sequence, J. Phys. B, 23, 3811 

XV Sawey P. M. J., Berrington K. A., 1992, Fe i to iv, J. Phys. B, 25, 
1451 

XVI Saraph H. E., Storey P. J., Taylor K. T, 1992, Ab initio calcula- 
tions for Fe vin and Fe vu, J. Phys. B, 25,4409 

XVII Burke V. M., 1992, Calculation of line-broadening parameters 
and collision strengths between n = 2,3 and 4 states in C iv, J. 
Phys.B, 25,4917 

XVIII Nahar S. N., Pradhan A. K., 1993, Photoionization cross 
sections and oscillator strengths for Si-like ions, Si0, S2+, Ar4+, 
Ca6 +, J. Phys, B, 26,1109 

XIX Butler K., Mendoza C, Zeippen C. J., 1993, The magnesium 
iso-electronic sequence, J. Phys. B, 26,4409 

XX Nahar S. N., Pradhan A. K., 1994, Photoionization cross 
sections and oscillator strengths for Fe n, J. Phys. B, in press 
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3.1 A modified Boltzmann distribution 

The essential difficulty in obtaining equations of state for 
ionized gases arises from the fact that the Coulomb potential 
gives rise to an infinite number of energy levels. The high 
levels have large mean radii which eventually become larger 
than typical interparticle separations in the plasma. Some 
cut-off procedures must therefore be introduced. 

The procedure used in our work is to introduce 
occupation probabilities. Omitting the subscript k, the 
number density of atoms in level i for ionization stage / is 
taken to be 

jgÿ Wÿ exp( — Eyl kT )//y, (19) 

where g;y is a statistical weight, the occupation prob- 
ability, Eÿ the energy of the level and Pj the partition 
function, 

^ = E in Wij exp( - EtjlkT). 
i 

(20) 

The Wij go to zero for the higher states, which ensures that 
the summation in (20) is convergent. High states, with very 
small values of (values effectively zero), are said to be 
dissolved. 

The procedures used for calculating the W)y are discussed 
in EOSSE I. They are closely related to those for determin- 
ing the line profiles. The levels become completely dissolved 
at the point where the lines in a series become completely 
blended. 

We discuss the case of a hydrogenic ion of charge Z. In 
EOSSE I, Hummer & Mihalas consider the ion microfield, F, 
to be the main perturbation leading to dissolution. They use 
a simple form of saddle-point theory to obtain a field, Fsp, 
such that bound states can exist only for F<Fsp. They adopt 
Fsp =(/„/4)2/Z, where In =Z2ln2 is the ionization energy in 
Rydbergs and F is in atomic units. They take Fc = Fsp for 
n=\ and 2. For the higher states, n> 3, they argue that Stark 
splitting is a more efficient mechanism leading to dissolution, 
and use the criterion that dissolution of level n occurs when 
the highest Stark component of level n (calculated using first- 
order perturbation theory) has an energy equal to that of the 
lowest component of level « + 1. Correcting a minor error in 
EOSSE I (see ADOC XIII in Table 2), this criterion gives 
Fc(n) =Z3(2n + l)/[6n4{n+ l)2]. Putting Fc{n) =K(n) x Fsp(n), 
which defines K{n), one obtains K{n) = {16/3)(n+ 1/2)/ 
{n + 1)2, giving X(3) = 3.5/3. Hummer & Mihalas make a 
small adjustment to obtain X(3) = 1, and finally adopt Fc{n) = 
X(n) x Fsp( «), where 

[ 1 for « <3, 
\l6n/[3{n+l)2] forn>3. 

(21) 

The occupation probability W(rc) is taken to be the prob- 
ability of finding a microfield with F<Fc{n\ 

W{n) = 
Fc(n) 

P(F ) d/y (22) 

where P{F) is the microfield distribution, normalized to 
¡Q P(F) dF= 1. Using a Holtsmark distribution, Hummer & 
Mihalas show that a good approximation to (22) is given by 

Opacities for stellar envelopes 809 

(using any consistent choice of units) 

Wij = exp 
64jt 
~T" 

(Zy+l) 
./2e

2 

«Th 

3 
QNe\, (23) 

where 

Q=(i/Ne)j:zfj:Njk. (24) 
j Z 

For non-hydrogenic systems, n is replaced by the effective 
quantum number v/y for the state ij. 

We have defined Wt to be the probability that level i is 
occupied', ( 1 - W/) is the probability of its being dissolved. 

3.2 The ionization equilibrium 

Our approach to determining ionization equilibria is 
discussed in EOSSE II. On minimizing the free energy one 
obtains1 

+ J^+7? + ^/=0. 
kT 1 (25) 

It is assumed here that the energies Fzy in (20) are relative to 
the ground state for ion j. The /y in (25) are then ionization 
potentials from the ground state of j to that of (/ + 1 ). We use 
calculated excitation energies Fzy but, whenever available 
(Moore 1970), experimental ionization potentials. 

In (25), rj is the usual electron-degeneracy parameter 
defined by 

F¡/2(n) 
Jñ Nç 
2 Pe ’ 

(26) 

where 

Pe = 2 
mkT 
27th2 

3/2 
(27) 

and 

FAv) = 

Jo 

tkdt 
Qxp{t-r¡)+l 

(28) 

In the non-degenerate limit of Ne<£Pe, the solution of (26) is 

v = \n(NjPe) (rt«0). (29) 

In (25 ), (/ij allows for Coulomb interactions of free charged 
particles. It is proportional to v312, where 

v = Q2Nl/3/(kT). (30) 

If JVe
-1/3 is taken to be the mean separation between the 

electrons, then v is equal to the ratio of the Coulomb 
electron-electron energy to the thermal energy. At low 
densities, v and are small. 

The quantity ^y depends on the chemical mixture through 
two ratios, 

R=(l/Ne)ZzjlNjk 
j k 

(31) 

1 We use In for loge and log for logI0. 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 9

4M
N

RA
S.

26
6.
 .

80
53

 

810 M. J. Seaton et al. 

and 

S=(NINe). (32) 

The expression adopted for from Graboske, Harwood & 
Rogers (1969), is 

3/2 2-/jt V <j>j = - v 1 x 
3/2 

3(1 +x) 
— (//_1/2 + 22/ + l) (33) 

+ X(2-H3l2/Hll2l 

where 

H¿(>7) = dln[f¿(>7)]/d>7, 

F=//1/2 + R, 

and 

X = 3 1 î(l+x) ln(l + x) —x + - 

= 9 £    
Pt (p + 2)(p+3) 

(34) 

(35) 

(36) 

(37) 

We note that <j>j is a linear function of /, <f>j= a + ßj, a relation 
that is useful for computational work. 

At lower densities we can omit the term in and use (29) 
for t]. We then obtain an equation of familiar Saha-type, 

[(A^/T^iXA/e/Pj 

L W) kT 
= 0. (38) 

With these definitions the electron density is 

Nz = ^kNk = Nl£kAk, (39) 
k k 

and the mass density is 

P = Y,MkNk = NYJMkAk, (40) 
k k 

where Mk is the mass of atom k. Eliminating N, 

p^nMZm.a (41) 

With our assumption that S>
k depends only on T and 

equation (41) gives the mass density for any assumed values 
of 7; Nq and chemical composition. 

4 ATOMIC DATA 

Details of the atomic physics work in the Opacity Project are 
given in the ADOC series of papers (Table 2). A full 
summary will be given in a concluding paper of that series. A 
brief summary is given here. 

4.1 Atomic wave functions 

The wavefunction for one electron in a central potential is 

<t> = Xm,(o) Yimi(r)(l/r)Pni(r), (42) 

where a is the spin coordinate and (r, r) the space co- 
ordinates. For N electrons we use xt for the coordinates ( o, r, 
r)¿ and / for the set of quantum numbers An anti- 
symmetric wavefunction is constructed using the de- 
terminant formed from the functions </>j{x¿). An approximate 
atomic wavefunction is 

3.3 The dependence of ionization equilibria on the 
chemical mixture 

The ionization equilibria depend on the chemical mixture 
through the three ratios Q, R and Sdefined by (24), (31) and 
(32). For conditions in stellar envelopes, we find the 
equilibria to be insensitive to the exact values of these ratios. 
The reasons for this are that (i) the partition functions are 
insensitive to the exact values used for the occupation 
probabilities, and (ii) the term in ^ is not of major im- 
portance and is not very sensitive to the exact values of the 
ratios 7? and S. We can therefore obtain a good approxima- 
tion by taking the equilibria to depend only on temperature 
T and electron density Ae. This provides a major simplifica- 
tion for our work ( see Section 5 ). 

3.4 Electron density and mass density 

We define 

population fractions Fijk ~~ NijjNk, 

ion fractions Fik=Njk/Nk, 

electrons per atom ^ = 'ZjZjFjk ? 

chemical abundance fractions A ^ = NJN. 

W = Z<S>kck. (43) 
k 

A configuration is a set of {«/} quantum numbers. Equation 
(43) gives dt configuration-interaction (Cl) wavefunction if the 
sum includes states of more than one configuration. 

The energy E =(T/|//|lI/), where H is the Hamiltonian 
operator, must be minimized. This is achieved using Cl 
codes, which determine the coefficients ck and optimize the 
functions Pn,(r). We use two Cl codes, civs by Hibbert (1975) 
and superstructure by Eissner & Nussbaumer (1969); a 
later version of superstructure, developed by Nussbaumer 
& Storey ( 1978) in Zurich, will be referred to as zss. 

For the opacity work we consider states with (TV+l) 
electrons in which N electrons are more or less tightly bound 
and one added electron may be in a highly excited state or in 
the continuum (for a final state after photoionization). In the 
close coupling (CC) approximation, the complete wave- 
function is taken to be 

VY^+ZO/C,, (44) 
i J 

where ip ¡is a. Cl function fér N electrons, 6 ¡ is a function for 
the added electron,^ is an antisymmetrization operator, and 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 9

4M
N

RA
S.

26
6.
 .

80
53

 

the <E>; are determinantal functions for the {N + l)-electron 
system. In the language of atomic collision theory, the ip, are 
referred to as ‘target states’, and the states i are referred to as 
‘channels’. The functions 0, and coefficients cy are fully 
optimized, using the /^-matrix techniques described in 
ADOC II. 

Consider, as an example, the case of N=6. The N- 
electron system has a ground configuration ls22s22p2. The 
ground complex is defined as the set of configurations that 
have the same set of {«} quantum numbers as the ground 
state. Thus for A =6 the ground complex includes the con- 
figurations 2s22p2, 2s2p3 and 2p4, giving 12 energy levels in 
LS coupling. For a highly ionized system, all states of the 
ground complex are tightly bound. For the case of A=6 
there is no difficulty in including all 12 of those levels in (44). 

Now consider a more complicated case of A= 14 with 
ground configuration ls22s22p63s23p2. The ground complex 
now includes 3d electrons, giving configurations such as 
3s23p3d, 3s23d2 right up to 3d4. The number of ground- 
complex levels is now very large, and one certainly cannot 
include all of them in (44). For such systems, our procedure 
is to make CC calculations including only a fairly small 
number of target states in (44), and to make supplementary 
Cl calculations using zss; these calculations, which were 
performed by A. E. Lynas-Gray and P. J. Storey, give what 
we refer to as PLUS data. 

We compute atomic data for all cosmically abundant 
elements (H, He, C, N, O, Ne, Na, Mg, Al, Si, S, A, Ca and 
Fe) in ail stages of ionization. We include all levels for which 
the added electron has a quantum number /; < LMAX, where 
LMAX is such that states with lt> LMAX are close to being 
hydrogenic. Let vt be the effective quantum number for an 
electron in channel i. We include all levels with v,< 10, where 
here i refers to the lowest target level included in (44). 

The PLUS data are all for transitions between states 
belonging to configurations of the type 3sx3p>'3d% and for 
excitations from such configurations. 

4.2 Radiative transitions 

Radiative transition probabilities are proportional to the 
squares of reduced matrix elements, ('PJ.DII ï^)2, where f 
and i refer to final and initial states and D is the dipole 
operator. All detailed formulae required are given in 
ADOC I. 

We calculate oscillator strengths and photoionization 
cross-sections for all transitions for which the lower state lies 
below the first ionization threshold. For less complex 
systems, with 12, our atomic radiative data are probably 
accurate to within about 10 per cent for most transitions, but 
larger errors will occur for sensitive cases involving a lot of 
cancellation. For more complex systems, A>12, the 
accuracy may not be quite so good. The accuracy of op 
atomic data is discussed further in individual papers of the 
ADOC series. 

4.3 Configuration-interaction effects 

We compare the use of functions T1; obtained using the 
CC expansion (44) with the use of single-configuration (SC) 
functions Of, d>j. The CC expansion gives functions W 
involving linear combinations of many configurations. Each 
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such function may be given a label, depending on the con- 
figuration that gives the largest contribution. 

(a) Many-electron jumps. Matrix elements of the type 
(OfllDll^j) are non-zero only if the initial and final con- 
figurations differ in the nl quantum number of just one 
electron, and hence only one electron jumps. The matrix 
elements (^f II DII ^j) can, however, be non-zero when the 
labels for the initial and final states differ in the nl values of 
more than one electron. These are described as ‘many- 
electron jumps’. The total number of lines in the CC approxi- 
mation can be a good deal larger than the number in the SC 
approximation. 

(b) Accuracy of radiative data. For many individual 
transitions in complex atoms, use of the SC approximation 
can give radiative data in error by factors of 2 or more. 

(c) Autoionization. Most of the photoionization cross- 
sections obtained using the CC approximation contain 
complicated resonance structures. These are due to tran- 
sitions to quasi-bound states that lie above the ionization 
limit, followed by autoionization. 

4.4 Line profiles 

Line broadening is produced by thermal Doppler effects, 
radiation damping and pressure effects. The atomic lifetimes 
required to calculate radiation-damping profiles are obtained 
from the calculated oscillator strengths. Pressure broadening 
is produced by both ions and electrons. For line profiles we 
use the notation (f>{x), where x = |ö;-£o0|, œ being angular 
frequency and oj() the frequency at the line centre. 

We follow the usual procedure of treating the ions in a 
quasi-static approximation, giving an ion microfield F with a 
distribution P{F) normalized to jP(F) dF=l. Hydrogenic 
systems have levels nl degenerate with respect to /, giving 
linear Stark splittings in the microfield. For non-hydrogenic 
systems that degeneracy is broken and, for small values of F, 
the Stark splitting is quadratic. We make the somewhat 
drastic approximation of considering the microfield contri- 
bution only for true hydrogenic systems and, in a slightly 
modified form, for the resonance lines of Hei. The line- 
broadening theory used for these systems, for both ion and 
electron perturbers, is described in detail in ADOC XIII. For 
Stark shifts we consider only microfields F smaller than the 
critical fields Fc introduced in Section 3.1. We then obtain 
profiles normalized to 

+ 00 
^(x) dx = W(upper), (45) 

J — oo 

where W(upper) is the occupation probability for the final, 
upper, level. 

For non-hydrogenic systems we consider only broadening 
by electrons, in the impact approximation. This approxima- 
tion gives Lorentz profiles 

<l>(x)=(ylx){x2 + Y2}-\ (46) 

where y = AeF and F is an atomic constant. Equation (46) 
gives profiles normalized to 

*+00 
^(x) dx= 1. (47) 
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The constants T have been calculated (see ADOC VIE) for 
42 transitions using a CC approximation, and the results 
obtained have been used to obtain an approximate formula 
that can be used for other transitions. Further work has been 
done by V. M. Burke (ADOC XVII) for transitions in C iv; 
an increase in the number of channels included in (44) gives 
improved agreement with the approximate formula. 

Line profiles for neutral atoms are discussed in 
ADOC XII. 

4.5 Fine structure 

All of our main atomic data calculations are made neglecting 
relativistic effects. Inclusion of fine structure can lead to 
significant increases in opacity, particularly for low densities 
giving narrow lines. One is concerned with very large 
numbers of lines and even larger numbers of fine-structure 
components. It is not important to have exact values for the 
splittings, and for the distribution of oscillator strengths 
among the components. We therefore use approximate 
formulae, valid for one electron moving in a central potential. 
Neglecting fine structure the levels have quantum numbers 
nSL, and with fine structure they have nSLJ. The fine-struc- 
ture splittings, due to spin-orbit interaction, are taken to be 

ó£:(tóL/) = a(tóL)[/(/ + l)-L(L-M)-^(5 + l)]. (48) 

We use average values of the spin-orbit parameters a(nSL) 
from available experimental data. The oscillator strengths for 
the fine-structure components are 

fin'SL'J^nSL^^fin'SL^nSL) 

x(2L + l)(2/'+ 1) W2{L!LJ’J', IS), (49) 

where W(L'LfJ; IS) is a Racah coefficient. It follows from 
(49) that 

2 fin'SL'J', nSLJ){2J+l) =f(n'SL', nSL){2S + 1)(2L+ 1). 
J'J 

(50) 

In this approach we do not allow for intercombination lines, 
which involve a change in the spin quantum number S. 

H~ bound-free transitions. We use the cross-section of 
Wishart (1979) which should be accurate to within about 1 
percent. 

Electron-hydrogen and electron-helium free-free tran- 
sitions. For free-free transitions we use data from Stilley & 
Callaway (1970) for H, which are in good agreement with 
later data from Bell & Berrington (1987), and for He we use 
data from Bell, Berrington & Croskery (1982). 

4.8 Accuracy of atomic data 

Our calculations are optimized for positive ions. For all 
systems with N^\2 (that is to say up to and including the 
sequence of aluminium-like ions) we include, as target states, 
all states belonging to ground complexes. For all positive ions 
in these systems we estimate that our oscillator strengths and 
photoionization cross-sections should be accurate to about 
10 per cent, except for sensitive cases involving a lot of 
cancellation. The accuracy may be less good for some 
neutral atoms that have low-lying target states not belonging 
to ground complexes. The accuracy may also be less good 
for systems with N> 12. 

A comprehensive study of /-values for the ions C m, N iv 
and Ov has been made by Allard et al. (1990), who con- 
sidered all available calculated and experimental data. This 
study confirms our accuracy estimate. Further extensive 
compilations are being prepared at the US National Institute 
of Standards and Technology (NIST ). A first volume, for all 
ions of C, N and O, will soon be published (Wiese, Deters & 
Fuhr 1994). Again, these compilations confirm our accuracy 
estimates for positive ions, but find some errors larger than 
10 per cent in our data for some transitions in Ci and N i. 
More than 90 per cent of all recommended data in the new 
NIST compilations are from the op work. 

The atomic data used in the present work for the first few 
ionization stages of iron are not of high accuracy. Improved 
atomic data are being calculated for these ions and will be 
used in later opacity work. New results for Fen are given by 
Le Dourneuf, Nahar & Pradhan (1993) and by Nahar & 
Pradhan in ADOC XX. 

4.6 Iron-group elements 

An appreciable fraction of our total computational effort has 
gone into calculating atomic data for iron. Other iron-group 
elements (Cr, Mn and Ni) have abundances much lower than 
that of iron but can still make significant contributions to the 
Rosseland mean opacities. This is because these elements 
contribute to monochromatic opacities at frequencies at 
which the contributions from all other elements are small. We 
cannot afford to compute atomic data for Cr, Mn and Ni of 
an accuracy comparable to that of the iron data. Instead, we 
use extrapolations from the iron data along iso-electronic 
sequences. This probably gives results of adequate accuracy. 

4.7 Other contributions for H and He 

We include three further contributions to opacities for H and 
He which are important at low temperatures, such that these 
two elements are mainly neutral. 

Rayleigh scattering. This will be discussed further in 
AppendixC. 

5 MONOCHROMATIC AND MEAN 
OPACITIES 

5.1 Monochromatic opacities 

The full expression for the monochromatic opacity of a 
mixture is 

k(u) = 2 NijkoiJk(u) +2 N^N^jiu) 
Jjk jk 

(51) 

x[l - exp(- u)] + Neoe{u), 

where [l-exp(-w)] is a correction factor for stimulated 
emission, oiJk{u) is the total cross-section for absorption 
from level ijk (both lines and photoionization), Ne rfu) is a 
cross-section for free-free transitions, and oe{u) is a cross- 
section for electron scattering. We use a hydrogenic approxi- 
mation for free-free transitions, with Gaunt factors from 
Hummer (1988a) (see also Storey & Hummer 1991). We use 
(ie(u) from Boercker (1987) with a relativistic correction. At 
low temperatures and densities, oe(u) reduces to the 
Thomson cross-section <rT. For the special cases of H and 
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He, one must include in (51) the contributions from the 
additional processes discussed in Section 4.7. 

We put 

k{u) =2 Nk<jk(u) = N2 Akok{u), (52) 
k k 

where ak{u) is a total effective cross-section for element k. 
Using the definitions of Fijk, Fjk and ^ from Section 3.4, we 
obtain 

Ok{u) E ^jk aiik{ u)+J]FjkNc Tj( u) 
- Ü J 

(53) 

x [1 - exp( - w)]+^ae( w). 

We use a number, NTOT, of values of u in the range of u 
required for the calculation of mean opacities (say 
0^w<20). In order to resolve all of the lines it may be 
necessary to take NTOT as large as 106 or more. We can, 
however, obtain accurate values for the means using a 
smaller number of points and trapezoidal-rule integrations - 
the technique is that of opacity sampling. We find that the 
differences in the means using 105 and 106 points are always 
much less than 1 per cent, and that the errors in using 
NTOT= 104 are never larger than about 2 or 3 per cent. 
Production work is carried out with NTOT= 104. 

Having calculated ok(u) on a mesh of NTOT points un, we 
pack the data on to a smaller number of points um. These are 
chosen to be such that linear interpolations from the points 
um back to the points un give errors not larger than some 
specified fractional amount DPACK (usually taken to be 
0.01 or 0.02): since those errors are not systematic, the 
resulting errors in the mean opacities will be much smaller 
than DPACK. 

We consider three temperature-density meshes: a fine 
mesh, F, with ô log(T) = 0.025, ô log(Ne) = 0.25; a medium 
mesh, M, with ô log( T) = 0.05, ô log(7Ve) = 0.5; and a coarse 
mesh, C, with <5 log(r) = 0.1, ô log(Afe)= 1.0. Using means 
calculated on the M mesh, and cubic interpolations, we can 
reproduce results calculated on the F mesh with errors not 
exceeding 1 or 2 per cent, and generally much smaller. The C 
mesh is used only for exploratory calculations. 

For each temperature and electron density and each 
element k, we archive information on ionization equilibria 
and numbers of electrons per atom, Planck-mean cross- 
sections, 

&P,k fP(u)ok{u) du; (54) 

and packed cross-sections, ok(um). 

5.2 Mean opacities 

We define a chemical mixture by a set of abundances Ak, 
]T¿y!¿=l. For each temperature and electron density we 
read the archived values of ^ and calculate total number 
densities N and mass densities p using (39) and (40). We read 
the packed cross-sections ok{um), interpolate back to the 
original, common mesh un and calculate the monochromatic 
opacity of the mixture using (52). We then evaluate the 
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integral for the calculation of the Rosseland mean. The 
Planck mean is 

k? = NYj Ako? k. (55) 
k 

We have examined the combined errors that result from 
choices of frequency mesh, packing, and interpolation in T 
and iVe. Using NTOT= 104, DPACK = 0.02 and the M mesh 
for temperatures and densities, the final errors are never 
significantly larger than 3 per cent and are generally much 
smaller. 

5.3 Smoothing of results for Rosseland means 

The errors that arise from the use of opacity sampling are not 
of importance in themselves, since we do not claim an 
accuracy of better than 2 or 3 per cent in our results for kr. 
Those errors can, however, vary irregularly from one {T, p) 
tabular point to the next and hence produce much larger 
errors in the calculated derivatives, 

<3kr 

àTP 

and 
dp j 

This problem arises with both opal and op opacities. 
Accurate values of the derivatives are required in 

astronomy. It would be prohibitively expensive to use much 
larger values of NTOT. An alternative procedure has been 
proposed by Seaton (1993), who showed that these diffi- 
culties can be overcome by using a modest amount of two- 
dimensional smoothing in the tables of kr(T, p) before 
making interpolations and calculating derivatives. 

5.4 Some further technical details 

Further technical details concerning dissolved lines, Rayleigh 
scattering and far line-wings are given in Appendix C. 

5.5 Allowance for plasma perturbations 

We can now describe more precisely the extent to which we 
allow for plasma perturbations. All atomic data (energy 
levels, /-values and photoionization cross-sections) are calcu- 
lated for free atoms. All level populations are calculated 
allowing for occupation probabilities. Bound-free contri- 
butions to opacities are calculated without allowance for 
plasma perturbations, except that some below-threshold 
extrapolations are made to regions of blended lines. 
Free-free contributions are included without any allowance 
for plasma perturbations. For bound-bound contributions 
we allow for broadening of both initial and final levels. For 
the upper states the effects of broadening may be large, 
leading to blending of the lines; we allow for contributions 
from dissolved lines, following the procedures discussed in 
Appendix A. For electron scattering we use the theory of 
Boercker (1987), which allows for correlation effects. 

Let Nj be the total density of all particles in a plasma, and 
define a mean interparticle separation r? by 

y 4^=1. (56) 
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Considering the case of fully ionized H and He with an 
abundance ratio A^(He)/A^(H) = 0.1, we obtain 

rP= 1.18/p1/3, (57) 

with rP in atomic units and p in g cm"3. Plasma perturbations 
will not be of major importance for systems with mean radii 
small compared with rP. 

With p = 0.01, equation (57) gives rP = 5.48 atomic units. 
Consider a bound electron having an effective quantum 
number v {v = n -¡u, where n is the principal quantum 
number and ¡i is the quantum defect), in the field of an ion 
with net charge Ç. We take rv = v2/£ to be a typical radius of 
this state. Putting rv=rv we obtain v = 23 for p = 0.01 and 
£=1, corresponding to a neutral atom. At p = 0.01, 
however, we are usually concerned with more highly ionized 
systems. With £ = 6 we obtain v = 5.7. The dominant 
contributions to opacities come from states with v no larger 
than about 3. We conclude that our approach should be valid 
for p<0.01. Some of our calculations extend to densities 
p > 0.01, but may not be of high accuracy in such regions. 

6 RESULTS FOR OPACITIES 

6.1 The op codes 

All op calculations for equations of state and opacities have 
been made twice: first in Urbana and in Columbus using 
CRAY-YMP machines at the National Center for Super- 
computer Applications at the University of Illinois and the 
Supercomputer Center at the Ohio State University; and 
secondly in London using the IBM-3090 at the Rutherford 
and Appleton Laboratory. These two sets of calculations use 
the same input physics, but codes that are largely indepen- 
dent. Initial comparisons revealed - not unexpectedly - some 
errors in both sets of codes. After these had been corrected, 
a good agreement between the results was obtained, which 
gives us increased confidence in their being correct. 

Comparisons between op and opal results have also been 
of great value. The first such comparisons, made in the 
spring of 1991, showed that further PLUS data for iron- 
group elements were required in the op work. 

6.1.1 Range of temperatures and densities 

We perform calculations for temperatures in the range 
3.5< log(T)<7.0. We make no attempts to include molecu- 
lar opacities, which may be important at lower temperatures, 
say log(T ) < 4.0. 

We consider a range of densities such as to give opacities 
for R in a range somewhat larger than - 7 < log(R) < - 1. As 
has already been stated, our results should be treated with 
caution for log(p)> -2. 

6.2 Element abundances 

Compositions for stars are usually expressed as mass 
fractions Y, Y and Z(Y+Y+Z=l) for hydrogen, helium 
and ‘metals’ (all elements other than H and He), together with 
information on the relative abundances of the metal atoms. 
Opacities are required for many different chemical compo- 
sitions. A feature of the op work is that we can, rather easily, 
obtain opacities for any required composition. 

Some years ago, uncertainties in abundances were often at 
least as large as those in opacities. Even over the past few 
years, while the work on new opacities has been in progress, 
there have been significant revisions of the best estimates for 
solar abundances. The compilation of Anders & Grevesse 
(1989, hereafter AG89) has been used extensively. Later 
revisions by a number of workers are summarized by 
Grevesse & Noels (1993) and Grevesse, Noels & Sauvai 
(1992). Their recommended solar abundances - which will 
be referred to1 as S92 - are given in Table 3 for all of the 
chemical elements included in our work. Compared with the 
AG89 abundances, those of S92 are in improved agreement 
with meteoric values. One of the biggest changes is in the iron 
abundance, with the 1992 value being some 30 per cent 
lower than the 1989 one, and in better agreement with 
meteoric data. 

For the opacity work we require accurate values for the 
relative abundances of the iron-group elements, Cr, Mn, Fe 
and Ni. The values given in Table 3 are obtained using 
meteoric values within the iron group. These relative iron- 
group values are probably good for all astronomical objects 
since thermonuclear processes giving iron-group elements 
will probably always be much the same. 

6.3 Dissemination of op results 

In the op work the independent variables are temperature T 
and electron density Ae. For any given composition we 
produce tables which, for each T and Ae, give the mass 
density p and the Planck and Rosseland means kv and kr. 
The routine opfit by Seaton (1993) can be used to read these 
tables and to give mean opacities and their first two deriva- 

Table 3. Best estimates of solar 
photospheric abundances, 
referred to as S92, from Anders 
& Grevesse (1989) together with 
later revisions from Grevesse & 
Noels (1992) and Grevesse, 
Noels & Sauvai (1992). Values of 
log(Ak) are normalized to 12.00 
for hydrogen. 

log(Afc) 

H 
He 
C 
N 
0 
Ne 
Na 
Mg 
Al 
Si 
S 
Ar 
Ca 
Cr 
Mn 
Fe 
Ni 

12.00 
11.00F0.02 
8.55±0.05 
7.97±0.07 
8.87±0.07 
8.07±0.06 
6.33±0.03 
7.58±0.05 
6.47±0.07 
7.55±0.05 
7.21±0.06 
6.52±0.10 
6.36Í0.02 
5.67F0.03 
5.39F0.03 
7.51±0.01 
6.25±0.04 

1 These abundances are close, but not identical, to those referred to 
as G91 in the opal work. 
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lives for any required values of T and p. It provides an option 
for smoothing (see Section 5.3) which gives improved 
accuracy for the derivatives. We can also produce tables in 
opal formats, i.e. opacities as functions of log(r) for fixed 
values of log(Æ). 

In the present paper we do not give extensive printed 
tables of opacities since we believe that most users will prefer 
to have such data in computer-readable form. Requests for 
tables of op opacities should be sent to one of the following 
addresses. 

Dr A. E. Lynas-Gray, Astrophysics, Keble Road, Oxford 
0X1 3RH. 

Telephone: +44-865-73363. 
Electronic mail (INTERNET ): aelg@oxds02.astro.ox.ac.uk. 

Dr Anil K. Pradhan, Department of Astronomy, 174 W. 
18th Av., The Ohio State University, Columbus, Ohio 
43210-1106, USA. 

Telephone:+614-292-5850. 
Electronic mail (INTERNET ): pradhan@seaton.mps.ohio- 

state.edu. 

Users should specify whether they require original op tables 
together with the code opfit, or results in opal formats. 
Abundances should be specified either as values of X and Z 
and some standard tabulation of relative metal abundances 
(such as AG89 or S92), or as number fractions, for all of 
the elements included in Table 3. 

6.4 General description of op results 

We give one printed table in opal format for Rosseland mean 
opacities with S92 abundances (Table 4), together with 
results for other cases in graphical form. In this section we 
discuss some general trends, as illustrated by our results, and 
in Section 7 we make comparisons with results from other 
opacity calculations. In some of the plots shown in this sub- 
section we include results from the opal work, which will be 
discussed further in Section 7. 

Unless stated to the contrary, we include fine structure for 
iron and iron-group elements. We have not included fine 
structure for other elements, for which its effects will 
probably not be so large. 

6.4.1 Hydrogen 

Fig. 3 shows Rosseland mean opacities for hydrogen as 
functions of log( T) for log(R) = - 1, - 2, - 3, - 4, - 5 and 
-6. There are two maxima, at about log(r) = 4.0 and 4.7. 
The first is due to H in excited states, the second to H in its 
ground state. The Rosseland weighting function fR(u) 
defined by ( 14) has a maximum value at umax = 3.830..., and 
u, defined by (11), is equal to 157887/T for a frequency 
corresponding to 1 Ry. Thus at log( T ) = 4.0 the Lyman limit 
is at u= 15.79 and absorption in the hydrogen Lyman 
continuum does not contribute significantly to the Rosseland 
mean. At log( T ) = 4.7 the Lyman limit has moved down to 
u = 3.15 and Lyman-continuum absorption is much more 
important. At higher temperatures the opacity decreases 
because the hydrogen becomes increasingly ionized. At the 
highest densities considered, for log(R)= -1, the minimum 
between the two maxima has disappeared, giving only one 
maximum. This is due, at least in part, to the increase in the 
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breadth of the hydrogen Lyman lines with increasing density. 
Fig. 4 show the effects of an increase in density on the 
profiles of the Lyman lines. We consider log(r) = 4.3 and 
two electron densities, log(Ae)= 16.0 and 17.5, correspond- 
ing to log(R)=-3.176 and-1.126. 

Fig. 5 shows the effects of dissolution of the hydrogen 
ground state for the case of log(r) = 6.0. There are three 
plots, all against log(p). The first shows the ground-state 
occupation probability, W( 1 ), which varies from unity at low 
densities to zero at high densities. By the time that 
log(p)= -2 is reached, significant dissolution has already 
occurred. The second plot shows the fractional abundance of 
neutral hydrogen, H°/H. Initially, this increases with increas- 
ing density, but the increase is eventually halted by ground- 
state dissolution. At log(T) = 6.0, the maximum value of 
H°/H is never larger than 2.2 x 10-3. For many problems in 
work on EOS, such as the determination of specific heats, 
such small fractional abundances may not be of much 
importance. We have to consider whether they contribute to 
opacities. The third plot shows the ratio 

_ tcr(including Lyman continuum) 
2CR(neglecting Lyman continuum) 

It is seen that the build-up in H° produces an increase in 
opacity which is never larger than 6 per cent. The effect is 
therefore significant but not large. In order to improve the 
accuracy of our calculations it would be necessary to 
consider the optical properties of ground-state hydrogen 
atoms perturbed by the plasma environment. 

6.4.2 Helium 

Fig. 6 shows results for helium for log(R) = - 1, - 2, - 3 and 
-4. There are three maxima due to He0 in excited states, 
He0 in its ground state and He+ in excited states, and He+ in 
its ground state. 

6.4.3 Low metal abundances 

Fig. 7 shows two plots for \og(R)= ~3. The first is for 
X=0.7, Z = 0.0 (implying 7=0.3) and the second for 
X=0.7, Z = 0.001. These are cases that may be of interest 
for studies of RR Lyrae stars. In the second plot we show, as 
a thin line, the results for X= 0.7, Z = 0.0. It is seen that the 
‘metals’, even with abundances as low as 0.1 per cent by 
mass, make significant contributions to the opacity at higher 
temperatures. 

6.4.4 Solar abundances 

Opacities for A=0.7, Z = 0.02 and S92 abundances are 
given in Table 4 and plotted in Fig. 8 for log(R) = - 1, - 2, 
-3, -4, -5 and -7. In general, there are four maxima. 
The first two are mainly due to H and He and have been 
discussed in Sections 6.4.1 and 6.4.2. The other two are 
mainly due to the ‘metals’. The maximum at log( T ) — 5.3 is 
sometimes referred to as the ‘Z-bump’; it is of particular 
importance for pulsation studies. 

Fig. 9 shows, for the case of log(R)= —3, the contribu- 
tions from four different groups of elements. In producing 
these plots we consider for all cases the same chemical 
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Table 4. Rosseland mean opacities for X=0.7, Z = 0.02 and S92 abundances. Values 
presented with 7cR in cm2 g_ ^ 

log(T) log(E) = 

-7.0 -6.5 

3.500 -4.172 -4.177 
3.550 -3.927 -4.019 
3.600 -3.299 -3.478 
3.650 -2.527 -2.747 
3.700 -1.773 -2.004 
3.750 -1.122 -1.330 
3.800 -0.679 -0.799 
3.850 -0.536 -0.535 
3.900 -0.524 -0.488 
3.950 -0.528 -0.493 
4.000 -0.526 -0.501 
4.050 -0.501 -0.488 
4.100 -0.482 -0.466 
4.150 -0.467 -0.451 
4.200 -0.456 -0.435 
4.250 -0.451 -0.427 
4.300 -0.445 -0.418 
4.350 -0.432 -0.401 
4.400 -0.424 -0.390 
4.450 -0.404 -0.370 
4.500 -0.389 -0.347 
4.550 -0.387 -0.346 
4.600 -0.380 -0.337 
4.650 -0.384 -0.344 
4.700 -0.384 -0.347 
4.750 -0.390 -0.351 
4.800 -0.393 -0.360 
4.850 -0.395 -0.360 
4.900 -0.386 -0.353 
4.950 -0.374 -0.343 
5.000 -0.354 -0.325 
5.050 -0.302 -0.277 
5.100 -0.236 -0.205 
5.150 -0.176 -0.136 
5.200 -0.133 -0.075 
5.250 -0.136 -0.061 
5.300 -0.179 -0.089 
5.350 -0.244 -0.151 
5.400 -0.313 -0.232 
5.450 -0.377 -0.311 
5.500 -0.418 -0.374 
5.550 -0.441 -0.412 
5.600 -0.450 -0.432 
5.650 -0.455 -0.443 
5.700 -0.456 -0.447 
5.750 -0.458 -0.449 
5.800 -0.459 -0.451 
5.850 -0.460 -0.453 
5.900 -0.459 -0.453 
5.950 -0.457 -0.451 
6.000 -0.453 -0.448 
6.050 -0.450 -0.442 
6.100 -0.449 -0.438 
6.150 -0.453 -0.439 
6.200 -0.458 -0.447 
6.250 -0.462 -0.455 
6.300 -0.464 -0.459 
6.350 -0.465 -0.462 
6.400 -0.466 -0.463 
6.450 -0.467 -0.464 
6.500 -0.467 -0.465 
6.550 -0.467 -0.466 
6.600 -0.468 -0.467 
6.650 -0.469 -0.468 
6.700 -0.470 -0.469 
6.750 -0.470 -0.469 
6.800 -0.470 -0.469 
6.850 -0.471 -0.470 
6.900 -0.471 -0.471 
6.950 -0.472 -0.472 
7.000 -0.473-0.473 

-6.0 -5.5 -5.0 

-4.180 -4.186 -4.197 
-4.076 -4.102 -4.108 
-3.641 -3.781 -3.889 
-2.957 -3.154 -3.330 
-2.231 -2.452 -2.652 
-1.544 -1.756 -1.957 
-0.947 -1.110 -1.269 
-0.548 -0.588 -0.649 
-0.420 -0.323 -0.218 
-0.416 -0.276 -0.064 
-0.433 -0.297 -0.065 
-0.439 -0.322 -0.106 
-0.423 -0.328 -0.144 
-0.408 -0.317 -0.147 
-0.395 -0.311 -0.153 
-0.383-0.303 -0.159 
-0.374 -0.296 -0.155 
-0.354 -0.277 -0.143 
-0.336 -0.256 -0.127 
-0.309 -0.219 -0.084 
-0.277 -0.174 -0.028 
-0.271 -0.147 0.029 
-0.266 -0.138 0.064 
-0.273 -0.148 0.062 
-0.281 -0.161 0.045 
-0.293 -0.187 0.005 
-0.301 -0.200 -0.023 
-0.305 -0.210 -0.042 
-0.300 -0.212 -0.055 
-0.291 -0.203 -0.053 
-0.276 -0.193 -0.047 
-0.234 -0.156-0.017 
-0.161 -0.090 0.039 
-0.083 -0.009 0.115 
-0.005 0.084 0.213 
0.028 0.140 0.291 
0.018 0.151 0.323 

-0.035 0.111 0.300 
-0.123 0.026 0.230 
-0.215 -0.077 0.120 
-0.299 -0.174 0.016 
-0.361 -0.265 -0.101 
-0.399 -0.332 -0.201 
-0.421 -0.375 -0.275 
-0.431 -0.399 -0.327 
-0.437 -0.411 -0.355 
-0.440 -0.418 -0.371 
-0.443 -0.423 -0.381 
-0.443 -0.425 -0.386 
-0.442 -0.425 -0.390 
-0.439 -0.423 -0.390 
-0.432 -0.416 -0.384 
-0.426 -0.408 -0.377 
-0.422 -0.398 -0.364 
-0.427 -0.397 -0.354 
-0.439 -0.408 -0.355 
-0.450 -0.426 -0.373 
-0.455 -0.440 -0.398 
-0.459 -0.447 -0.417 
-0.461 -0.453 -0.429 
-0.462 -0.456 -0.437 
-0.464 -0.458 -0.442 
-0.465 -0.460 -0.447 
-0.466 -0.463 -0.452 
-0.467 -0.464 -0.455 
-0.468 -0.466 -0.458 
-0.469 -0.467 -0.461 
-0.469 -0.467 -0.462 
-0.470 -0.467 -0.463 
-0.470 -0.468 -0.464 
-0.471 -0.469 -0.464 

-4.5 -4.0 -3.5 

-4.212 -4.216 -4.190 
-4.095 -4.051 -3.956 
-3.950 -3.942-3.841 
-3.473 -3.555 -3.551 
-2.824 -2.935 -2.944 
-2.122 -2.230 -2.248 
-1.406 -1.489 -1.501 
-0.704 -0.735 -0.727 
-0.123 -0.048 0.021 
0.196 0.439 0.629 
0.259 0.629 0.974 
0.220 0.626 1.055 
0.154 0.549 0.999 
0.117 0,477 0.912 
0.099 0.442 0.853 
0.076 0.412 0.824 
0.071 0.395 0.807 
0.079 0.402 0.814 
0.086 0.407 0.826 
0.128 0.443 0.859 
0.189 0.506 0.921 
0.263 0.582 0.994 
0.345 0.694 1.105 
0.368 0.762 1.208 
0.353 0.753 1.218 
0.304 0.703 1.167 
0.255 0.638 1.094 
0.220 0.580 1.023 
0.196 0.539 0.963 
0.185 0.519 0.934 
0.184 0.511 0.924 
0.208 0.529 0.934 
0.252 0.562 0.958 
0.314 0.608 0.993 
0.405 0.680 1.040 
0.492 0.753 1.083 
0.544 0.812 1.129 
0.539 0.824 1.145 
0.487 0.792 1.135 
0.389 0.717 1.081 
0.282 0.617 0.996 
0.147 0.486 0.887 
0.031 0.377 0.795 

-0.077 0.254 0.688 
-0.169 0.133 0.569 
-0.232 0.022 0.435 
-0.268 -0.056 0.317 
-0.293 -0.111 0.221 
-0.304 -0.139 0.159 
-0.314 -0.160 0.117 
-0.319 -0.173 0.090 
-0.319-0.182 0.069 
-0.314 -0.185 0.052 
-0.303 -0.181 0.045 
-0.288 -0.172 0.041 
-0.276 -0.153 0.051 
-0.282 -0.143 0.067 
-0.305 -0.149 0.078 
-0.339 -0.178 0.067 
-0.368 -0.224 0.030 
-0.387 -0.264 -0.025 
-0.401-0.298 -0.085 
-0.412 -0.325 -0.142 
-0.421-0.345 -0.185 
-0.429 -0.365 -0.226 
-0.436-0.381 -0.263 
-0.442 -0.396 -0.295 
-0.447 -0.408 -0.323 
-0.451 -0.418 -0.346 
-0.453 -0.425 -0.364 
-0.453 -0.428 -0.377 

-3.0 -2.5 -2.0 

-4.120 -3.997 -3.815 
-3.793 -3.560 -3.280 
-3.627-3.312 -2.940 
-3.414 -3.144 -2.769 
-2.862 -2.680 -2.425 
-2.165 -2.012 -1.805 
-1.436 -1.300 -1.123 
-0.668 -0.567 -0.427 
0.092 0.178 0.281 
0.767 0.872 0.966 
1.236 1.419 1.551 
1.447 1.754 1.969 
1.456 1.875 2.205 
1.384 1.857 2.283 
1.310 1.793 2.272 
1.276 1.753 2.243 
1.271 1.753 2.240 
1.280 1.775 2.277 
1.303 1.807 2.321 
1.340 1.852 2.376 
1.401 1.915 2.445 
1.471 1.983 2.516 
1.571 2.069 2.591 
1.675 2.159 2.659 
1.712 2.207 2.700 
1.667 2.181 2.685 
1.590 2.104 2.620 
1.514 2.027 2.544 
1.447 1.961 2.481 
1.407 1.916 2.440 
1.396 1.903 2.423 
1.401 1.903 2.419 
1.417 1.911 2.422 
1.444 1.930 2.426 
1.468 1.937 2.417 
1.481 1.928 2.389 
1.501 1.915 2.344 
1.503 1.892 2.286 
1.492 1.858 2.220 
1.460 1.823 2.157 
1.388 1.766 2.097 
1.300 1.686 2.025 
1.221 1.603 1.936 
1.133 1.523 1.845 
1.039 1.444 1.761 
0.927 1.360 1.685 
0.805 1.265 1.610 
0.690 1.166 1.535 
0.601 1.078 1.462 
0.531 1.001 1.399 
0.482 0.937 1.340 
0.446 0.889 1.292 
0.416 0.850 1.253 
0.395 0.817 1.218 
0.377 0.790 1.187 
0.370 0.769 1.155 
0.373 0.751 1.114 
0.383 0.736 1.064 
0.378 0.710 1.000 
0.349 0.661 0.919 
0.292 0.588 0.823 
0.218 0.501 0.721 
0.139 0.411 0.621 
0.062 0.318 0.528 

-0.007 0.229 0.436 
-0.070 0.148 0.347 
-0.129 0.070 0.265 
-0.179 -0.001 0.188 
-0.223 -0.063 0.117 
-0.259-0.114 0.050 
-0.286 -0.155 -0.009 

of log(*:R) are 

-1.5 -1.0 

■3.566 -3.264 
■2.981 -2.679 
■2.559 -2.194 
-2.345 -1.917 
■2.107 -1.730 
■1.566 -1.299 
-0.919 -0.696 
-0.260 -0.072 
0.407 0.554 
1.064 1.173 
1.654 1.750 
2.119 2.233 
2.439 2.601 
2.626 2.866 
2.702 3.038 
2.719 3.133 
2.730 3.198 
2.774 3.253 
2.832 3.326 
2.899 3.413 
2.978 3.503 
3.054 3.587 
3.127 3.659 
3.176 3.696 
3.197 3.695 
3.178 3.661 
3.123 3.603 
3.054 3.543 
2.995 3.491 
2.957 3.456 
2.938 3.435 
2.930 3.422 
2.923 3.397 
2.908 3.351 
2.874 3.278 
2.817 3.175 
2.737 3.059 
2.641 2.934 
2.540 2.804 
2.445 2.677 
2.362 2.570 
2.286 2.479 
2.203 2.390 
2.105 2.305 
2.011 2.218 
1.931 2.137 
1.860 2.069 
1.797 2.012 
1.738 1.963 
1.687 1.924 
1.644 1.894 
1.609 1.872 
1.580 1.849 
1.549 1.817 
1.511 1.774 
1.464 1.722 
1.407 1.646 
1.335 1.553 
1.244 1.449 
1.140 1.344 
1.034 1.234 
0.929 1.123 
0.825 1.015 
0.726 0.909 
0.633 0.802 
0.542 0.689 
0.446 0.599 
0.354 0.520 
0.271 0.451 
0.199 0.388 
0.139 0.335 
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composition of X=Q.l, Z = 0.02 and S92 abundances, the 
different contributions being progressively ‘switched on’: 
apart from contributing to abundance fractions, the elements 
not ‘switched on’ are completely inert; they contribute 
neither to opacities nor to ionization equilibria. The four 
groups are (a) H and He; (b) H to Ne; (c) H to Ca; and (d) H 
to Ni. The elements C, N, O and Ne in group (b) give signifi- 
cant opacity enhancements, which are particularly important 
at the higher temperatures, log( T ) - 6.3, where they produce 
the fourth opacity maximum. The elements Na, Mg, Al, Si, S, 
Ar and Ca, included in group (c), give contributions that are 
particularly important in the region of log(T)-5.9, where 
the group (b) elements give a minimum. Finally, in group (d), 

« 

ttf) 
o 

os 

öß 
O 

Figure 3. Opacities for hydrogen, for six values of log(Æ). op results 
are shown by full lines and opal results by filled circles. 

Log(p) 

Figure 5. Effects of dissolution of the H ground state for the case of 
log(r) = 6.0. Each of the three plots is against log(p). The top plot 
shows the ground-state occupation probability W(l); the middle 
plot shows the fractional abundance of neutral H, H°/H; and the 
bottom plot shows the ratio r of Rosseland means with and without 
inclusion of the Lyman continuum. 

Log(Ne)= 17.5 Log(Ne)=16.0 

u=hp,/kT 

Figure 4. Opacity cross-section oH for hydrogen at log( T ) = 4.3 and log(iVe) = 16.0 and 17.5, corresponding to log(R) = - 3.176 and - 1.126. 
The cross-sections are in atomic units. 
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818 M. J. Seaton et al. 

we include the iron-group elements which lead to further 
major enhancements, particularly in the region of the Z- 
bump. 

Fig. 10 shows the complexity of the iron monochromatic 
opacities. We consider the case of log( T ) = 5.3, log(Afe) = 18, 
corresponding to \og(R) = - 3.604 for the S92 mix. For this 
plot we use 106 frequency points in the range 0 < w<20. The 
upper plot shows the cross-section afor 0^ w< 10. There are 
two lower plots: that on the left shows the region 4.9 < w< 5.1 
with lines just beginning to be resolved, and that on the right 
shows the region 4.99^ w<5.01 with all detail fully resolved. 
For normal production work it is not necessay to use such a 
high resolution - see Section 5.1. 

In the region of the Z-bump there are very many lines due 
to iron ions in configurations of the type 3sx3p>,3dz and 
3sAf3p>'3dznl. Using PLUS data (see Section 4.1) we have 
checked the convergence of our calculations with respect to 
the inclusion of lines involving such configurations. 

Unless stated to the contrary, whenever we include iron 
we also include the other three iron-group elements, Cr, Mn 
and Ni, and for all iron-group elements we include fine 
structure. Fig. 11 shows effects of including fine structure 
and Cr, Mn and Ni. The most important effects occur at low 
densities. For Fig. 11 we consider \og(R) = - 3 and - 5, and 
the same mixture as that used for Fig. 9. For the left-hand 

plots we ‘switch off’ the opacities of Cr, Mn and Ni and 
consider the increase in opacity that results from the 
inclusion of fine structure for iron. For the right-hand plots 
we consider the effects of including the other three elements. 
The effect of splitting the multiplets into fine-structure 
components is to give additional opacity in regions between 
the lines, as calculated neglecting fine structure. Although the 
combined abundances of Cr, Mn and Ni are less than 8 per 
cent of that of iron, their inclusion can lead to significant 
opacity enhancements. This is because these three elements 
give contributions to monochromatic opacities at frequencies 
where all other contributions are small. The combined effect 
of including fine structure and the other three iron-group 
elements is to increase the Rosseland mean by just over 80 
per cent in the region of the Z-bump for log(R) = - 5. 

6.4.5 Low temperatures 

Our calculations extend down to log( T ) = 3.5, but will not be 
accurate at the lower temperatures because of our neglect of 
molecular contributions. We also neglect other effects, such 
as line broadening by neutral-neutral interactions. It will 
eventually be desirable to take the monochromatic atomic 

DS 

o 

öß 
O J 

Figure 6. Opacities for helium, for four values of log(R). op results 
are represented by full lines, opal results by filled circles. 

00 o J 

Log(T) 

FigureS. Opacities for Z=0.7, Z = 0.02 and S92 abundances. 
Results are given for log(R) = - 1, - 2, - 3, - 4, - 5 and - 7. 

Figure 7. Two plots of opacities for log(R)= - 3. The left-hand plot is for Z=0.7, Z = 0.000, the right-hand one for X=0.7, Z = 0.001. op 
results are represented by full lines, opal results by filled circles. The thin line on the right-hand plot is for the case of the left-hand plot, 
Z= 0.7, 2 = 0.000. 
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opacities and add to them the contributions from molecules. 
In this way one should be able to obtain a smooth join of 
atomic opacities at higher temperatures and molecular 
opacities at lower values. 

It is of interest to consider briefly the behaviour of the 
atomic opacities at low temperatures. In Fig. 12 we plot 
Rosseland means against log(R) for two values of log( T ), 3.5 
and 3.75. We consider four groups of contributions, as in Fig. 
9. The lowest curves in Fig. 12 are for H and He only. There 
are important contributions from Rayleigh scattering. This 
process, considered on its own, gives a divergent Rosseland 

X=0.7, Z=0.02, Log(R)=-3 

  (a) H and He 

(b) H to Ne 

  (c) H to Ca 

  (d) H to Ni 

4 5 6 7 
Log(T) 

Figure 9. Contributions to opacities for 0.7, Z = 0.02, S92 
abundances and log(R)= -3. The same chemical composition is 
used throughout. The contributions to opacities from four different 
groups of elements are progressively ‘switched on’. 

Opacities for stellar envelopes 819 

integral: it is essential to include other processes, such as 
free-free transitions, which dominate for sufficiently small 
frequencies. It can be shown using equation (38) that the 
fractional abundance of H_, N(H")/N(H), increases with 
increasing density, which explains the behaviour of kr at the 
higher densities considered. On the other hand, the ratio 
N(H+)/N(H) increases with decreasing density (at 
sufficiently low densities the hydrogen becomes fully ionized 
even at these low temperatures). The Rosseland mean there- 
fore increases at the lowest density and eventually 
approaches a value dominated by electron scattering. 

For the case of log( T ) = 3.5, inclusion of the elements C to 
Ne produces little change. Dramatic enhancements occur on 
adding the next group, which includes the true metals Na, 
Mg, A1 and Ca. These elements are significantly ionized even 
at such low temperatures and provide additional electrons 
for the formation of H_. The iron-group elements give a 
further modest increase in the electron density at 
log(R)< -2, but iron is mostly neutral at the higher 
densities. 

For log(r) = 3.75 the true metals are no longer of such 
importance at the lower densities, since ionization of H is 
now producing more electrons, but do lead to significant 
enhancements at the higher densities. 

6.4.6 Some sensitivity studies 

Cases for which single-element monochromatic opacities are 
small and sensitive to detailed treatments are discussed in 

(Ö 
C 

b 

4 6 
u=hi//kT 

Figure 10. The opacity cross-section afor iron, with log( T) = 5.30, log(Ne) = 18.0, and the EOS for a solar mix. For such a mix, the value of NQ 
used corresponds to the case of log(R)= -3.604. The two lower plots show the results obtained using an increasingly more expanded 
frequency scale. 
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820 M. J. Seaton et al. 

Log(T) 

Figure 11. The sensitivity of opacity to the inclusion of fine structure (left-hand plots) and to the inclusion of the iron-group elements Cr, Mn 
and Ni (right-hand plots). The results are shown for log(Æ) = - 3 (upper plots) and ^gf/?) = - 5 (lower plots) and the same chemical compo- 
sition as that used for Fig. 8. 

Figure 12. Opacities at low temperatures, log( T ) = 3.50 and 3.75. Symbols for the groups of elements included are as in Fig. 9. 

Appendix A, Section A3.3. We introduce a parameter 
POP MIN and include all excited states with fractional popu- 
lations greater than POPMIN. Two sets of calculations have 
been made. In the first we use POPMIN = 10"8 and omit the 
factor (a)la)n)A in (A21). In the second we use 
POPMIN = 10“10 and include the factor (cu/ö>„)4, which 
gives a reduction in the contributions from the far red-wings 
of fines. For single-element opacities we find significant 
differences between the Rosseland means from those two 
runs, in regions where these means are small. When we 
calculate opacities for mixtures, however, we find that these 
two sets of calculations give results that are almost exactly 
the same. This is because, in regions where the mono- 
chromatic opacity for any one element is small, other 
elements will come in and give larger contributions. 

It is also necessary to consider the sensitivity to values 
adopted for the pressure-broadening parameters, y, for the 
spectral fines. There is little sensitivity at high densities, 
where the fines become smeared out to give a quasi- 
continuum, or at low densities, where the profiles are mainly 
determined by Doppler broadening and radiation damping. 

At intermediate densities the main quantity of interest is the 
frequency shift from the fine centre, Aco, at which the fine 
opacity reaches some specified fraction (say one-half) of the 
background continuum opacity. For the wings of Lorentz 
profiles we have Aco °c /ÿ. A number of test calculations have 
been made with all values of y increased by a factor of 2. In 
many cases we find that such changes in the values of y do 
not lead to changes in the Rosseland means by more than a 
few per cent. There are, however, some sensitive cases. For 
example for a solar mix with log( T) = 52 and log(7Ve) =15.5, 
giving log(R)= — 5.803, we obtain a 33 per cent increase in 
the Rosseland mean on replacing y by 2 x y for all iron fines. 

7 COMPARISON WITH OTHER 
CALCULATIONS 

7.1 Comparison with laol 

Fig. 13 gives a comparison of laol and op opacities, the 
former being interpolated from table WKM 10 of Weiss et al. 
(1990). We here consider X=0.7, Z=0.02 and the 
‘Cox-Tabor’ relative abundances of metals, i.e. mixture M4 
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Figure 13. Rosseland mean opacities for X=0.1, Z = 0.02, and Cox-Tabor abundances. Open circles represent results from laol, full lines 
those from op. 

of Weiss et al. The differences between the laol and op 
results are largest in the region of the Z-bump and increase 
with decreasing density. For \og(R)= -4 and log(T)- 5.3 
the Rosseland means differ by a factor of about 3. 

Magee, Merts & Hübner (1984), in defence of the laol 
opacities, argued that the enhancements postulated by Simon 
(1982) were incompatible with atomic physics. The deficien- 
cies in the laol work have been discussed in several of the 
opal papers (see Rogers & Iglesias 1992). The most serious 
deficiencies concern the treatments of the spectral lines: in 
particular, the almost complete neglect of term-splitting and 
the neglect of transitions with Arc = 0. Magee et al. put some 
emphasis on the fact that, in the laol work, /-sum rules are 
correctly conserved, and this is discussed further by 
Sampson (1985). For the calculation of Rosseland means, 
however, a crucial question concerns the distribution of 
oscillator strength with frequency. The results obtained if 
one includes just one strong line for all transitions between 
two configurations are very different from the results 
obtained if one allows for all multiplet structures. We have 
seen that further changes can occur if the multiplets 
themselves are split into fine-structure components. 

7.2 Comparisons with opal 

7.2.1 Equations of State 

Although the formulations of the EOS problem used by opal 
and op appear to be very different, comparisons made by 
Däppen, Lebreton & Rogers (1990b), Däppen, Keady & 
Rogers (1990a) and Däppen (1991) show a generally close 
agreement between the opal and op results for thermo- 
dynamic properties. For a few selected cases, comparisons of 
ionization equilibria have been made and good agreement 
obtained. Hummer (1988b) raises some questions concern- 
ing populations of high states which, according to the op 
work, are highly dissolved. 

7.2.2 Hydrogen and helium 

In Figs 3 and 6, for hydrogen and helium, we include the 
opal results, shown as filled circles. Fig. 3 shows close agree- 
ment for hydrogen. In the region of the first maximum, 
log( T ) - 4, there is some sensitivity to the treatment of the 
far wings of the Lyman lines. In this region the largest 

differences are seen for log(R) = - 1, where the opal results 
are about 10 per cent higher than those from op. At higher 
densities there are differences of up to 13 per cent, with the 
opal results being the smaller. These differences occur in 
regions beyond, or close to, our boundary for envelopes 
[log(p)= -2] and are almost certainly due to screening 
effects included in opal but neglected in op. For hydrogen 
there is good agreement at the lowest temperatures con- 
sidered (opal goes down to T= 6000, log( 7 ) = 3.778). 

Fig. 6 shows that the agreement for helium is also 
generally close. There are some differences in the region of 
the first maximum, with the opal results being smaller than 
those of op by up to 20 per cent at log(R)= -1. Those 
differences are probably within the uncertainties in the 
theories used for treating the wings of the Hei resonance 
lines. There are some significant differences at the lowest 
temperatures considered. Fig. 14 compares results for 
log(R)= - 1; similar discrepancies occur for other values of 
log(fi). 

7.2.3 Solar mix - without Cr, Mn and Ni 

To compare like with like, we consider the 14-element G91 
mix from opal (table 1 of Iglesias et al. 1992), omitting Cr, 
Mn and Ni. Small adjustments are made in the abundances of 
Ca and Fe in order to compensate partially for these 
omissions. We include fine structure for iron in both the op 
and the opal data (the latter from Iglesias et al. 1992). Fig. 15 
gives comparisons for X=Q.l, Z = 0.02. The overall agree- 
ment between op and opal is seen to be satisfactory. 

For the smaller values of log(R), op gives a Z-bump in the 
vicinity of log( 7 ) - 5.3 which is slightly lower than that given 
by opal and is shifted to slightly higher temperatures. 

At temperatures in the range log(7) = 4.0-4.5, the opal 
opacities are larger than those from op; in this region opal 
has larger enhancements from the inclusion of iron fine 
structure. The results are in good agreement for log( 7 )<4.0 
(the differences found in results for helium - see Fig. 14 - are 
of little importance for the mixture opacities). Fig. 16 shows 
low-temperature results for log(R) = - 2. 

There are just two regions in which the opal opacities are 
30 per cent larger than the op ones. The first is at high 
densities, close to or beyond the boundary of the regions that 
we define as envelopes. Taking the limiting density to be 
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Figure 14. Rosseland mean opacities for helium at low tempera- 
tures. The case of log(R) = - 1 is shown, op results are represented 
by the full line, opal results by the filled circles. 

Log(T) 

Figure 15. Opacities for X=0.1, Z = 0.02, and the 14-element 
G91 mix (omitting Cr, Mn and Ni), op results are represented by full 
lines, opal results by filled circles. Plots for five values of log(R) are 
shown. 

Figure 16. Low-temperature opacities for log(R)= -2 are shown, 
for the same mixture as in Fig. 15. op results are represented by full 
lines, opal results by filled circles. 

log(p) = - 2, we obtain \og{R) =16-3 log( T ) for the 
boundary: hence log(T) = 5.667 for \og{R)=-l and 
log(T) = 6.0 for \og(R)=—2. Near to and beyond this 
boundary, it is seen from Fig. 15 that there are differences 

between the op and opal results, with those of opal being the 
larger. We have investigated in some detail the case of 
log( T ) = 6.0 for which, of course, we have \og{R) = log(p). If 
we take the condition for the validity of the op approach to 
be that there should be no significant dissolution of initial 
states contributing significantly to the opacity, then we find 
the condition to be satisfied at log(p) = - 2 but not satisfied 
at log(p)= -1. 

At log( T ) = 6, log(p) = - 2 the opal results are larger than 
those from op by about 20 per cent. For this case we have 
performed some experiments in which we decrease the 
amounts of dissolution. We find that this leads to changes in 
the ionization equilibrium which lead to decreases in the 
Rosseland means, and hence to increased discrepancies with 
opal . The opacity results in this region are certainly sensitive 
to details of the EOS, and it is difficult to say whether the op 
or opal results are to be preferred. Another point we note 
for this case is that there are important contributions from 
lines of the type Is 2p and Is2 ls2p in ions of C, N and O, 
and that the opacities are sensitive to the profile parameters 
used for these lines. 

The case of log( T ) = 6, log(p) = - 1 definitely takes us 
beyond the range of validity of the approximations used in 
the op work. For this case, the opal results are larger than the 
op ones by about 30 per cent. 

The other region with differences of about 30 per cent is 
at low densities and log(T)-5.2, as shown for the case of 
log(R)= -6 in Fig. 15. In this region, as has already been 
noted by Rogers & Iglesias (1992), the calculations are very 
sensitive to details of the atomic physics used and of the 
elements included. For the case of log(T) = 5.2 and 
log(R) = - 6 we have made the experiment of increasing the 
width parameters y for all iron lines by a factor of 2, and find 
that this gives increases of about 30 per cent in the solar-mix 
opacities (see Section 6.4.6). 

A further point concerning opacities at low densities must 
be borne in mind. The Rosseland mean opacities are small 
and the monochromatic opacities, at frequencies between 
spectral lines, may be even smaller. The Rosseland mean 
opacity is meaningful only when the diffusion approximation 
is valid at all frequencies, which requires that all monochro- 
matic optical depths should be large. 

7.2 A Solar mix - inclusion of Cr and Ni 

opal calculations have been made including Cr and Ni for 
log(R)=-5 and for 10 temperatures in the range 
(1.0-8.0)x 105 (see Rogers & Iglesias 1993). Fig. 17 gives a 
comparison between the opal and op calculations for the 
ratios of Rosseland means with and without these other two 
elements. The magnitude of the enhancement is similar in 
both calculations. 

7.2.5 Solar mix - the final results 

Comparisons of like with like are obviously the most 
revealing in discussing the performances of the two sets of 
codes. On the other hand, the astronomer using the new 
opacities may be more interested in comparing the best 
results currently available. To meet this need we give, in Fig. 
18, a comparison of the final op results, including all four 
iron-group elements, and the opal results in which Cr, Mn 
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LOG(T) 
Figure 17. The ratio of Rosseland means with and without 
inclusion of the elements Cr and Ni, for log(R) = - 5. op results are 
represented by the full line, opal results by the filled circles. 

Figure 18. Comparison of op opacities using S92 abundances (full 
lines) and opal opacities using G91 abundances (filled circles), for 
X=0.70, Z = 0.02. The only significant difference between the two 
sets of abundances is the omission of Cr, Mn and Ni in G91. 

and Ni are omitted. The improvement in the agreement 
between op and opal shown in Fig. 18, compared with that 
of Fig. 15, must be regarded as largely fortuitous. 

Quite extensive new pulsation calculations have already 
been made using the new opacities, mainly those from opal 
but also with some use of those from op (Cox 1991; Kovacs, 
Buchler & Marom 1991; Cox et al. 1992; Kiriakidis, El Eid 
& Glatzel 1992; Moskalik, Buchler & Marom 1992; 
Moskalik & Dziembowski 1992; Stothers 1992; Stothers & 
Chin 1992; Dziembowski & Pamyatnykh 1993; Gautschy & 
Saio 1993; Glatzel, Kiriakidis & Fricke 1993; Glatzel & 
Kiriakidis 1993). Those calculations show that use of the 
new opacities resolves a number of outstanding problems in 
the theories of pulsating stars. Further calculations using 
both OP and opal opacities, as considered in Fig. 18, have 
been made by Kanbur & Simon (1994) for beat and bump 
Cepheids. They find that these two sets of opacities give 
pulsation results that are almost exactly the same. 

Opacities for stellar envelopes 823 

7.2.6 A metal-rich case 

For Fig. 19 we use the same relative abundances of metals as 
those used for Fig. 18, but now consider the metal-rich case 
of^ 0.70, Z = 0.04. 

7.3 Summary of comparisons of op and opal 

The following points are worth noting. 

( 1 ) In envelope regions there are probably no important 
differences between the results for opacities due to different 
treatments of EOS problems. 

(2) The op atomic data are more accurate than the opal 
atomic data. There is, however, no reason to suspect 
systematic errors in the opal data; higher accuracy for 
individual transitions may not be important when very large 
numbers of transitions are involved. The comparison of the 
results from the two projects shows, as far as the accuracy of 
atomic data is concerned, that convergence has almost 
certainly been obtained. In addition to the accuracy of 
atomic data, it is also important to consider the completeness 
of the data included. This has been checked in the work of 
both projects. 

(3) op allows for auto-ionization broadening, neglected 
by opal , but neglects pressure broadening of auto-ionization 
features which may be important at higher densities. 

(4) In both projects calculations have been made includ- 
ing fine structure for iron, opal includes intercombination 
lines neglected by op. On the other hand, op includes ‘two- 
electron jumps’ neglected by opal . 

(5) The elements Cr, Mn and Ni are included in the op 
work for all temperatures and densities, opal has included 
these three elements only for a few check points. 

We have not kept an exact count of the amount of super- 
computer time used in the op work. It must certainly be 
measured in thousands of hours. We expect that a com- 
parable amount has been used in the opal work. The two 
projects are entirely independent and it is very gratifying, at 
the end of the day, that there are no serious discrepancies in 
the results obtained. 

8 CONCLUSION 

Extensive atomic data have been obtained in the course of 
the op work and are being made generally available. On 
request, we can provide op Rosseland mean opacities for 
envelopes, for any required chemical mixture. 

The new opacities from op and opal are in substantial 
agreement. For certain regions of temperature and density 
there are large differences between the new opacities and the 
older opacities from laol . The new opacities have been used 
in a wide range of problems: theories of stellar pulsation; 
excitation of pulsation in ß Cephei stars; the dependence of 
pulsation on metallicity; the mass limit for pulsational 
stability; post-main-sequence evolution; and the solar 
radiative interior (a problem outside the range of the op 
work). 

In all cases, use of the new opacities gives improved agree- 
ment between observations and astrophysical theory. We 
conclude that both of Eddington’s clouds have now been 
dispersed. 
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Figure 19. As Fig. 18, using the same relative abundances of 
metals but with 0.70, Z = 0.04. 
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APPENDIX A: DISSOLVED LINES, RAYLEIGH 
SCATTERING AND FAR LINE-WINGS 

We discuss some further technical details concerning 
dissolved lines, Rayleigh scattering and far line-wings. 

A1 Contributions to opacities from dissolved lines 

As levels dissolve one obtains highly perturbed states, 
effectively spread out to give a continuum. In consequence 
the lines in each spectral series become increasingly broad 
and eventually merge into a continuum which is a below- 
threshold extrapolation of that due to photoionization. A 
similar effect can, of course, be described in terms of the 
lowering of the ionization potential of the initial state, but 
such a treatment may not show the transition from broad 
blended lines to a continuum. 

Opacities for stellar envelopes 825 

In this appendix we use atomic units, al, for cross-sections 
and Rydberg units for energies [£(Ry) = 2 x ^(atomic units)]. 
The cross-section for absorption in a spectral line with initial 
level / and final level/, both assumed to be undissolved, is 

(/flm){a)) = 4n2af{f, i)</>{(*)) (undissolved), (Al) 

where co is the photon energy, /(/, /) the oscillator strength, 
the line profile and a the fine-structure constant {a — 

1/137). 
The cross-section for photoionization from level / is 

g<pl>(^) = 4jt2gd//’;), (A2) 
da) 

where d/(c¿>, /)/dco is the differential oscillator strength. 
Consider absorption in a spectral series in which an upper 

level has an effective quantum number v=n-ju, where ^ is a 
quantum defect. The energy of the upper level, relative to the 
ionization limit, is E= - Z2/v2, where Z is the charge on the 
ion core. Assuming ju to be approximately constant, the 
separations between high adjacent levels (n differing by 
unity) is AE = 2Z2/v3. A mean photoabsorption cross- 
section is defined by 

or\cofi) = 4K2axf-^. (A3) J AE 

It may be shown (see, for example, Seaton 1983) that 
afA){w) is the analytic continuation of c/PI)(a>). We assume 
that fully dissolved lines give cross-sections ofA\a)). Let 
be the threshold for true photoionization. Our calculations 
are extended down to 

(o = aji-Z2/vl, (A4) 

with1 v0 = 10, giving cross-sections <7I
,’A (o>). We include 

spectral lines only for states in which the final state has an 
effective quantum number vf<v0. All levels with vf> v0 are 
assumed to be fully dissolved and to give absorption cross- 
sections c/PA)(ft>). 

A 1.1 Non-hydrogenic systems 

For non-hydrogenic systems we use Lorentz line profiles 

(as) 

where x=\a)~ a)fi\. These profiles are, of course, always 
convolved with those for thermal Doppler broadening. 
Consider an upper state /that is partially dissolved. There is 
a probability W(f) that the state exists. Däppen, Anderson & 
Mihalas (1987) argue that, if an atom is in an environment 
such that the upper level exists, then the lower level certainly 
exists. They therefore take the cross-section, for a partially 
dissolved upper state, to be 

W(f) 
a(iine)(ct>) = 4jt2«/(/ i)(/>(w)x —7- (partially dissolved), J W(i) 

(A6) 

Strictly speaking, we take v0 = 10 only when the initial state has an 
effective quantum number v, < 5; if v7 > 5 we take v0 = 2vi. 
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where we recalled that the cross-section is to be multiplied 
by Nl calculated with inclusion of the factor W{i) in (19). 
Däppen et al. take the contribution from dissolved lines to be 

/(«>)= z 
n>2 

fn 
(x)n — a)2 + 2\ynaj ’ 

(All) 

ofV(o))=o^\a>)x W) 
W(i)\’ 

(A?) 

where/is here taken to be a continuous variable correspond- 
ing to the effective quantum number 

In practice it is difficult to use (A7) for complex systems, 
for which configuration-interaction effects can cause ofA)( co) 
to have a complicated dependence on co. For the dissolved- 
line contributions we use Lorentz profiles with widths ô = 
(1/2)AE =Z2/vj. The total contribution from a given upper 
level is then taken to be that obtained from ( A1 ) with 

^(a>) = ^(y,x)x[W(/)/W(/)] + ^(ó,x)x[l-W(/)/W(/)]. 

(A8) 

This gives results similar to those that would be obtained 
using (A6) and (A7), but with a slightly ‘wiggly’ appearance. 

where n = 2 is the first excited state having an optically 
allowed transition to the ground state, wn is the photon 
energy for the l-+n transition, fn=f(n, 1) is the oscillator 
strength for that transition, and yn =fn x yc. This gives the 
following limiting cases: 

(i) the Kramers-Heisenberg dispersion formula 

I(a))= X —2 íot{(o2- o))^ y2; (A12) 
n^2 0) n — 0) 

(ii) 7(0) = P/4, where P is the dipole polarizability of the 
ground state; 

(iii) for cd - con, the usual expression for a line allowing for 
radiation damping in the n-+l transitions, 

oR = 4n2afJ(yn,(D); (A13) 

(iv) oR(a))= Ojin the limit of w oo. 

A 1.2 Hydrogenic systems 

For transitions az-»«' in a hydrogenic ion of nuclear charge 
Z, we use the theory discussed in ADOC XIII. We have 
already taken account of dissolution in calculating the line 
profiles with normalization (45), and equation (A6) is there- 
fore used omitting the factor W(/). The cross-sections 
o{fA){cD) are easily calculated, and equation (A7) is used. The 
theory gives good agreement with experimental results from 
Wiese, Kelleher & Paquette (1972) for the region of high 
blended Balmer lines. 

We are interested in energies od up to and including the 
immediate vicinity of the first line. We put 

/M= 2 ■ od2-cd +2\y2cD 
+ K{a>\ (A14) 

where 

K(o)= Z ^—2- 
n*3 (On-C) 

(A15) 

A good approximation is given by 

A1.3 He i resonance lines 

For the cores of Hei resonances lines (ls21S-* Isnp1?0) we 
use Lorentz profiles with values of y taken from Griem 
(1974). For the wings we use whichever is the larger, the 
Lorentz profile or a modified hydrogenic profile. We use 
accurate values, for He i, of ofl\cD) and ofA\cD). 

A2 Rayleigh scattering 

Rayleigh scattering can be important at low temperatures, at 
which all atoms are mostly neutral. We include it only for 
neutral H and He, assuming that these two atoms will always 
be the most abundant. 

Consider first a classical model of an electron attached to 
a simple harmonic oscillator with frequency cd(). The 
Rayleigh cross-section is 

<tr(«)=ct7-w4|/(ö>)|2, (A9) 

where ax = 8jtct4/3 is the Thomson cross-section, 

/M 
i 

coq — cd2 -\-2iyc cd 
(A10) 

and yc = a3cdq/6 is the classical damping constant. We take 
the quantum-mechanical generalization of (A10) to be 

f 
K((o) = =2

i—2 • (A16) 
CD — CD 

The constants / and öi (which are adjusted to give accurate 
values of the polarizability P) are given in Table Al. 

Using (A14) we obtain 

|/(cü)|2 = /(^)/2.2[/2 + 2(W^-a>2)^(W)] + ^(W)2, (A17) 
(CD2 + CD) 

where 

6(a))= l/{(a)2— cd)2 + y2[2cDl(a)2 + cd)]2}. (A18) 

Table Al. Rayleigh-scattering para- 
meters for H and He. 

H He 

P 4.5 1.38323 

l>2 0.75 1.5597 

/2 0.4162 0.2811 

6 1.016 1.968 

7 0.3975 0.8918 
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In (Al 8), the term in yl is non-negligible only for small 
\a)2-o)\ and we may therefore put [2w/(o>2 + ^)]2== 1 to 
obtain 

a[ to) = 4jt2a<2(co)</>(y2, a))\f2 + 2((ol - (o2)K((o)] 

+ aTa)4K(m)2, (A19) 

where w) is given by (A5) and 

Q{(o) = {2a)2/[a)2((jo +ü)2)]}2' (A20) 

Note that Q(co)-l for o) — o)2 and that Q(a))-4(a>/a>2)4 for 
(JD<£(JD2' 

A3 Far line-wings 

Far line-wings can make significant contributions to 
opacities. Far blue-wings are not usually of much importance 
because to the blue side of a spectral line one has contribu- 
tions from other lines and, eventually, from photoionization. 
Far red-wings can pose problems and, to our knowledge, no 
completely satisfactory theory is yet available. 

The problems encountered are most serious for tempera- 
tures and densities such that most atoms are neutral, since 
then one has only small background contributions from 
electron scattering and electron-ion free-free transitions. 

For the case in which radiation damping is the only line- 
broadening mechanism, equations (A19) and (A20) provide 
convenient working formulae for the region up to and includ- 
ing the vicinity of the first resonance line. In practice it is 
usually necessary to include the effects of pressure broaden- 
ing. The usual pressure-broadening theories give profiles 
with wings behaving like \(jDn — a)\~ß, with /? = 2 or 5/2. Such 
wing formulae are not valid when \ci)n - cd \ is large; they give 
finite values for profiles in the limit of co ^ 0, which are 
certainly incorrect. In some cases we find that the use of such 
profiles can lead to large errors in the calculated single- 
element opacities. 

It follows from (A19) and (A20) that cross-sections calcu- 
lated allowing for radiation damping tend to zero in the limit 
of o;->0, behaving like o>4. A similar behaviour is expected 
when pressure broadening is included. Since we lack a satis- 
factory theory for the far wings of the pressure-broadened 
lines, we make use of formulae based on (A19) and (A20) for 
the red wings of the lines. 

A3.1 Hydrogen lines 

The problem of how to handle far wings in hydrogenic 
systems arises only for the Lyman lines. Consider first the 
lines \-+n with n > 3. In the line-broadening theory used (see 
ADOC XIII) we exclude all microfield broadening that gives 
shifts larger than one-half of the distance to the next line, 
{a)n-a))>{ù)n - a>n_])l2. We do include some contribution 
from electron broadening beyond that point, but the theory 
certainly breaks down if continued much beyond it. Our 
procedure for all lines with n > 3 is to neglect all pressure 
broadening that gives shifts larger than the distance to the 
next lower line, {œn- 0))>{a)n- (on^]i)An using (A19) we do, 
however, include allowance for the radiation-damping far 
wings. 

Opacities for stellar envelopes 827 

For the region of cî>< a>2 we use (A19) with a profile ^2(w) 
calculated allowing for radiation damping and for pressure 
broadening. 

A3.2 Helium lines 

For the higher resonance lines we use Lorentz profiles 
(convoluted with Doppler broadening to give Voigt profiles) 
with parameters y being the sums of contributions from 
electron-impact broadening and radiation damping. The 
profiles are stopped at shifts corresponding to the next lower 
line. For the first resonance line, n = 2, we use a modified 
hydrogenic red wing (allowing for microfield broadening) 
and, for a) < <w2, we use equation (A19). 

A3.3 Other resonance lines 

Our calculations are extended down to temperatures of 
log(r) = 3.5. At the lower temperatures considered we 
encounter special problems concerning far line-wings. 
Neutral atoms provide the dominant ionization stage. For 
elements other than H and He we do not include 
electron-neutral free-free transitions and Rayleigh scatter- 
ing. The main contributions to opacities for these elements, 
at low temperatures and at frequencies of importance for the 
calculation of Rosseland means, are then due to photoioniza- 
tion from excited states (in order to obtain convergence it is 
necessary to include high excited states with fractional 
populations as low as 10"10 or even smaller). In such circum- 
stances the monochromatic opacities are small and we find 
that very far red-wings of resonance lines, calculated using 
Lorentz profiles, can make important contributions. Such 
contributions are almost certainly spurious and, since we 
lack a satisfactory theory for the far-wing profiles, we adopt 
the expedient of multiplying the red-wing profiles by factors 
of (íü/aim„)4: 

f*H«) = (W«„)4x(¡Ky, |co-wn|) (for co < o)n). (All) 

An illustrative result is shown in Fig. Al, which gives the 
cross-section a for Na at log(r) = 4.5, log(Ve)= 17.5 [corre- 

FigureAl. The opacity cross-section o for Na, log(T) = 4.5, 
log(7Ve) = 17.5. For these conditions, 98 per cent of the Na is in the 
Ne-like stage, Na n. The plot shows the effects of far line-wings. The 
dashed line shows the result without the factor (a)/co„)4 in equation 
( A21 ), and the full line the result with that factor. 
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sponding, for a solar mix, to log(p)= — 6.16, 
\og(R) = - 1.66]. For this case, 98 per cent of the Na is in the 
ionization stage Nan and, using Lorentz profiles, there are 
large contributions to the Rosseland mean from far wings of 
the lines Nan 2p6->2p5ns, nd. The dashed line in Fig. A1 is 
calculated using unmodified Lorentz profiles, and the full 

line with inclusion of the factor {a)/(on)4 in (A21), which is 
seen to result in a marked decrease in the contributions from 
the line wings. The Rosseland means are 10.57 x 10"6 and 
4.53 xl0~6 for the two cases, in units of üq. Use of the 
factors (a)/(on)4 as in (A21) or Qn{(o) = {2a)2/[a>n{(o +œn)]}2 

as in (A20) gives nearly the same result. 
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