Newton vs. Einstein

Friday, October 23
Next planetarium shows: Tue, Wed

Einstein – Newton smackdown!

Albert Einstein – 20th century Isaac Newton – 17th century

Two different ways of thinking about gravity and space.

The Way of Newton:

Space is static (not expanding or contracting) and flat.

("Flat" means that all Euclid’s laws of geometry hold true.)
“Objects have a natural tendency to move on straight lines at constant speed.”

However, we see planets moving on curved orbits at varying speed.

“There is a force acting on the planets – the force called GRAVITY.”

The gravitational force depends on a property that we may call the "gravitational mass", \(m_g \),

\[
F_g = G \frac{m_g M_g}{r^2}
\]

Newton’s 2\(^{nd}\) law of motion gives the acceleration in response to any force (not just gravity)!

The acceleration depends on a property that we may call the "inertial mass", \(m_i \),

\[
a = \frac{F}{m_i}
\]
If a gravitational force is applied to an object with gravitational mass m_g and inertial mass m_i, its acceleration is

$$a = \frac{F_g}{m_i} = \frac{GM_g}{r^2} \times \frac{m_g}{m_i}$$

Truly astonishing and fundamental fact of physics:

$$m_g = m_i$$

for every known object!

This equality is known as the "equivalence principle".

The equivalence principle led Einstein to devise his theory of General Relativity.

Let's do a "thought experiment", of the kind beloved by Einstein.
Two ways of thinking about a bear:

1) Bear has constant velocity, box is accelerated upward.
2) Box has constant velocity, bear is accelerated downward by gravity.

Two ways of thinking about light:

1) Light has constant velocity, box is accelerated upward.
2) Box has constant velocity, light is accelerated downward by gravity.

Einstein’s insight:

Gravity affects the paths of photons, even though they have no mass!

Mass and energy are interchangeable: \(E = mc^2 \)
Newton Einstein
Mass & energy are very different things.
Space & time are very different things.

Mass & energy are interchangeable: $E = mc^2$
Space & time are interchangeable: part of 4-dimensional space-time.

Light takes the shortest distance between two points.
In flat space, the shortest distance between two points is a straight line.
In the presence of gravity, light follows a curved line.
In the presence of gravity, space is not flat, but **curved**!

A third way of thinking about a bear:

3) No forces are acting on the bear; it’s merely following the shortest distance between two points in space-time.
The Way of Newton:
Mass tells gravity how much force to exert; force tells mass how to move.

The Way of Einstein:
Mass-energy tells space-time how to curve; curved space-time tells mass-energy how to move.

Objects with lots of mass (& energy) curve space (& distort time) in their vicinity.

Mass & energy cause space to curve. This curvature causes an observed bending of the path of light.

This is called “gravitational lensing”.
The Big Question:

How is space curved on large scales (bigger than clusters of galaxies)?

That depends on how mass & energy are distributed on large scales.

The Cosmological Principle:

On large scales (bigger than clusters of galaxies) the universe is homogeneous and isotropic.

homogeneous = the same everywhere isotropic = the same in all directions

There are three ways in which space can have homogeneous, isotropic curvature on large scales.

(Apology: describing the curvature of 3-dimensional space is difficult; I'll show 2-dimensional analogs.)
(1) This space is **flat** (or Euclidean):

![Flat Space](image)

(2) This space is **positively** curved:

![Spherical Space](image)

(3) This space is **negatively** curved:

![Hyperbolic Space](image)
If space has **positive curvature**, it has a **finite volume**, but **no boundary**.

Analogy: the Earth’s surface has **positive curvature**. It has a **finite area**, but **no edge**.

About faster-than-light motions...

\[v = H_0 \, d \]

If \(d > c/H_0 \), then \(v > c \).

Should we be worried that very distant galaxies are moving away faster than the speed of light?

No, not really.

Einstein’s theory of special relativity (1905) deals with the special case in which space is flat & static.

Special relativity states that things can’t move through space faster than the speed of light.
Einstein’s theory of general relativity (1915) deals with the general case in which space can be curved & expanding.

General relativity states that space itself can expand faster than light.

Two galaxies can be moving away from each other faster than light if their motion is associated with the expansion of space.

Monday’s Lecture:
Is the Universe Infinite?

Reminders:
Read Chapter 7 by Monday.
Planetarium shows Oct 27 & 28.
Midterm exam Friday, October 30.