ASTRONOMY 143: The History of the Universe Professor Barbara Ryden

PRACTICE MINI-EXAM

Potentially useful numbers:

```
1 astronomical unit (AU) = 150,000,000 kilometers = 1.5 \times 10^{11} meters 1 parsec (pc) = 206,000 AU = 3.1 \times 10^{13} kilometers = 3.1 \times 10^{16} meters 1 megaparsec (Mpc) = 1,000,000 parsecs 1 year = 32,000,000 seconds Diameter of Earth = 12,800 kilometers Mass of Earth = 6 \times 10^{24} kilograms Diameter of Sun = 109 \times diameter of Earth = 1,400,000 kilometers Mass of Sun = 330,000 \times mass of Earth = 2 \times 10^{30} kilograms Speed of light = 300,000 \,\text{km/sec} Hubble constant = H_0 = 71 \,\text{km/sec/Mpc} Hubble time = 1/H_0 = 1.4 \times 10^{10} years Hubble distance = c/H_0 = 4300 \,\text{Mpc} Critical density = 10^{-26} \,\text{kg/m}^3
```

Note: The actual final exam will have 15 short-answer problems (3 points each), 3 mathematical problems (10 points each), and 1 essay question (25 points). This mini-exam contains 8 short-answer problems and 2 mathematical problems.

Short-Answer Problems

1) Which has the greater energy: a photon of infrared light or a photon of ultraviolet light?
2) Which is longer: a sidereal day or a solar day?
3) Arrange the following objects in order of increasing mass: brown dwarf, Jupiter, Sun, Earth.
4) Two stars have the same luminosity. One star has a parallax of 0.1 arcseconds. The other has a parallax of 0.5 arcseconds. Which star has the greater flux?
5) If the density of the universe were greater than the critical density, would the universe be negatively curved, positively curved, or flat?
6) A newly formed zircon crystal contains 1000 uranium-238 atoms. How many uranium-238 atoms will be left after two half-lives?

7) Which contributes most to the average density of the universe: dark en-

8) How long after the Big Bang did the first galaxies form?

ergy, dark matter, or ordinary matter?

Mathematical Problems

- 9) The star named "Gliese 710" is at a distance $d=15\,\mathrm{parsecs}$ from the Sun.
- a) What is the distance from the Sun to Gliese 710, measured in kilometers?
- b) From the Doppler shift of Gliese 710, it is known to be coming closer to the Sun, with a radial velocity $v=-24\,\mathrm{km/sec}$. If Gliese 710 is moving straight toward the Sun, how many years will it be until they collide?

- 10) Ordinary matter provides 4% of the critical density of the universe.
- a) What is the average density of ordinary matter in the universe, given in units of kilograms per cubic meter?
- b) Suppose that the ordinary matter consisted entirely of regulation bowling balls, each with a mass $M_{\rm bb} = 7 \, \rm kg$. How many bowling balls, on average, would there be in one cubic astronomical unit (AU) of space?