
1) Suppose that you have used a Cepheid variable star as a “standard candle” to compute the
distance to a particular galaxy. The distance you computed is r = 35 Mpc. Much to your em-
barassment, you find that the Cepheid variable star has a luminosity L that is actually twice the
luminosity you assumed when making your calculation. Is the galaxy closer or farther than you
originally calculated? What is the true distance to the galaxy?

This question has two parts, both of which are a little tricky. With a little bit of thinking about
the big picture, however, the answer should become clear. Before answering the question, some
background explanation may prove useful.

Luminosity (L), flux (f , a.k.a. brightness), and distance (r or d) are intimately related concepts.
Mathematically, the are related as follows:

f =
L

4πd2
↔ r =

√

L

4πf

Luminosity is an intrinsic property of an object; it’s the amount of light (or energy or whatever)
emitted per unit time (i.e., watts). Luminosity is an attribute that is completely independent

of any observer. When you’re in the hardware store and you see lightbulbs with different wattage
ratings, those numbers tell you (more or less) the total energy that will be emitted by that bulb
every second you leave it on (that’s its luminosity). Importantly, the bulb does not care if you’re
nearby, far away, or maybe not even home! Its luminosity, i.e. the energy it emits while turned on,
will be the same no matter where you are.

Unlike luminosity, distance (r) and flux (f) are not intrinsic properties of an object. Both of
these quantities are only have meaning through the eyes (or camera) of some observer. Distance is
self-explanatory; it’s simply how far away you are from the light source in question. Flux is a fancy
technical name for brightness. It’s literally how bright some object looks. A light bulb that appears
dim from down the hall would be extremely bright if it were just inches from your face! That’s flux.

In practice, flux is what you measure and thus it’s what you know. In Astronomy, flux is mea-
sured with telescopes and cameras. Given a measurement of flux, you can either (a) figure out the
distance to some object and then infer the luminosity or, more likely, (b) figure out an object’s
luminosity and infer the distance to said object. Nature has provided us with a number of different
“standard candles.” These are objects whose luminosity can be determined without already knowing
the distance. These are the astronomical equivalents the light bulb wattage written on the outside
of the box.

One such beast is the Cepheid variable (the topic of this question). These stars pulsate, getting
brighter and fainter over the course of days, weeks or months. It turns out that how long it takes
them to pulsate is directly determined by their luminosity. As a result, we independently figure out
their luminosities. Combining this with how bright they look (their flux), we can compute how far
away they truly are.
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Armed with this information, we can now properly answer this question. The first part asks, if
the Cepheid’s luminosity L were twice as large as originally believed, would the true distance be
closer or farther than the original guess? The true distance must be farther, for reasons that
should become immediately apparent.

An important thing to remember: the flux f is unchanged! Recall that we measured the flux di-
rectly (with telescopes and cameras). A useful restatement of the above answer is: a more luminous
object must be farther away in order to appear equally bright. If two objects appear to have the
same brightness, the one that is intrinsically more luminous must be farther away.

The next (and more important) part of this question requires that you compute this new dis-
tance using the known relationships between flux, luminosity, and distance. This question was a bit
tricky because you didn’t have enough information to simply plug in numbers and get the answer.
Instead, you’re required to compute the new distance relative to the old guess. There are two ways
to rigorously solve this and I’ll go over both.

First, define your terms. There are two distinct situations (guesses, if you prefer). The old guess
(r = 35 Mpc) was incorrect. The new one hopefully won’t be. For simplicity, call the two situations
“old” and “new.” We know: (1-2) the relationship between L, f , and d for both old and new, (3)
the “old” distance, (4) the measured flux is the same in both cases, and (5) the “new” luminosity
Lnew is twice the old (Lold). All told, we have we then (mathematically) have:

rold =

√

Lold

4π fold

↔ fold =
L

4πr2

old

(1)

rnew =

√

Lnew

4π fnew

↔ fnew =
L

4πr2
new

(2)

rold = 35 Mpc (3)

fold = fnew (4)

Lnew = 2 × Lold (5)

These equations are enough to find the answer. The simplest method I found is as follows...
Begin with equations 1 & 2 with flux in terms of luminosity and distance (on the right). Since the
flux is the same for both old and new measurements (equation 4 above), you can combine these
previous equations, finding:

Lnew

4πr2
new

= fnew = fold =
Lold

4πr2

old

→
Lnew

4πr2
new

=
Lold

4πr2

old

Next, cancel the 4π terms from both sides and rearrange to find:

r2

new =
Lnew

Lold

· r2

old → rnew = rold ·

√

Lnew

Lold

Since Lnew/Lold = 2 (equation 5 above) and rold = 35 Mpc, it follows that:

rnew =
√

2 · rold → rnew =
√

2 · 35 Mpc = 49.5 Mpc
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2) As we have seen, hydrogen has an absorption line at a wavelength λ0 = 656.3 nm (as long as
the hydrogen is at rest). You observe a distant galaxy for which the same hydrogen absorption line
has a wavelength λ = 715.4 nm.
a) What is the redshift, z = (λ − λ0)/λ0, of the galaxy?
b) What is the radial velocity of the galaxy, in kilometers per second?
c) From Hubble’s law, what is the distance to the galaxy? [Hint: assume H0 = 71 km/s/Mpc.]

(a) This first part is straight plug and chug. From the question above, we know that λ = 715.4 nm
and λ0 = 656.3 nm. Plugging these in to the formula provided, find:

z =
λ − λ0

λ0

=
715.4 nm− 656.3 nm

656.3 nm
=

59.1 ��nm

656.3��nm
= 0.09005 ≈ 0.09

Please note that the units (nm) have cancelled! Redshift is a so-called dimensionless number, mean-
ing it does not have any units. Since the wavelengths we started with each had 4 digits, it’s OK to
keep all 4 digits in your answer here (0.09005). However, rounding to 0.09 will make the math a bit
easier in the coming parts.

(b) Using your answer to part (a), the radial velocity can be easily computed using the formula
v = c z. Using c = 3.0 × 105 km/s, I find:

v = c z = (3.0 × 105 km/s)(0.09005) = 27, 015 km/s ≈ 27, 020 km/s

As in part (a), I rounded this answer off after 4 digits. Using z = 0.09 instead, you would find
v = 27, 000 km/s = 2.7× 104 km/s which you can easily do without a calculator (since 9× 3 = 27 ).

(c) This last part provides one final plug and chug opportunity. Hubble’s Law, written v = H0 d,
relates the distance of galaxies to their recession (radial) velocity. Using H0 = 71 km/s/Mpc and
the answer from part (b), I find:

v = H0 d → d =
v

H0

=
27, 015 km/s

71 km/s/Mpc

It helps to be extremely careful with units to avoid mistakes, particularly with velocities! To
be sure to get this correct, I rewrite my units as conventional fractions. The Hubble Constant

71 km/s/Mpc thus becomes 71 km
s·Mpc . Plugging this back in, I have:

d =
v

H0

=

(

27, 015 ·
��km

�s

) (

�s · Mpc

71��km

)

=
27, 015

71
Mpc = 380.5 Mpc

Please notice that the km and s units cancel completely, leaving behind Mpc. It’s always important
to check whether or not the units make sense. Fortunately, Mpc is a measure of distance, which is
what we’re looking for.
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3) As we have seen in lecture, if the Hubble constant is H0 = 71 km/s/Mpc, then the Hubble time
is 1/H0 = 14 billion years. Edwin Hubble himself, because he grossly underestimated the distance
to galaxies, believed that the Hubble constant was H0 = 500 km/s/Mpc. For H0 = 500 km/s/Mpc,
what is 1/H0, in billions of years?

You can either calculate the new Hubble time directly with unit conversion, or you can solve for
it by comparison to the actual Hubble time using ratios. Both methods give the same answer (i.e.,
they both work). If you opt to do the unit conversion directly, take great care to make sure that
you cancel out your units properly!

As in the previous question, I’ll rewrite the units in a more standard fraction form to avoid
mistakes:

H0 = 500 km/s/Mpc =
500 km

s · Mpc

Using conversion factors 1 Mpc = 106 pc and 1 pc = 3.08 × 1013 km, I find:

H0 =

(

500��km

s ·���Mpc

) (

1�
��Mpc

106

��pc

) (

1��pc

3.08 × 1013�
�km

)

=
500

3.08 × 1019 s
= 1.62 × 10−17 ·

1

s

Please note two things: firstly, nearly all of the units cancelled. Secondly, H0 has units of inverse

seconds (not seconds)! To compute the Hubble time, I take the reciprocal of the above expression.
I find (taking care not to drop powers of 10!):

1

H0

=
s

1.62 × 10−17
=

1017 s

1.62
= 6.173× 1016 s

Converting the above value to years, I get:

1

H0

=
(

6.173 × 1016
�s

)

(

1 yr

3.15 × 107
�s

)

=
6.173 × 1016

3.15 × 107
yr = 1.96 × 109 yr = 1.96 billion years

Alternatively, you could have noted that the new 1/H0 must be smaller than the true value by
the ratio of H0 values (if H0 gets bigger, then 1/H0 must get smaller). Doing this, you would find:

1

H0

=

(

71������
km/s/Mpc

500������
km/s/Mpc

)

· 14 billion years = 0.142 · 14 billion years = 1.99 billion years

Note that all the units in the H0 ratio above cancelled immediately. Setting up the problem to
intentionally cancel units is a useful way to avoid needless conversion mistakes.
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4) Suppose you found a star within our Milky Way Galaxy whose age was measured to be twice
the Hubble time. Would this discovery make you abandon the Big Bang model for the universe?
If the old star prompts you to abandon the Big Bang model, briefly explain an alternate model that
would be consistent with Hubble’s law (v = H0 d).
If you do not abandon the Big Bang model, briefly explain how a Big Bang universe can contain
stars twice as old as the Hubble time (1/H0).

This question was designed to make you think and to test your understanding of some of the
core concepts of Cosmology, particularly the importance and physical meaning of H0, the Hubble
constant. As usual, however, it is important that you clearly state the problem and allow this to set
up your response (typical essay stuff). Although not all of this would be required to get full credit,
what follows is a fairly a comprehensive (but not exclusive) list of ideas relevant to this question.

Although it would be quite surprising, a star aged more than twice the Hubble time does not
preclude a Big Bang universe. Hubble’s constant (H0) relates the measured distance of galaxies to
their measured recession velocities. In effect, H0 is the current expansion rate of the universe. Its
reciprocal, 1/H0, is known as the Hubble time. If the expansion rate of the universe were constant
for all time, then 1/H0 is how long ago all the observed galaxies would have been densely packed
together (i.e., the Big Bang). Equivalently, if you ran time in reverse, 1/H0 is how long it would
take before the observable universe crunched back together.

If our universe began at the time of the Big Bang, then 1/H0 is the age of our universe as long
as the expansion rate has been constant since the beginning. As a result, a star twice as old as the
Hubble time appears to pose a major problem. Simply put, you cannot have individual objects that
are older than the universe within which they exist! Provided the age measurement of the star is
not grossly wrong (assume it’s ok), the Big Bang model has some explaining to do.

The key to resolving this apparent paradox is that the expansion rate of the universe need not
be constant! If the expansion of the universe had accelerated significantly since this Big Bang, then
the Hubble time could heavily underestimate the true age of our universe. The subtle point here is
that the Hubble time extrapolates the ulinecurrent expansion rate back to zero separation but does
not account for changes in said expansion that could have occurred in our past. As a result, the
Hubble time isn’t -really- the age of the universe. In fact, under certain circumstances, it could be
highly inaccurate!

It’s like trying to figure out the duration of a car trip by measuring how fast you’re going at the
very end. Say you had to travel 100 miles. Towards the end of the trip, you check your speedometer
and see that you’re going 50 miles-per-hour. Naively, this suggests that your trip took only two
hours. What if, however, there was construction early on? You could have been stuck going 5 or
10 mph for a few hours before you actually achieved some useful speed. The whole trip might have
taken 4 or 5 hours, but you wouldn’t know that from the speed you had at the end. In the same
way, the universe could have expanded much more slowly early on. This would give stars plenty of
time to form.

Other explanations are OK too. If you abandoned the Big Bang theory, you could explain what
we observe by invoking a universe that began expanding well after it was created! In such a model,
the universe was never as compacted as it would be in the Big Bang scenario. However, a late start
to expansion would nicely reproduce our observed Hubble law and allow for stars older than the
Hubble time.
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