
1 Monday, October 24: Special Relativity Re-

view

Personally, I’m very fond of classical physics. As we’ve seen recently, you
can derive some very useful electromagnetic formulae without taking into ac-
count quantum mechanics or special relativity. However, just as Max Planck
demonstrated that you sometimes have to take quantization into effect, Al-
bert Einstein (just a century ago) demonstrated that you sometimes have to
take relativistic effects into account. There are times when classical New-
tonian physics is an inadequate approximation to reality. In this course,
I’m trying to minimize the use of quantum mechanics, for fear of intruding
into the domain of your other radiation course (Astronomy 823: Theoretical
Spectroscopy). However, I am going to plunge into special relativity, to see
how our previously derived results vary in the limit that the speed of charged
particles approaches the speed of light.

One of the more entertaining aspects of the universe, at present, is its
great variety. There’s a huge range of densities, temperatures, and electric
and magnetic field strengths. In a few regions of the universe, the tempera-
ture is high enough for electrons to be relativistic (ve ∼ c). For electrons to
have thermal velocities near the speed of light, the thermal energy must be
comparable to or greater than the rest energy of the electron:

kT ≥ mec
2 ∼ 0.5 MeV , (1)

which requires a temperature1

T ≥ mec
2/k ∼ 6 × 109 K . (2)

In a magnetic field of flux density B, an electron on an orbit of radius r will
be relativistic if

ωcycr =
∣
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∣

∣

qeB

mec

∣

∣

∣

∣

r ∼ c . (3)

This requires

|B|r ∼
mec

2

|qe|
∼ 2000 gauss cm . (4)

Near a magnetized neutron star with B ∼ 109 gauss, even electrons moving
in tiny orbits r ∼ 20 nm require relativistic treatment.

1Generally useful approximation: 1MeV → 1010 K.
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The special theory of relativity (alias special relativity) is based on two
simple postulates. The first postulate states:

(1) The laws of physics are the same in all inertial frames of
reference.

An inertial frame of reference is one in which Newton’s Laws of Motion hold
true. Thus, in an inertial frame,

m~̈r = ~F , (5)

where m is a particle’s mass and ~F is the net force on the particle. A rotating

frame of reference is an example of a frame that is not inertial. In a frame
rotating with a constant angular velocity ~Ω, the equation of motion is

m~̈r = ~F − m(2~Ω × ~̇r) − m(~Ω × [~Ω × ~r]) . (6)

Thus, in a rotating frame of reference, there are two fictitious forces; the
“Coriolis force” (proportional to ~Ω × ~̇r) and the “centrifugal force” (propor-

tional to ~Ω × [~Ω × ~r]). An inertial frame may also be defined as a frame in
which there are no fictitious forces.

Any frame that is moving at a constant velocity ~v with respect to an
inertial frame of reference is also inertial. Thus, Einstein’s first postulate is
telling us that the laws of reference are the same in two inertial frames, no
matter what their relative velocity ~v. In fact, this postulate long predates
Einstein. In his book “Dialogue Concerning the Two Chief World Systems”,
Galileo pointed out that the laws of motion on a sailing ship moving a con-
stant speed were the same as those on dry land. The postulate that led to
the mind-bendingly new results of special relativity was Einstein’s second
postulate:

(2) The speed of light in a vacuum (c) is the same in all inertial
frames of reference.

Thus, Einstein implies that the statement c ≡ 299,972,458 cm s−1 is a law
of physics, independent of which inertial reference frame you choose. To
see some of the implications of Einstein’s seemingly innocuous postulates,
consider two inertial reference frames, K and K ′ (Figure 1). The origins of
the two frames coincide at t = 0, but the frame K ′ is moving along the x
axis with respect to the frame K. The velocity of K ′ with respect to K is
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Figure 1: Two inertial frames of reference, with relative velocity v.

~v = vêx. At the moment t = 0, a brief pulse of light is emitted at the origin.
An observer in the K frame sees the shell of light expand outward with speed
c. Thus, in the K frame, the equation of the expanding spherical shell is

x2 + y2 + z2 − c2t2 = 0 . (7)

However, in the K ′ frame, an observer also sees the shell of light expanding
outward with speed c. Thus, in the K ′ frame,

x′2 + y′2 + z′2 − c2t′
2

= 0 . (8)

Notice how subtly I have introduced the notion that t is not necessarily equal
to t′; that clocks can run at different rates in different reference frames. The
two equations (7 and 8) can be satisfied if the coordinates in the two frames
are related by the Lorentz transformation:

x′ = γ(x − vt) (9)

y′ = y (10)

z′ = z (11)

t′ = γ(t − vx/c2) , (12)

where

γ ≡
1

√

1 − v2/c2
. (13)
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Thus, the γ factor approaches infinity as v approaches c. The inverse of the
Lorentz transformation is

x = γ(x′ + vt′) (14)

y = y′ (15)

z = z′ (16)

t = γ(t′ + vx′c2) . (17)

This follows straightforwardly; if K ′ is moving at a speed v with respect to
K, then K is moving at a speed −v with respect to K ′. In general, an event
that occurs at space-time coordinates (x, y, z, t) in the K frame will occur at
a different space-time coordinates (x′, y′, z′, t′) in the K ′ frame. The inability
of the two observers to agree on a time t or a location ~r for a given event
leads to amusing relativistic effects such as length contraction (sometimes
called Lorentz-Fitzgerald contraction) and time dilation.

Since distances and lengths as measured in the two frames differ, particle
velocities as measured in the two frames must also differ. From the Lorentz
transformation,

ux =
dx

dt
=

γ(dx′ + vdt′)

γ(dt′ + vdx′/c2)
=

u′
x + v

1 + vu′
x/c

2
(18)

uy =
dy

dt
=

u′
y

γ(1 + vu′
x/c

2)
(19)

uz =
dz

dt
=

u′
z

γ(1 + vu′
x/c

2)
. (20)

Note the similar form for uy and uz, representing motion perpendicular to ~v.
This indicates that it might be useful to divide ~u (the velocity measured in
the K frame) into a component parallel to ~v and a component perpendicular
to ~v. With this decomposition,

u‖ = ux =
u′
‖ + v

1 + vu′
‖/c

2
(21)

and

u⊥ = (u2
y + u2

z)
1/2 =

u′
⊥

γ(1 + vu′
‖/c

2)
. (22)

This implies that the direction of motion of a particle will differ in the two
inertial frames. Suppose that in the K ′ frame, the particle is moving at an
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angle θ′ relative to ~v, so that u′
‖ = u′ cos θ′ and u′

⊥ = u′ sin θ′. In the K frame,
the particle will be moving at an angle θ relative to ~v, where θ is given by
the relation

tan θ =
u⊥

u‖

=
u′ sin θ′

γ(u′ cos θ′ + v)
. (23)

Although θ′ = 0 implies θ = 0, in general you have tan θ 6= tan θ′ for v > 0.
It is illuminating to consider the case of a particle that is moving perpen-

dicular to the ~v axis, as seen by the K ′ observer. That is, u′
⊥ = u′, u′

‖ = 0,
and θ′ = π/2. As seen by the K observer, the velocity components of the
particle are

u‖ = v (24)

and
u⊥ = u′/γ . (25)

Thus, the velocity perpendicular to ~v is decreased, and the velocity parallel
to ~v is increased. This effect is known as relativistic beaming, and applies to
all particles, even photons. For a photon, u′ = c (of course), and a photon
emerging at θ′ = π/2 in the K ′ frame emerges at an angle

tan θ =
u⊥

u‖

≈
c/γ

v
(26)

in the K frame. In the case of highly relativistic motion of K relative to K ′,
the value of θ reduces to

θ ≈ tan θ ≈
1

γ
¿ 1 . (27)

If radiation is being emitted isotropically in the K ′ frame, half will be emitted
with tan θ′ < π/2. In the K frame, all these photons will be crammed into
the tiny cone with θ < 1/γ.

2 Wednesday, October 26: Electromagnetic

Transformations

There exists an extremely powerful and elegant mathematical formalism for
dealing with Lorentz transformations. Sections 4.2 and 4.3 of the textbook
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go into loving detail, discussing covariant four-vectors, contravariant four-
vectors, second-rank tensors (symmetric and antisymmetric), and, in gen-
eral, all the mathematical apparatus that makes relativistic calculations so
compact in appearance. Since time is short, and I am less interested in math-
ematical elegance than in rough-and-ready physics, I am going to skip over
the mathematically sophisticated parts of chapter 4, and plunge right into
the transformation of Maxwell’s equations in going from one inertial frame
K to another inertial frame K ′.

Einstein’s first postulate stated that the laws of physics are the same in
all inertial frames of reference. Among those laws are Maxwell’s equations.
In an inertial frame K, Maxwell’s equations in a vacuum are

~∇ · ~E = 0 (28)

~∇ · ~B = 0 (29)

~∇× ~E = −
1

c

∂ ~B

∂t
(30)

~∇× ~B =
1

c

∂ ~E

∂t
. (31)

Maxwell’s equations must also hold true in a different inertial frame K ′,
moving at a velocity ~v with respect to K. In both frames, the speed of light
c will be the same. However, the spatial derivatives and time derivatives will
be different in the two frames; as a result, we expect ~E ′ to differ from ~E and
~B′ to differ from ~B.

Rybicki and Lightman, using the full power of tensor analysis, derive the
transformation from ~E to ~E ′ and from ~B to ~B′. In the Feynman Lectures on

Physics (volume II, chapter 26), Feynman computes the Lorentz transform

of ~E and ~B. He says, “It isn’t at all difficult to do; it’s just laborious – the
brains involved are nil, but the work is not.” In other words, the computation
is straightforward but tedious, and I will not grind through all the steps.

What I am going to do is to look at very simple physical models from
which we can derive the transformations. First, consider a simple capacitor
(Figure 2), in which two circular plates of diameter D are separated by a
distance d ¿ D. One plate has a charge +q, and the other has a charge
−q. In an inertial frame K where the capacitor is at rest, the electric field
between the plates is

E = 4πΣ , (32)
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Figure 2: A capacitor: ~E ≈ constant between plates.

where Σ = q/(πD2) is the charge density of the positively charged plate.
This is one of the basic results of electrostatics, and probably has triggered
a flashback to your sophomore physics class. The direction of ~E is perpen-
dicular to the plates, and points from the positively charged plate to the
negatively charged plate. (Note that as long as d ¿ D, the electric field
between the plates is independent of the plate separation d.) The magnetic
flux density B is zero, since there is no current as measured in the K frame.

Consider an inertial frame K ′ moving perpendicular to the capacitor
plates, and thus parallel to ~E, at a speed ~v = ~βc. In this frame, the area of
each plate is unchanged (since length contraction only occurs in the direc-

tion of ~β). Since electric charge q is also unaffected by a switch in reference
frames,2 the charge density Σ′ = Σ is unchanged. Although the distance
between the plates is decreased by length contraction (d′ = d/γ), the electric
field is independent of the the separation between plates. Thus, we learn
that

E ′
‖ = E‖ . (33)

The electric field is unchanged if it’s parallel to the direction of motion ~β.
Now consider an inertial frame K ′ moving parallel to the capacitor plates,

and thus perpendicular to ~E, at a speed ~v = ~βc. In this frame, the circular
plates are contracted to ellipses, with long axis D and short axis D/γ. Since

2The invariance of electric charge is observationally verified to high precision.
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the charge of each plate is still unaffected, the charge density is increased to
Σ′ = γΣ. Thus, we learn that

E ′
⊥ = 4πΣ′ = γ(4πΣ) = γE⊥ . (34)

Thus, the electric field is increased by a factor of γ if it’s perpendicular to the
direction of motion ~β of the inertial frame K ′. In addition, there will now be
a magnetic field B′ between the two plates. Consider yourself as an observer
in the K ′ frame passing between the two plates of the capacitor with a speed
βc. From your point of view, you will see a current sheet of surface current
density µ′ = Σ′βc on one side of you as the negatively charged plate slips past
with speed −βc, and another of surface current density −µ′ = −Σ′βc on the
other side as the positively charged plates slips past. Thus, you are between
two current sheets, effectively infinite in size when d ¿ D/γ. The solution
to this problem is one of the basic results of magnetostatics: the magnetic
field between the current sheets is perpendicular to −~βc, the direction of the
current, and has a magnitude

B′ =
4π

c
µ′ = 4πΣ′β = βE ′

⊥ . (35)

Since the generated magnetic field is perpendicular to both ~β and ~E⊥, we
may write

B′
⊥ = −~β × ~E ′

⊥ = −γ~β × ~E⊥ . (36)

By considering a capacitor in motion, we considered a case in which the
only field in the K frame (the frame in which the capacitor was motionless)

was a constant electric field ~E. In this way, we found how ~E is transformed to
~E ′ (and ~B′) as seen from an inertial frame moving parallel or perpendicular

to ~E. By symmetry, to see how the magnetic flux density ~B transforms, we
should consider a case in which the only field in the K frame is a constant
magnetic field ~B. We can produce a constant ~B by setting up two current
sheets, one of surface current density ~µ, and the other of surface current
density −~µ, separated by a distance d that is small compared to the width
D of the current sheets. In each sheet, the current is created by a surface
charge density −Σe of electrons moving with a drift velocity ±~ue relative
to a surface charge density +Σe of stationary, positively charged ions. The
net surface charge vanishes in the K frame, so ~E = 0 in that frame. The
magnetic flux density in the K frame has the magnitude

B =
4π

c
µ =

4π

c
Σeue , (37)
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and is oriented perpendicular to the electron velocity ±~ue, and parallel to
the current sheets. (This is the same familiar “infinite current sheet” result
that I invoked earlier in the lecture.)

Consider an inertial frame K ′ moving parallel to ~B, and thus perpendicu-
lar to the electron drift velocity ±~ue. In this frame, the width of the current
sheets is contracted by and amount D′ = D/γ; thus, the surface density of
electrons is increased to Σ′

e = γΣe. Thanks to the results of time dilation,
the electron drift velocity is decreased to u′

e = ue/γ. Thus, the effects of time
dilation and length contraction exactly cancel:

B′
‖ =

4π

c
Σ′

eu
′
e =

4π

c
(γΣe)(ue/γ) = B‖ . (38)

Just as E‖ is unchanged by the the switch of inertial frames, B‖ is also
unchanged.

To see how B⊥ is changed by the switching inertial frames, we need to
place ourselves in a frame of reference K ′ that is moving perpendicular to ~B
and parallel to ±~ue. The complete calculation in this case requires computing
the drift velocities u′

e of the electrons in both sheets and the drift velocities
u′

i of the positive ions in both sheets. Then the surface current density in
each sheet is calculated, and the resulting B ′

⊥ is calculated. This is a bit
complicated, algebraically speaking; I, like Rybicki and Lightman, will leave
it as an exercise for the reader, merely quoting the results:

B′
⊥ = γB⊥ , (39)

and
~E ′
⊥ = ~β × ~B′

⊥ = γ~β × ~B⊥ . (40)

Note that an electrically neutral current sheet, with ~E = 0, shows an electric
field when you move past it in a direction perpendicular to ~B. This is because
the electrons and protons are moving with a different velocities parallel to ~β,
and thus show different amounts of length contraction.

Adding together all the terms that we have derived from moving capaci-
tors and current sheets around, we find that

~E ′
‖ = ~E‖ (41)

~E ′
⊥ = γ( ~E⊥ + ~β × ~B) (42)

~B′
‖ = ~B‖ (43)

~B′
⊥ = γ( ~B⊥ − ~β × ~E) . (44)
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