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Notes on the Notes

These lecture notes are the result of my having taught Astronomy 825 several
times, starting in 1993, when my knowledge of radiative gas dynamics was
nearly non-existent. The most valuable resource I found while cramming to
teach the course was the two-volume Physics of Astrophysics set by Frank
Shu. Volume I of Shu’s work is titled Radiation and Volume II is titled Gas

Dynamics, and between them they cover more than you might want to know
about radiative gas dynamics. More recent works that I have consulted while
updating these notes are An Introduction to Astrophysical Fluid Dynamics

by Michael Thompson and Principles of Astrophysical Fluid Dynamics by C.
J. Clarke and R. F. Carswell.

In a way, these (not-a-textbook) notes are a companion to Rick Pogge’s
(not-a-textbook) notes for Astronomy 871, Physics of the Interstellar Medium.
I have attempted to make notation and units consistent between the two sets
of notes. Thus, I adopt cgs units, supplemented by angstroms (Å ), electron
volts (eV), and parsecs (pc).
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Figure 1: Turbulent fluids as drawn by Leonardo da Vinci.



Chapter 1

Fundamentals of Gas Dynamics

Gas dynamics is the study of continuous compressible fluids in motion.
Real gases are not perfectly continuous, since they are made of individual
particles: atoms, molecules, ions, and/or electrons. However, a gas can be
adequately approximated as a continuous fluid when

λ≪ L (1.1)

where λ is the mean free path of the gas particles, and L is the characteristic
size of the system. The mean free path in a gas of neutral particles is

λ =
1

nσ
(1.2)

where n is the number density of particles, and σ is the cross section for col-
lisions. A typical cross section for atoms or small molecules is σ ∼ 10−15 cm2,
or about 1 gigabarn. In air at room temperature, n ∼ 1019 cm−3, and
hence λ ∼ 10−4 cm ∼ 1µm. Thus, a volume of air that is larger than
several microns on a side can be treated as a continuous fluid. In the in-
terstellar medium (ISM), particle number densities are much lower than in
the Earth’s atmosphere. In a molecular cloud, n ∼ 1000 cm−3, and hence
λ ∼ 1012 cm ∼ 0.07 AU. In the warm neutral medium, n ∼ 0.5 cm−3, and
hence λ ∼ 2 × 1015 cm ∼ 100 AU ∼ 6 × 10−4 pc.

The situation is more complicated in a plasma. Consider a gas of fully
ionized hydrogen. The effective radius of interaction re for a free electron
can be found by setting the magnitude of its potential energy at a distance
re from an electron or proton equal to its thermal kinetic energy: is found

1
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by setting
e2

re

∼ mev
2
e . (1.3)

Since mev
2
e ∼ kT , where T is the kinetic temperature of the free electrons,

we can write

re ∼
e2

mev2
e

∼ e2

kT
. (1.4)

The cross section is thus

σ ∼ πr2
e ∼ πe4

k2T 2
, (1.5)

and the mean free path for an electron is

λ ∼ k2T 2

πe4n
. (1.6)

(Note: a more accurate calculation would contain the Coulomb logarithm
ln Λ, but this is good enough for an order-of-magnitude estimate.) In the hot
ionized interstellar medium, T ∼ 106 K and n ∼ 3 × 10−3 cm−3. The mean
free path is thus λ ∼ 4 × 1019 cm ∼ 10 pc.

It’s useful at this point to provide a sketch of the different components of
the ISM. Molecular Clouds consist mainly of molecular gas (H2, CO, etc.)
along with stubbornly solitary He atoms. Typical temperatures and number
densities are

T ∼ 15 K and n ∼> 1000 cm−3 . (1.7)

The Cold Neutral Medium consists mainly of neutral atomic gas (H I,
He I, etc.) Typical temperatures and number densities are

T ∼ 90 K and n ∼ 50 cm−3 . (1.8)

The Warm Neutral Medium consists mainly of neutral atomic gas, but
at a higher temperature and lower density than the Cold Neutral Medium.
Typical temperatures and number densities are

T ∼ 8000 K and n ∼ 0.5 cm−3 . (1.9)

The Warm Ionized Medium consists of partially ionized gas (H I, He I,
H II, He II, He III, etc.) Typical temperatures and number densities are

T ∼ 104 K and n ∼ 0.1 cm−3 . (1.10)
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The Hot Ionized Medium consists of ionized gas at very high tempera-
tures. Typical temperatures and number densities are

T ∼> 106 K and n ∼< 0.003 cm−3 . (1.11)

Although the different components of the ISM are not in perfect pressure
equilibrium, it is notable that the pressures implied by the values of n and T
given above are all within an order of magnitude of each other, with a typical
value

P = nkT ∼ 3 × 10−13 dyne cm−2 ∼ 3 × 10−19 atm . (1.12)

The “atmosphere” (atm) is approximately equal to the pressure of the Earth’s
atmosphere at sea level. The ISM is obviously very low in pressure compared
to the air around us; thus, our intuitions about gas dynamics, which are
largely based on the behavior of air, may not always apply to the ISM.

The intergalactic medium (IGM) is typically at densities much lower than
even the Hot Ionized Medium of the ISM. The Warm/Hot Intergalactic
Medium (WHIM) has typical temperatures and number densities

T ∼ 106 K and n ∼ 5 × 10−6 cm−3 . (1.13)

The intracluster medium (ICM) in dense clusters of galaxies can have

T ∼ 108 K and n ∼ 10−3 cm−3 . (1.14)

Although the intracluster medium is thousands of times higher in pressure
than the WHIM, it is kept in hydrostatic equilibrium by the gravitational
pull of the dark matter in clusters.

Much of the ISM is flowing out of, or accreting onto, compact objects.
Examples of outflow are blast waves, winds, and jets. Examples of accre-
tion are cooling flows and accretion disks. Interesting things also happen
where one phase of the interstellar medium meets another. A shock front
is a boundary between low density, supersonic flow and high density, sub-
sonic flow. An ionization front is a boundary between ionized matter and
neutral matter.

In many astrophysical contexts, radiative effects influence the flow of gas.
Molecular clouds can absorb and emit radiation by rotational and vibra-
tional transitions. Sufficiently energetic radiation can photodissociate the
molecules; the dissociation energy of H2 is 4.48 eV, corresponding to a wave-
length of 2770Å. Neutral atomic gas can absorb and emit radiation through
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bound-bound electronic transitions. Sufficiently energetic radiation can pho-
toionize the atoms; the ionization energy of H is 13.6 eV, corresponding to a
wavelength of 912Å. Ionized gas can emit radiation through bremsstrahlung
(free-free transitions) and radiative recombination. The electrons and ions
can also interact with photons via Compton scattering. In the presence of a
magnetic field, electrons can lose energy by synchrotron radiation.

Radiative transfer in the interstellar medium isn’t always pretty. To make
life simpler, let’s start by considering the dynamics of gas that is not radiat-
ing. A good place to begin is with the Boltzmann Equation.1 At a given
time t, any particle of the gas has a position ~x and a velocity ~v. So, if we live
in a Newtonian deterministic universe, we can compute the development of
a system if we know all the positions and velocities at a given time and if we
know the external forces (gravitational, electrostatic, magnetic, etc.) work-
ing on the particles. This fully deterministic approach, however, becomes a
major pain in the neck as the number of gas particles becomes large. If you
are dealing with many, many gas particles, a probabilistic approach becomes
much more practical and much more useful.

Let f(~x,~v, t)d3xd3v be the probability of finding a gas particle within the
six-dimensional phase space volume d3xd3v at position ~x with a velocity ~v
at time t. The six-dimensional space mapped out by ~x and ~v is known as
phase space. The three-dimensional space mapped by ~x is known as posi-
tion space; the three-dimensional space mapped by ~v is known as velocity
space. The function f(~x,~v, t) is known as the distribution function.

The distribution function is normalized so that
∫ ∫

f(~x,~v, t)d3xd3v = N , (1.15)

where N is the total number of particles in the system. If we choose, we can
also define a mass distribution function

fm(~x,~v, t) = mf(~x,~v, t) , (1.16)

where m is the mass of an individual particle. If n types of particle are
present, each with a different mass, the total mass distribution function is

fm =
n
∑

k=1

mkfk(~x,~v, t) , (1.17)

1The Boltzmann Equation also plays a key role in the dynamics of stellar systems.
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where mk is the mass of the kth type of particle. If particles are neither
created nor destroyed,

∂f

∂t
+

3
∑

i=1

(

ẋi
∂f

∂xi

+ v̇i
∂f

∂vi

)

=
df

dt

∣

∣

∣

c
. (1.18)

The factor on the right hand side of the above equation is the rate at which
particles are bumped into a phase space volume by collisions with other par-
ticles. The word “collisions”, when used in this context, can be misleading,
since it implies that the individual particles behave like billiard balls, inter-
acting only when they touch each other. In an ionized gas, the individual
charged particles interact through long-range electromagnetic forces. A “col-
lision”, in that case, is a close encounter between charged particles during
which the electromagnetic force changes their direction of motion by ∼ 90◦

or more. Similarly, in stellar dynamics, a “collision” between stars is a close
encounter during which gravity changes their direction of motion by ∼ 90◦

or more.
We may rewrite equation (1.18) by making use of the fact that ~̇x = ~v and

that ~̇v = ~g, where ~g is the acceleration of a particle at position ~x with velocity
~v. The gravitational force acting on the particle results in an acceleration

~g = −~∇Φ , (1.19)

where the potential Φ(~x) has contributions both from the self-gravity of the
system of particles and from any external gravitational fields that may be
present.2 The electromagnetic force acting on the particle results in an ac-
celeration

~g =
q

m

(

~E +
~v

c
× ~B

)

, (1.20)

where q is the charge of the particle, m is its mass, ~E is the electric field at
the particle’s location, and ~B is the magnetic field there.

The phase space continuity equation can now be written in the form

∂f

∂t
+

3
∑

i=1

(

vi
∂f

∂xi

+ gi
∂f

∂vi

)

=
df

dt

∣

∣

∣

c
. (1.21)

2These notes are Newtonian. Unless I make an explicit statement to the contrary, all
motions are assumed to be non-relativistic, and gravity is assumed to be an inverse-square-
law force.



6 CHAPTER 1. FUNDAMENTALS OF GAS DYNAMICS

This equation is known as the Boltzmann equation.

In equilibrium, particles are bumped into an element of phase space at the
same rate that they are bumped out, and the collisional term on the right-
hand side is equal to zero. If the collisional term is ignored, the resulting
equation is called the collisionless Boltzmann equation. The collisionless
Boltzmann equation is the basis of stellar dynamics and of hydrodynamics.
However, we are often unable to determine the full velocity distribution at
every point in position space. What we usually want to deal with is the
number density or mass density in position space, plus the mean (or bulk)
velocity of the gas, plus its velocity dispersion.

Now, let’s take the moments of the collisionless Boltzmann equation.
Let’s start with fm (the mass density in phase space) rather than f (the
number density in phase space), because it is useful to think about the con-
servation of mass (m), the conservation of momentum (m × ~v), and the
conservation of kinetic energy (m × v2/2). The mass density in position
space is found by integrating over all velocities:

ρ(~x, t) =
∫

fm(~x,~v, t)d3v . (1.22)

For any measurable quantityQ, the mass-weighted average value at a position
~x at time t is

〈Q〉 =
1

ρ

∫

Qfmd
3v . (1.23)

Integrate the collisionless Boltzmann equation over all velocities:

∂

∂t

∫

fmd
3v +

∑

i

∂

∂xi

∫

vifmd
3v = −

∑

i

gi

∫ ∂fm

∂vi

d3v . (1.24)

The partial differentials have been taken outside the integrals since ~x, ~v, and
t are all independent variables. The right hand side of the above equation
vanishes by the divergence theorem, as long as fm → 0 as v → ∞.

Then
∂ρ

∂t
+
∑

i

∂

∂xi

(ρ〈vi〉) = 0 . (1.25)

Now introduce a new symbol:

~u ≡ 〈~v〉 . (1.26)
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The velocity ~u is the bulk velocity at a given point in space. The velocity
~v of a particular particle may then be broken into two components:

~v = ~u+ ~w , (1.27)

where ~w is the random velocity.
In vector form,

∂ρ

∂t
+ ~∇ · (ρ~u) = 0 . (1.28)

This is the continuity equation. It states that mass is conserved. More-
over, the flow of matter is continuous; mass does not disappear at one point
and simultaneously appear at another point some distance away.

The continuity equation is a single equation in four unknowns (ρ and the
three components of ~v). To obtain more equations, let’s find the next higher
moment of the collisionless Boltzmann equation; multiply by vj and integrate
over all velocities.

∂

∂t

∫

vjfmd
3v +

∑

i

∂

∂xi

∫

vjvifmd
3v = −

∑

i

gi

∫

vj
∂f

∂vi

d3v . (1.29)

Rewriting the integrand on the right hand side, we have

∂

∂t
(ρ〈vj〉) +

∑

i

∂

∂xi

(ρ〈vjvi〉) = −
∑

i

gi

∫

[

∂

∂vi

(vjf) − δijf

]

d3v . (1.30)

Now we use the decomposition ~v = ~u + ~w on the left, and the divergence
theorem on the right (assuming that fmv → 0 as v → ∞). This tells us that

∂

∂t
(ρuj) +

∑

i

∂

∂xi

(ρuiuj + ρ〈wiwj〉) = ρgj . (1.31)

This is the equation of momentum conservation. It is convenient to write
the pressure tensor ρ〈wiwj〉 in the form

ρ〈wiwj〉 = Pδij − πij , (1.32)

where P is the pressure,

P ≡ 1

3
ρ〈|~w|2〉 , (1.33)

and πij is the viscous stress tensor

πij ≡ Pδij − ρ〈wiwj〉 . (1.34)
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It is useful to make this division because in some cases the viscous stress ten-
sor can be ignored. In other cases, the viscous stress tensor can be computed
in terms of the shear of the bulk velocity.

The equation for momentum conservation using the formalism that we
have adopted:

∂

∂t
(ρuj) +

∑

i

∂

∂xi

(ρuiuj + Pδij − πij) = ρgj . (1.35)

The equation can be written in tensor form:

∂

∂t
(ρ~u) + ~∇ · (ρ~u~u+ P

↔

I − ↔
π) = ρ~g . (1.36)

In the above equation,
↔

I is the unit matrix:

↔

I=







1 0 0
0 1 0
0 0 1





 . (1.37)

The tensor product of the velocities is

~u~u =







u1u1 u1u2 u1u3

u2u1 u2u2 u2u3

u3u1 u3u2 u3u3





 . (1.38)

Finally, the viscous stress tensor is the symmetric traceless tensor

↔
π=







π11 π12 π13

π12 π22 π23

π13 π23 −π11 − π22





 . (1.39)

The tensor form of the momentum conservation equation tells us that the
time derivative of a conserved quantity plus the divergence of a flux is equal
to a source term; this is the standard form of a conservation equation.

Let’s go one step further and look at the conservation of kinetic energy.
Multiply the collisionless Boltzmann equation by v2, and integrate over all
velocities.

∂

∂t

∫

v2fmd
3v +

∑

i

∂

∂xi

∫

viv
2fmd

3v = −
∑

i

gi

∫

v2∂fm

∂vi

d3v . (1.40)
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Rewriting the integrand on the right hand side,

∂

∂t
(ρ〈v2〉) +

∑

i

(ρ〈viv
2〉) = −

∑

i

gi

∫

[

∂

∂vi

(v2fm) − 2vifm

]

d3v . (1.41)

Breaking the velocity into its ordered and random components (~v = ~u + ~w)
we find

∂

∂t
(ρu2 + ρ〈w2〉) + (1.42)

∑

i

∂

∂xi

(ρ[uiu
2 + ui〈w2〉 + 2

∑

j

uj〈wiwj〉 + 〈wiw
2〉]) = 2

∑

i

giρui .

Some more definitions: the specific internal energy of a monatomic gas is

ε ≡ 1

2
〈w2〉 ; (1.43)

this is just the energy per unit mass contributed by the random internal
motions. Note that for a monatomic gas

ε =
3

2

P

ρ
. (1.44)

Next, the conductive heat flux is

~F ≡ 1

2
ρ〈~ww2〉 . (1.45)

If the distribution of random velocities ~w is symmetric about zero, then the
conductive heat flux ~F will vanish. However, if ~w has a skewed distribution,
then the “hot” particles (those with large random velocities) will have a net
drift relative to the “cold” particles.

Using the newly defined quantities, the equation of energy conservation
is

∂

∂t
(
1

2
ρu2 + ρε) + ~∇ ·

[

(
1

2
ρu2 + P + ρε)~u− ↔

π ·~u+ ~F
]

= ρ~u · ~g . (1.46)

By combining the mass conservation equation with the momentum conser-
vation equation, we can write down an equation for the conservation of the
bulk kinetic energy ( ρu2/2):

∂

∂t
(
1

2
ρu2) + ~∇ · (1

2
ρu2~u) = ρ~u · ~g − ~u · ~∇P + ~u · (~∇· ↔

π) . (1.47)
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Figure 1.1: Jim and Huckleberry Finn, drifting along, are Lagrangian ob-
servers; someone on the bank would be an Eulerian observer of the river.

By subtracting this equation from the equation for the conservation of the
total energy, we find the internal energy equation:

∂

∂t
(ρε) + ~∇ · (ρε~u) = −P ~∇ · ~u− ~∇ · ~F + Ψ , (1.48)

where

Ψ ≡
∑

i,j

πij
∂ui

∂xj

. (1.49)

The function Ψ is the rate of viscous dissipation; viscosity converts bulk
kinetic energy into internal energy.

The partial time derivative of a function Q, which we have written as
∂Q/∂t, is the rate of change as viewed by an observer at a fixed coordinate
position, who is watching the gas flow by. Such an observer is called an
Eulerian observer. An alternative point of view is that of an observer who
is moving along with the bulk flow of the gas. Such an observer is called a
Lagrangian observer.

The Lagrangian time derivative,

DQ

Dt
=
∂Q

∂t
+ ~u · ~∇Q , (1.50)
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is the rate of change of Q as seen by a Lagrangian observer, who is moving
along with a designated parcel of gas. Note that the Lagrangian time deriva-
tive of a vector is (~u · ~∇) ~Q = (~u · ~∇Qx)̂ı + (~u · ~∇Qy)̂ + (~u · ~∇Qz)k̂), when
written out in Cartesian coordinates. For a spherically symmetric system,
where all quantities are functions only of t and r (the radial coordinate), it
is useful to write the Lagrangian time derivatives in spherical coordinates:

DQ(r, t)

Dt
=
∂Q

∂t
+ ur

∂Q

∂r
. (1.51)

and, for vectors,
D~Q(r, t)

Dt
=
∂ ~Q

∂t
+ ur

∂ ~Q

∂r
. (1.52)

In a Lagrangian form, the continuity equation is

Dρ

Dt
= −ρ~∇ · ~u . (1.53)

The momentum equation is

D~u

Dt
= −1

ρ
~∇P +

1

ρ
~∇· ↔

π +~g . (1.54)

The acceleration is provided by the pressure gradient, the viscous drag, and
by the gravitational and electromagnetic forces that we have included in ~g.

The internal energy equation is

Dε

Dt
= −P

ρ
~∇ · ~u− 1

ρ
~∇ · ~F +

1

ρ
Ψ . (1.55)

The change in internal energy is given by a PdV work term, a heat conduction
term, and a viscous heating term.

Equations (1.53), (1.54), and (1.55) are valid for nonradiative gas dy-
namics. Since this is a course on radiative gas dynamics, we must take into
account the effect of radiation on the momentum and energy of the gas. To
the right hand side of the internal energy equation, we must add the term
(Γ − Λ)/ρ, where Γ is the volumetric heating rate (or “gain”), and Λ is the
volumetric cooling rate (or “loss”).3

3In certain cases, such as systems near the Eddington Limit, radiative pressure has
an important effect on the motion of the gas, and must be included in the momentum
conservation equation.
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The equations for conservation of mass, momentum, and energy provide
five equations in all. How many unknowns are there? There’s the density
ρ, the pressure P , the bulk velocity ~u (3 unknowns), the conductive heat

flux ~F (3 unknowns), and the viscous stress tensor
↔
π (5 independent com-

ponents). The internal energy, for a monatomic gas, is given by the relation
ε = 3P/(2ρ), the rate of viscous dissipation can be computed from

↔
π and ~u,

the acceleration due to self-gravity is given by Poisson’s equation

~∇ · ~g = −4πGρ , (1.56)

and the acceleration from any external sources is assumed to be known.
So, we have 5 equations and 13 unknowns. The clever way to break out

of the hierarchy of equations is to express the viscous stress tensor
↔
π and

the conductive heat flux ~F in terms of ρ, P , and ~u. This will leave us with
5 equations and 5 unknowns. Once we specify our initial conditions and
boundary conditions, we can proceed to solve the equations.



Chapter 2

Viscosity, Heat Conduction,
and Other Complications

The task at hand is to find expressions for the viscous stress tensor
↔
π and the

conductive heat flux ~F in terms of the density, pressure, and bulk velocity of
a gas. We will start with an ideal gas.

The distribution of random velocities for an ideal gas (otherwise known
as a “perfect gas”) is the Maxwellian distribution

f(~w)d3w =
(

m

2πkT

)3/2

exp

(

−mw
2

2kT

)

d3w , (2.1)

where k is the Boltzmann constant, m is the particle mass, and T is the ki-
netic temperature. The mean square random velocity is then 〈w2〉 = 3kT/m.
Using equation (1.33), we find that the pressure is given by the familiar ideal
gas law

P =
ρ

m
kT . (2.2)

For the Maxwellian distribution, 〈wiwj〉 = 0 when i 6= j; hence, all elements

of
↔
π vanish. Furthermore, 〈w2wi〉 = 0, so the conductive heat flux also

vanishes. Ideal gases are delightfully simple: no viscosity, no heat conduction.
The conservation laws for an ideal gas take the simplified form

Dρ

Dt
= −ρ~∇ · ~u (2.3)

D~u

Dt
= −1

ρ
~∇P + ~g (2.4)

13
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Dε

Dt
= −P

ρ
~∇ · ~u . (2.5)

These three equations are known collectively as the Euler equations. In
conjunction with the ideal gas law

ε =
3P

2ρ
=

3kT

2m
, (2.6)

they describe the motions of an inviscid, ideal gas of point masses.1 Com-
bining the continuity and energy conservation equations, we see that for an
ideal gas,

Dε

Dt
=
P

ρ2

Dρ

Dt
= −P DV

Dt
, (2.7)

where V ≡ 1/ρ is the specific volume of the gas. The change in internal
energy of a ideal gas is equal to the PdV work that is done on the gas.

The first law of thermodynamics states that

Tds = dε+ PdV , (2.8)

where T and P are the temperature and pressure of the gas, s is the specific
entropy, ε is the specific internal energy, and V is the specific volume. Since,
for an ideal gas,

Dε

Dt
= −P DV

Dt
, (2.9)

it is necessary that

T
Ds

Dt
= 0 . (2.10)

An ideal gas, in the absence of heat sources and sinks, undergoes only adi-
abatic processes. (That is, its entropy remains constant.)

If a gas is compelled to have a constant volume (by being enclosed in a
rigid box, for instance), the first law of thermodynamics reduces to dq = dε,
where dq is the heat added. The specific heat at constant volume is then

cV ≡
(

∂q

∂T

)

V

=

(

∂ε

∂T

)

V

. (2.11)

However, for an ideal gas, ε(V, T ) = ε(T ). Thus, we may write, quite gener-
ally,

dε = cV dT (2.12)

1Inviscid = having no viscosity.



15

and
dq = cV dT + PdV . (2.13)

Now consider gas that is kept at a constant pressure. The ideal gas law tells
us that

PdV =
k

m
dT (2.14)

when pressure is kept constant, and hence that

cP ≡
(

∂q

∂T

)

P

= cV +
k

m
. (2.15)

Note that cP > cV ; when pressure is held constant, some of the added heat
goes into PdV work instead of into internal energy.

The adiabatic index of a gas is defined as γ ≡ cP/cV . For an ideal gas
of point particles, ε = (3kT )/(2m), cV = (3k)/(2m), cP = (5k)/(2m) and
γ = 5/3. The adiabatic index for a gas of diatomic molecules is γ = 7/5.
The adiabatic index is a function of the number of degrees of freedom of
the particles; diatomic molecules have rotational degrees of freedom that
are not present for point masses. The internal energy ε, if the gas particles
are not spherical atoms, also includes rotational energy in addition to the
translational energy. In general, the internal energy is

ε =
1

γ − 1

kT

m
=

1

γ − 1

P

ρ
. (2.16)

Now consider an adiabatic process, for which the first law of thermodynamics
may be written

dε+ PdV = 0 (2.17)

cV dT − P

ρ2
dρ = 0 . (2.18)

For an ideal gas,

dT =
mP

kρ

(

dP

P
− dρ

ρ

)

. (2.19)

Combining equations (2.18) and (2.19),

cV
mP

kρ

[

dP

P
−
(

cV + k/m

cV

)

dρ

ρ

]

= 0 . (2.20)
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Thus, dP/P = γ(dρ/ρ), and

P (ρ) = P0(ρ/ρ0)
γ . (2.21)

A gas that has an equation of state in this form (P ∝ ργ) is known as a
polytrope.

An ideal gas has no viscosity. However, real gases aren’t perfectly ideal,
and in many astrophysical applications (such as accretion disks) viscosity is
important. To handle viscosity in a relatively simple manner, we need to
express the tensor

↔
π in terms of the bulk velocity ~u. First, viscous frictional

forces will occur when two fluid elements move relative to each other. Hence,
↔
π must depend on the spatial derivatives of the velocity, ∂ui/∂xj. Second,
viscous forces must disappear when the fluid is at rest or is in uniform transla-
tional or rotational motion. Third, for small velocity gradients, the elements
of

↔
π will be linearly proportional to the velocity gradient. (Fluids for which

πij ∝ ∂ui/∂xj are known as linear fluids, or Newtonian fluids.)

The most general viscous stress tensor that satisfies these three require-
ments is

πij = µDij + β~∇ · ~uδij , (2.22)

where µ is the coefficient of shear viscosity, β is the coefficient of bulk
viscosity, and

Dij ≡
∂ui

∂xj

+
∂uj

∂xi

− 2

3
~∇ · ~uδij . (2.23)

The deformation tensor Dij vanishes in the case of uniform expansion or
contraction. Thus, the shear viscosity term represents pure shear, with no
change in volume, while the bulk viscosity term represents pure expansion
or contraction.

In the cgs system, the coefficients of viscosity µ and β are measured
in ‘poises’, where 1 poise equals 1 g/cm/sec.2 At room temperature, the
coefficient of shear viscosity for air is µ ∼ 2 × 10−4 poise; for water, µ ∼
10−2 poise.

The coefficient of shear viscosity can be approximately calculated in a
fairly simple manner. A gas has a number density n of particles, each with
a mass m. The gas has a temperature T , and hence a thermal velocity
vt = (kT/m)1/2. In addition to the random thermal velocity of the particles,

2The ‘poise’ is named after the French physiologist Jean Poiseuille.
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there is also a bulk velocity ux in the x direction, where ux is a function of
y. (In other words, there exists a shear, ∂ux/∂y 6= 0.)

Now consider the plane y = y0. Because of the random velocities of the
particles, there is a flux of particles moving downward through the plane, with
a magnitude per unit area of ∼ nvt/2. There is a flux of equal magnitude
upward through the plane. Thus, there is no net flux of mass density through
the plane. However, if ∂ux/∂y > 0, the downward flux of particles will have a
greater momentum in the x direction than will the upward flux of particles.
The net result: a transfer of momentum opposite to the direction of the
velocity gradient ∂ux/∂y. The particles that cross the plane from above will
have had their last collision at a distance ∼ λ above the plane. Thus, the
downward flux of angular momentum will be

Pyx ∼ nvt

2
m

[

ux(y0) + λ
∂ux

∂y

]

. (2.24)

Similarly, the upward flux of angular momentum will be

Pyx ∼ nvt

2
m

[

ux(y0) − λ
∂ux

∂y

]

. (2.25)

The net momentum flux is then

Pyx ∼ −nvtmλ
∂ux

∂y
, (2.26)

which tells us that the coefficient of shear viscosity is

µ ∼ nvtmλ ∼ (mkT )1/2/σ . (2.27)

where σ is the cross sectional area of the gas particles. To lowest order, the
coefficient of bulk viscosity, β, is equal to zero. Note that µ is independent
of the density of the gas. Note also that the viscosity of a gas increases
with temperature, in contrast to the behavior of liquids, in which viscosity
generally decreases with temperature.3 For neutral atomic hydrogen, the
coefficient of shear viscosity (including relevant factors of π) is

µ = 6 × 10−3 poise
(

T

104 K

)1/2

. (2.28)

3The common English simile, “as slow as molasses in January” makes reference to the
higher viscosity of molasses at lower temperatures.
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Another parameter that is frequently used to describe viscosity is the kine-
matic viscosity,

ν ≡ µ/ρ . (2.29)

From equation (2.27), we expect that the kinematic viscosity of a gas should
be of order

ν ∼ µ/(nm) ∼ vtλ , (2.30)

where vt is the thermal speed, and λ is the mean free path of gas particles.
The kinematic viscosity of the air around you is ν ∼ 0.15 cm2 s−1. For a gas
of neutral atomic hydrogen,

ν ∼ 4 × 1021 cm2 s−1
(

T

104K

)1/2 ( n

1 cm−3

)

−1 . (2.31)

A dimensionless number much used by fluid dynamicists is the Reynolds
number,

Re ≡ ρuL

µ
=
uL

ν
∼
(

u

vt

)(

L

λ

)

, (2.32)

where L is the typical length scale of the system we’re looking at. The
Reynolds number is the ratio of the inertial forces (∼ ρu2/L) to the vis-
cous forces (∼ µu/L2). Thus, when Re ≫ 1, the viscous forces are negligi-
ble. As the scale of interest L becomes smaller and smaller, there is some
length scale on which viscosity becomes important. Viscous flow tends to be
laminar, while less-viscous flow tends to be turbulent. However, the transi-
tion between laminar and turbulent flow is not determined uniquely by the
Reynolds number; the geometry of the system is also important. For fluids
moving through a straight pipe, to take a well-studied example, flow with
Re ∼< 3000 is laminar and flow with Re ∼> 3000 is turbulent. For a dimpled
golf ball, the critical Reynolds number for the transition from laminar to
turbulent flow is Recr ∼ 30,000; for a smooth golf ball, it’s Recr ∼ 300,000.

What about the conductive heat flux? It is found empirically that heat
flows from hot regions to cold regions, with the flux proportional to the
temperature gradient. Mathematically, this is expressed by Fourier’s Law:

~F = −K~∇T , (2.33)

where K is the coefficient of thermal conductivity. For a neutral gas,

K =
5

2
cV µ ∼ k

σ

(

kT

m

)1/2

. (2.34)
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Thus, for a gas of neutral atomic hydrogen,

K = 2 × 106 erg cm−1 s−1 K−1
(

T

104 K

)1/2

. (2.35)

Under many astrophysical circumstances, the conductive heat flux is small
compared to other energy fluxes. For instance, in stellar interiors, the ra-
diative heat flux and the convective heat flux battle for supremacy, with
the conductive heat flux trailing badly in third place. However, in the Sun’s
transparent corona, to mention an example we’ll be discussing in Chapter 11,
conduction is the main transport mechanism for heat.

Summary of Results So Far

The conservation equations are

Dρ

Dt
= −ρ~∇ · ~u (2.36)

D~u

Dt
= −1

ρ
~∇P +

1

ρ
~∇ · ↔π + ~g (2.37)

Dε

Dt
= −P

ρ
~∇ · ~u− 1

ρ
~∇ · ~F +

1

ρ
Ψ +

1

ρ
(Γ − Λ) , (2.38)

in conjunction with the equation of state for an ideal monatomic gas

ε =
3P

2ρ
=

3kT

2m
. (2.39)

In the simplest approximation, we ignore the viscosity and heat conduction
by setting

↔
π , ~F , and Ψ equal to zero. When this approximation is made, the

conservation equations are known as the Euler equations.
When viscosity and heat conduction are not negligible, we make the ap-

proximations
πij = µDij + β~∇ · ~uδij (2.40)

and
~F = −K~∇T . (2.41)

In this approximation, the viscous force per unit volume is

~∇ · ↔π = µ∇2~u+ (β + µ/3)~∇(~∇ · ~u) . (2.42)
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The rate of viscous energy dissipation is equal to

Ψ =
µ

2
|
↔

D |2 + β(~∇ · ~u)2 , (2.43)

where the square of the scalar norm of the deformation tensor is

|
↔

D |2 =
∑

i,j

DijDij . (2.44)



Chapter 3

Introduction to Sound &
Shocks

Suppose we are in an inviscid, non-heat-conducting, nonradiative medium.
We will first consider a case with plane parallel symmetry (all the properties
of the gas depend only on x and t). The mass continuity equation is then

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0 . (3.1)

The momentum equation is

∂u

∂t
+ u

∂u

∂x
= −1

ρ

∂P

∂x
+ g . (3.2)

If the medium is self-gravitating, the acceleration g is given by Poisson’s
equation:

∂g

∂x
= −4πGρ . (3.3)

A uniform static medium, with ρ = ρ0, u = 0, and P = P0, will satisfy the
equations of continuity and of motion if we perpetuate the Jeans swindle.
In a homogeneous, isotropic universe, the gravitational acceleration must be
~g0 = 0, by symmetry. However, Poisson’s equation will yield g0 = 0 only
if ρ0 = 0. From the Newtonian point of view, in other words, an infinite,
static, matter-filled universe cannot exist. The Jeans swindle deals with this
difficulty by ignoring it.1 Let us, like Jeans, assume that g0 = 0 for the
uniform medium.

1If you strongly object to being swindled, try reading ”Mathematical Vindications of
the Jeans Swindle”, by M. Kiessling (astro-ph/9910247).
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Now, let us introduce small perturbations to the system, so that

ρ = ρ0 + ρ1(x, t) (3.4)

u = u1(x, t) (3.5)

P = P0 + P1(x, t) (3.6)

g = g1(x, t) . (3.7)

where |ρ1|/ρ0 ≪ 1 and |P1|/P0 ≪ 1. The linearized perturbation equations
are then

∂ρ1

∂t
+ ρ0

∂u1

∂x
= 0 (3.8)

ρ0
∂u1

∂t
+
dP

dρ
|0
∂ρ1

∂x
= g1ρ0 (3.9)

∂g1

∂x
= −4πGρ1 . (3.10)

In writing the equation of motion, I have made the implicit assumption that
P = P (ρ). Taking the time derivative of equation (3.8), and subtracting the
spatial derivative of equation (3.9), we find

∂2ρ1

∂t2
− dP

dρ
|0
∂2ρ1

∂x2
= 4πGρ0ρ1 . (3.11)

If the self-gravitation term on the right hand side is small enough to be
ignored, this is just a wave equation with a propagation speed

a =

(

dP

dρ

)1/2

. (3.12)

The density and pressure perturbations that propagate through the medium
with velocity ±a are sound waves. For a polytrope with adiabatic index γ,
the sound speed at density ρ0 and pressure P0 is

a0 =

(

γP0

ρ0

)1/2

=

(

γk

m
T

)1/2

. (3.13)

For a neutral atomic gas, the sound speed is a = 0.12 km s−1 µ−1/2
a (T/1 K)1/2,

where µa is the mean atomic mass in units of the proton mass.
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When is the self-gravity of the medium negligible? Consider a sound wave
of the form ρ1(x, t) ∝ exp[i(ωt−kx)]. In that case, equation (3.11), including
the self-gravity term on the right hand side, reduces to the dispersion relation

ω2 = k2a2
0 − 4πGρ0 . (3.14)

Thus, ω is real for wavenumbers k > kJ , where

kJ ≡
√

4πGρ0/a0 . (3.15)

For k < kJ , the frequency ω is imaginary, and the perturbations grow expo-
nentially due to their self-gravity.

The Jeans length for a neutral atomic gas is

λJ ≡ 2π

kJ

∼ 20 pc µ−1
a

(

T

1 K

)1/2 ( n

1 cm−3

)−1/2

(3.16)

and the Jeans mass is

mJ ≡ π

6
λ3

Jρ0 ∼ 100 M⊙ µ−2
a

(

T

1 K

)3/2 ( n

1 cm−3

)−1/2

. (3.17)

Sound waves with a wavelength longer than λJ will collapse gravitation-
ally. On the other end of the size spectrum, sound waves with a wavelength
shorter than the mean free path λ = 1/(nσ) cannot be created. Even in
relatively dense molecular clouds, λ ∼ 0.2 AU; a sound with this wavelength
will have a frequency ∼ 10−8 Hz. From now on, we will deal with sound
whose wavelength lies between the mean free path λ and the Jeans length
λJ , so that we can ignore the effects of discreteness and self-gravitation. But
what about the effects of viscosity and heat conduction?

The linearized 1-d continuity equation, as always, is

∂ρ1

∂t
= −ρ0

∂u1

∂x
. (3.18)

The momentum equation, including viscosity, is

ρ0
∂u1

∂t
= −∂P1

∂x
+ µ′∂

2u1

∂x2
, (3.19)

where the effective coefficient of viscosity in the one-dimensional case is µ′ ≡
4µ/3 + β. The energy equation, including heat conduction, is

ρ0
∂ε1

∂t
= −P0

∂u1

∂x
+K

∂2T1

∂x2
. (3.20)
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The temperature perturbation, in terms of the density and pressure, is

T1 =
m

kρ0

[P1 −
P0

ρ0

ρ1] . (3.21)

The perturbation to the specific internal energy is

ε1 =
1

(γ − 1)ρ0

[P1 −
P0

ρ0

ρ1] . (3.22)

Using these relations in conjunction with the continuity equation, the energy
equation takes the form

∂

∂t
(P1 − a2

0ρ1) = γχ
∂2

∂x2
(P1 − a2

0ρ1/γ) , (3.23)

where χ = K/(ρ0cP ).
If the perturbations are sine waves, of the form

ρ1 = R exp[i(ωt− kx)] (3.24)

P1 = P exp[i(ωt− kx)] (3.25)

u1 = U exp[i(ωt− kx)] , (3.26)

then the conservation equations yield the relations

iωR− iρ0kU = 0 (3.27)

−ikP + [iωρ0 + µ′k2]U = 0 (3.28)

(iω + γk2χ)P − (iω + k2χ)a2
0R = 0 . (3.29)

This set of equations yields the dispersion relation

ω2 =
1 − ik2χ/ω

1 − iγk2χ/ω
a2

0k
2 + iµ′k2ω/ρ0 . (3.30)

In the absence of viscosity and heat conduction, the dispersion relation is
ω2 = a2

0k
2. Suppose, however, that we add a small µ and K, so that the

wavenumber is now k = ω/a0 + k1, with |k1| ≪ ω/a0. The perturbation to
the wavenumber is then

k1 = −i ω2

2a3
0ρ0

[µ′ + (γ − 1)ρ0χ] . (3.31)
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The density perturbation is now

ρ1 = R exp[i(ωt− ωx/a0)] exp(−x/L1) , (3.32)

with the attenuation length

L1 =
2a3

0ρ0

ω2
[µ′ + (γ − 1)ρ0χ]−1 . (3.33)

The viscosity and heat conduction damp the sound waves by converting the
sound energy into random kinetic energy.

If we use the sound speed a2 ∼ kT/m and viscosity µ ∼ (mkT )1/2/σ for
an atomic gas, we find that the attenuation length is

L1 ∼
a2

0

ω2
nσ ∼ Λ2

λ
, (3.34)

where Λ is the wavelength of the propagating sound and λ is the mean free
path of the gas. For sound to propagate, we require Λ ≫ λ, and hence
L1 ≫ Λ; the sound is not attenuated significantly until it has traveled for
many wavelengths. In air at room temperature, L1 ∼ 600 km(ω/1000 Hz)−2.
In the interstellar medium (ISM), L1 ∼ 700 AU(ω/10−10 Hz)−2.

So far, we have been assuming that the sound waves are of infinitesimal
magnitude, with |ρ1|/ρ0 ≪ 1, |P1|/P0 ≪ 1, and u1 ≪ a0. As a consequence,
we have assumed that the sound speed in the medium has the uniform value
a = a0. However, the sound speed is a function of density; for a polytrope,
a ∝ ρ(γ−1)/2. As a consequence, crests of sound waves will travel more rapidly
than troughs of sound waves, as illustrated in Figure 3.1. Although a wave
on the surface of water can be triple-valued, as shown at time 3 in Figure 3.1,
creating a “breaker”, this is forbidden for a sound wave. Sound waves, there-
fore, will steepen until a shock forms. A shock front is a surface that marks
a sudden jump in the density, pressure, and velocity of a gas. The shock
front is supersonic – that is, it propagates at a velocity faster than the sound
speed in the unshocked medium.

Shocks are ubiquitous in the ISM. Whenever the bulk velocity u is larger
than the sound speed, you are likely to form shocks. For instance, there are
shocks associated with:

• cloud - cloud collisions (u ∼ 10 km s−1),

• galaxy - galaxy collisions (u ∼ 300 km s−1),



26 CHAPTER 3. SOUND & SHOCKS

Figure 3.1: The steepening of a sound wave as a crest overtakes a trough.
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• stellar winds encountering the ambient ISM (u ∼ 3000 km s−1),

• jets from radio galaxies encountering the ambient intergalactic medium
(u ∼ 5000 km s−1),

• supernova ejecta encountering the ambient ISM (u ∼ 2 × 104 km s−1),
and

• gas accreting onto neutron stars (u ∼ 105 km s−1).

Shocks play an important role role in determining the structure of the ISM.
For instance, they heat the ISM. Moreover, in the spiral arms of galaxies,
shocks compress the gas, which can trigger star formation.

Let us see how shocks behave once they are created through the steepen-
ing of a sound wave. Consider, to begin with, a simple plane parallel shock,
as shown in Figure 3.2. The math is easiest if we place ourselves in a frame of
reference that is comoving with the shock front. Let u1 be the bulk velocity
of the unshocked gas (upstream of the shock) in this frame of reference, and
let ρ1, P1, and a1 be the density, pressure, and sound speed of the unshocked
gas, which is assumed to be uniform. The bulk velocity, density, pressure,
and sound speed immediately downstream from the shock are u2, ρ2, P2, and
a2. The transition layer between the unshocked gas and the postshock gas
is very thin. For a neutral atomic gas, ∆x ∼ λ, the mean free path length.
For most purposes, it is adequate to regard the shock transition layer as
an infinitesimally thin surface. For a steady-state shock, the conservation
equations have the form

d

dx
(ρu) = 0 (3.35)

d

dx
(ρu2 + P ) = 0 (3.36)

d

dx
(ρ[u2/2 + ε] + P ) = 0 . (3.37)

The gas properties immediately before and after being shocked are conse-
quently linked by the Rankine-Hugoniot jump conditions:

ρ1u1 = ρ2u2 (3.38)

ρ1u
2
1 + P1 = ρ2u

2
2 + P2 (3.39)

1

2
u2

1 + ε1 + P1/ρ1 =
1

2
u2

2 + ε2 + P2/ρ2 . (3.40)
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Figure 3.2: The geometry of a plane parallel shock; we are in the shock’s
frame of reference, with pre-shocked gas flowing in from the left.
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For a polytropic gas, the last of the Rankine-Hugoniot conditions may be
rewritten in the form

1

2
u2

1 +
γ

γ − 1

P1

ρ1

=
1

2
u2

2 +
γ

γ − 1

P2

ρ2

. (3.41)

I have made the implicit assumption that γ is the same for the preshock and
postshock gas.

The Rankine-Hugoniot conditions are just the conservation equations in
a new guise. A dimensionless number that is often cited in the context of
shocks is the Mach number,

M1 ≡ u1/a1 =

(

ρ1u
2
1

γP1

)1/2

. (3.42)

The Mach number is the ratio of the velocity of the shock (relative to the
unshocked medium) to the sound speed in the unshocked medium. Using
the Rankine-Hugoniot conditions, we may solve for the density, pressure,
and temperature jumps in terms of M1.

ρ2

ρ1

=
(γ + 1)M2

1

(γ − 1)M2
1 + 2

=
u1

u2

(3.43)

P2

P1

=
2γM2

1 − (γ − 1)

γ + 1
(3.44)

T2

T1

=
[(γ − 1)M2

1 + 2][2γM2
1 − (γ − 1)]

(γ + 1)2M2
1

. (3.45)

A strong shock is defined as one that is highly supersonic, with M1 ≫ 1. For
a strong shock,

ρ2

ρ1

≈ γ + 1

γ − 1
(3.46)

P2 ≈ 2

γ + 1
ρ1u

2
1 (3.47)

T2 ≈ 2(γ − 1)

(γ + 1)2

m

k
u2

1 . (3.48)

Thus, no matter how strong the shock is, the ratio ρ2/ρ1 has a finite value;
for a monatomic gas, with γ = 5/3, the ratio is ρ2/ρ1 = 4. However, a strong
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shock is very efficient at converting the bulk kinetic energy of the upstream
gas (∼ ρ1u

2
1) into thermal energy.

A weak shock is defined as one that is barely supersonic, with M1 − 1 =
ǫ≪ 1. For a weak shock,

ρ2

ρ1

≈ 1 +
4

γ + 1
ǫ (3.49)

P2

P1

≈ 1 +
4γ

γ + 1
ǫ (3.50)

T2

T1

≈ 1 +
4(γ − 1)

γ + 1
ǫ . (3.51)

Generally speaking, a shock converts supersonic gas (M1 > 1) into subsonic
gas (in the shock’s frame of reference). It increases density, decreases bulk
velocity (relative to the shock front), increases pressure, and increases tem-
perature.

The conversion of bulk kinetic energy to random thermal energy occurs
by dissipation within the shock layer itself. Within the shock layer, a jump
in velocity of ∆u ∼ a1 ∼ (kT/m)1/2 occurs over a length ∆x ∼ λ ∼ 1/(nσ).
The xx component of the viscous stress tensor within the shock is

πxx = (
4

3
π + β)

∆u

∆x
∼

√
mkT

σ

√
kT√
m

(nσ) ∼ nkT . (3.52)

The increase in the specific entropy as the gas crosses the shock front is
s2 − s1 = cP ln(T2/T1) − (k/m) ln(P2/P1). For an extremely strong shock
(M1 → ∞), the entropy increase is s2 − s1 ∝ lnM1.

So far, we’ve been dealing with normal shocks; that is, shocks in which
the the velocity vector ~u1 of the upstream, unshocked gas is perpendicular
to the shock front. However, some shocks are better described as oblique
shocks, in which ~u1 approaches the shock front at an angle other than 90
degrees. For instance, the shock waves associated with spiral arms of galaxies
can be approximated as oblique shocks. An oblique shock is illustrated in
Figure 3.3. Again, let us put ourselves into a frame of reference that is
moving along with a plane parallel shock front. This time, however, the
unshocked gas is flowing into the shock at an angle φ with respect to the
plane of the shock front. Thus, the bulk velocity u1 can be broken down into
a perpendicular component

u⊥1 = u1 sinφ (3.53)
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Figure 3.3: The geometry of an oblique shock; we are in the shock’s frame
of reference, with pre-shocked gas flowing in from the left.
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and a parallel component
u‖1 = u1 cosφ , (3.54)

which are perpendicular and parallel, respectively, to the shock front. The
postshock velocity ~u2 is rotated through an angle ψ away from ~u1 and towards
the shock front. The perpendicular and parallel components of ~u2 are

u⊥2 = u2 sin(φ− ψ) (3.55)

and
u‖2 = u2 cos(φ− ψ) . (3.56)

The parallel component of the velocity is unchanged by passage through the
shock. Thus,

u1 cosφ = u2 cos(φ− ψ) . (3.57)

The Rankine-Hugoniot jump conditions for the perpendicular component are

ρ1u⊥1 = ρ2u⊥2 (3.58)

ρ1u
2
⊥1 = ρ2u

2
⊥2 (3.59)

1

2
u2
⊥1 + ε1 +

P1

ρ1

=
1

2
u2
⊥2 + ε2 +

P2

ρ2

. (3.60)

In an oblique shock, u⊥ obeys the same relations as u does in a normal shock.
From our previous encounter with the Rankine-Hugoniot jump conditions,
we know that the ratio of the perpendicular velocities is

u⊥2

u⊥1

=
2 + (γ − 1)M2

1 sin2 φ

(γ + 1)M2
1 sin2 φ

, (3.61)

where M1 = u1/a1 is the Mach number of the upstream, unshocked flow.
Since the parallel component of ~u is conserved and the perpendicular

component is decreased, the velocity vector is refracted away from the normal
to the shock front. Computing the actual value of the angle ψ through which
it is refracted cumbersome in the general case. Combining the equations for
the perpendicular and parallel components of the velocity, we find

tanψ =
1 − cos 2φ− 2/M2

1

γ − cos 2φ+ 2/M2
1

sin 2φ

1 − cos 2φ
. (3.62)

In the case of a strong shock, the relation between φ and ψ takes the simpler
form

tanψ =
2 tanφ

(γ + 1) + (γ − 1) tan2 φ
. (3.63)
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Figure 3.4: Shadowgraph of the detached bow shock in front of a bullet
traveling at M1 = 1.5; also note the turbulent wake. (Andrew Davidhazy:
RIT).

The maximum value ψm, in this case, is given by the relation

tanψm =

(

1

γ2 − 1

)1/2

, (3.64)

which occurs when tan2 φ = (γ+ 1)/(γ− 1). For a monatomic gas (γ = 5/3)
the maximum angle of refraction is ψm = 36.9◦, which occurs when φ = 63.4◦.
Even an arbitrarily strong shock can’t divert the flow through an angle of 90◦.
If a blunt object, therefore, moves through a gas at supersonic speeds, then
a detached bow shock must form ahead of the object, as shown in Figure 3.4.
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