
Chapter 11

The Solar Wind

A stellar wind consists of particles emitted from the stellar atmosphere with
a sufficiently large velocity to escape the star’s gravitational attraction. The
escape velocity at the surface of a star with mass M∗ and radius R∗ is

vesc =
(

2GM∗

R∗

)1/2

= 620 km s−1(M∗/ M⊙)1/2(R∗/ R⊙)−1/2 . (11.1)

Since a star will tend to accrete mass, due to its gravitational attraction, some
non-gravitational force is needed to counteract the inward pull of gravity, and
accelerate the outermost layers of the stellar atmosphere away from the star.
This wind-driving force can be, depending on the type of wind, a gradient
in the gas pressure, a gradient in the radiation pressure, or a gradient in the
magnetic pressure.

Observed stellar winds may be placed into one of four main categories.

1. Winds from main sequence stars. Stars similar to the sun have a low
rate of mass loss: Ṁ ∼ 10−14 M⊙ yr−1. (1 M⊙ yr−1 = 6.3×1025 g sec−1.)
The asymptotic velocity u∞ of the wind is comparable to the escape
velocity vesc. Winds from solar-type stars are thought to be driven
by gas pressure gradients in the corona. The prototypical star in this
category is the sun.

2. Winds from hot, luminous stars. Stars with Teff ∼
> 15,000 K and L ∼

>

3000 L⊙ have a high rate of mass loss: Ṁ ∼ 10−7 → 10−5 M⊙ yr−1.
Their winds are very fast, with u∞ > vesc. Winds from hot stars
are thought to be driven by radiation pressure. Wolf-Rayet stars fall

111
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into this category. WR stars are hot, luminous stars with extended
envelopes; their mass loss rates (Ṁ ∼ 10−5 M⊙ yr−1) and wind terminal
velocities (u∞ ∼ 2500 km s−1) are among the largest observed for any
type of star.

3. Winds from cool, luminous stars. Stars with Teff ∼
< 6000 K and L ∼

>

100 L⊙ have a high rate of mass loss: Ṁ ∼ 10−8 → 10−5 M⊙ yr−1. The
wind velocity, however, is very low, with u∞ < vesc. The mechanism
that drives the wind from cool stars is uncertain; a leading candidate
is radiation pressure on dust grains, aided by stellar pulsations in the
outer atmosphere. Stars in this category are K and M giants and
supergiants.

4. Winds from extremely young stars. T Tauri stars have mass loss rates
of Ṁ ∼ 10−9 → 10−7 M⊙ yr−1. The wind velocity is u∞ ∼ 200 km s−1.
T Tauri stars have circumstellar disks that might be accretion disks.
The strength of the wind is correlated with the luminosity of the disk;
this suggests that the outgoing wind might be powered by the accretion
disk.

Figure 11.1 shows the location on a Hertzsprung-Russell diagram of stars
with high rates of mass loss. Hot, luminous stars with winds (including Wolf-
Rayet stars) are in the upper left; cool, luminous stars with winds are in the
upper right. The approximate location of T Tauri stars on the H-R diagram
is also shown.

The best-studied stellar wind is the solar wind, which is the weakest
of all measured stellar winds. The solar wind consists mainly of ionized
hydrogen and fully ionized helium, with heavier elements present in solar
abundances. At 1 AU from the sun, the solar wind is supersonic (u > a)
and super-Alfvenic (u > vA). As shown in Figure 11.2, the solar wind is
“gusty”, with significant variations in velocity and density. As a lowest-order
approximation, we can recognize two distinct types of solar wind: a high-
speed wind and a low-speed wind. In the high-speed wind, the mean proton
velocity is up = 700 km s−1 and the mean proton density is np = 3.4 cm−3.
The gas pressure is P = 1.9 × 10−10 dyne cm−2 and the magnetic pressure is
B2/(8π) = 1.7 × 10−10 dyne cm−2; both of these pressures are much smaller
than the kinetic energy density ρu2/2 = 1.4×10−8 erg cm−3. In the low-speed
wind, the mean proton velocity is up = 330 km s−1 and the mean proton
density is np = 10.3 cm−3. The gas pressure is P = 2.6 × 10−10 dyne cm−2
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Figure 11.1: A Hertzsprung-Russell diagram (luminosity versus effective tem-
perature) showing the location of stars with high rates of mass loss from
stellar winds.

Figure 11.2: The velocity and density of the solar wind at R = 1 AU from
the Sun, as measured by the Mariner 2 spacecraft.
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and the magnetic pressure is B2/(8π) = 1.7 × 10−10; much smaller than the
kinetic energy density ρu2/2 = 9.4 × 10−9 erg cm−3.

At any given time, part of the sun’s corona is emitting a low-speed wind,
and part is emitting a high-speed wind. (The high-speed winds appear to
come from “coronal holes” – regions of low density and low temperature
where the magnetic field lines are not closed.) Both the high and low speed
winds produce a proton flux of ∼ 3 × 108protons cm−2 sec−1 at 1 AU. This
leads to a total mass loss rate of 2 × 10−14 M⊙ yr−1.

The study of stellar atmospheres usually starts with the statement, “We
assume that the atmosphere is in hydrostatic equilibrium.” Well, that state-
ment is fraudulent – a stellar atmosphere cannot be in hydrostatic equilib-
rium. There is always going to be a loss of high velocity particles. To show
that the sun’s corona is not in hydrostatic equilibrium, we first assume that
it is in equilibrium, and then show that the assumption leads to an absurd
conclusion. The corona is the outermost part of the sun’s atmosphere; it
extends from a distance of 2000 km above the sun’s visible surface out into
interplanetary space. At the base of the corona, r0 = 7×1010 cm, the temper-
ature is T0 = 2× 106 K and the number density of protons is n0 = 108 cm−3.
The resulting gas pressure is P0 = 2n0kT0 = 0.06 dyne cm−2. At the high
temperatures present in the corona, the thermal structure is determined by
heat conduction. The coefficient of thermal conductivity for an ionized gas
is equal to

K(T ) = 3 × 109 g cm sec−3 K−1
(

T

2 × 106 K

)5/2

. (11.2)

In the corona, where there are no local heat sources, the fact that heat flow
is in a steady state tells us that

~∇ · (K ~∇T ) =
1

r2

d

dr

(

r2K
dT

dr

)

= 0 . (11.3)

In conjunction with the relation K ∝ T 5/2, this yields

T (r) = T0

(

r

r0

)−2/7

. (11.4)

In general, if K ∝ T n, T ∝ r−1/(n+1); so if the corona were neutral, with
n = 1/2, the temperature would fall off at the more rapid rate T ∝ r−2/3.
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If, as we are assuming, the corona is in hydrostatic equilibrium, we have
the familiar equation

1

ρ

dP

dr
= −

GM

r2
. (11.5)

If the corona consists of ionized hydrogen, ρ ≈ mP n and P = 2nkT . Using
the substitution T = T0(r/r0)

−2/7,

d

dr

[

n
(

r

r0

)−2/7
]

= −
GMmp

2kT0

n

r2
. (11.6)

This equation has the solution

n(r) = n0x
2/7 exp

[

7

5

r0

h
(x−5/7

− 1)
]

, (11.7)

where x ≡ r/r0 and the scale height h is given by the relation

h ≡
2kT0r

2
0

GMmp

= 1.2 × 1010 cm
(

T0

2 × 106

)

(

r0

R⊙

)2 (
M

M⊙

)−1

. (11.8)

Near the base of the corona, where r − r0 ≪ r0, the density falls off expo-
nentially, with

n(r) ≈ n0e
−(r−r0)/h . (11.9)

At large radii, the density increases at the rate n ∝ r2/7. In fact, at a distance
of 1 AU, where r = 210r0, the hydrostatic corona must have a number density
n = 1.4 × 10−3n0 ∼ 105 cm−3. But this, of course, is much larger than the
number density of protons that are actually observed at the earth’s orbit.

The gas pressure as a function of radius is

P (r) = P0 exp
[

7

5

r0

h
(x−5/7

− 1)
]

. (11.10)

To maintain the corona in hydrostatic equilibrium, there must be a finite
pressure at large radii, with the value

P (∞) = P0 exp
[

−
7

5

r0

h

]

≈ 2 × 10−5 dyne cm−2 . (11.11)

The pressure required to keep the solar corona in hydrostatic equilibrium is
much greater than the pressure P ≈ 3×10−13 dyne cm−2 that is found in the
interstellar medium.
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Since the corona can’t be stationary, let’s approximate it as having a
steady-state outflow. The continuity equation tells us that Ṁ = 4πr2ρu.
This is similar to the continuity equation for spherical accretion; the only
difference is in the sign convention. For accretion, we adopted Ṁ > 0 and
u < 0; for winds, we adopt Ṁ > 0 and u > 0. The equation for momentum
conservation in an unmagnetized, spherical, steady-state wind is

u
du

dr
+

a2

ρ

dρ

dr
+

GM

r2
= 0 . (11.12)

The self-gravity of the wind has been ignored. Using the continuity equation
to eliminate ρ, we find, once again, the Bondi equation:

1

2

(

1 −
a2

u2

)

d

dr
(u2) = −

GM

r2

(

1 −
2a2r

GM

)

. (11.13)

Care must be taken in choosing, from among the possible solutions of the
Bondi equation, the solution that matches the boundary conditions of the
flow. For accretion, we wanted solutions with u2 → 0 as r → ∞. For winds,
we want solutions with u2 → 0 as r → 0. In the nomenclature of Chapter 8, a
stellar wind must have a subsonic solution of type 3, or a transonic solution
of type 2. The subsonic solutions, in this context, are known as “stellar
breezes”; the gas in these flows never becomes supersonic or escapes from
the gravitational well of the star. The transonic solution is known as the
“Parker wind”. Since the solar wind is known to be supersonic at the earth’s
orbit, the “Parker wind” is the appropriate solution for the solar wind.

The temperature is nearly constant throughout the inner regions of the
corona. This fact prompted Parker to look at isothermal winds. An isother-
mal wind of ionized hydrogen has the constant sound speed

a0 =

(

2kT0

mp

)1/2

= 180 km s−1
(

T0

2 × 106 K

)1/2

. (11.14)

In the transonic solution, the wind velocity will be u = a0 at the sonic radius

rs =
GM

2a2
0

= 2.0 × 1011 cm

(

M

M⊙

)

(

T0

2 × 106

)−1

. (11.15)

The Bondi equation for an isothermal wind is
(

1 −
a2

0

u2

)

d

dr

(

u2

a2
0

)

= −4
rs

r2

(

1 −
r

rs

)

. (11.16)
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Figure 11.3: The wind velocity of an isothermal Parker wind, for different
values of the temperature T0.

This equation may be integrated, using the boundary restriction u = a0 at
r = rs, to yield the Bernoulli integral for an isothermal wind:

u2

a2
0

− ln

(

u2

a2
0

)

= 4 ln
r

rs

+ 4
rs

r
− 3 . (11.17)

This equation gives the wind velocity u as a function of r; a plot of u(r)
for different temperatures is shown in Figure 11.3. At large radii, the wind
velocity is approximately u ≈ 2a0[ln(r/rs)]

1/2. At small radii, the velocity is
u ≈ a0e

3/2 exp(−2rs/r). For the sun, the sonic radius rs = 2×1011 cm is only
three times the radius of the base of the corona. At 1 AU, the radius is r =
75rs, and the solar wind velocity predicted by the isothermal Parker model
is u ≈ 4.1a0 ≈ 740 km s−1(T0/2 × 106)1/2. This velocity is approximately
equal to the velocity actually measured for the solar wind (at least its high-
speed component). The agreement, however, is partly due to chance. The
solar wind is not, in fact, perfectly isothermal. At 1 AU, the temperature has
dropped to 1.5 × 105 K.

The magnetic field associated with the solar wind at the earth’s orbit is
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B ≈ 5 × 10−5 G. The fact that ~∇ · ~B = 0 implies that

Br = B0(r/r0)
−2 , (11.18)

where B0 = Br(r0). Since the base of the solar corona is at a radius r0 =
4.6× 10−3 AU, the radial component of the magnetic field at the base of the
corona must be of magnitude B0 ∼ 1 G. Since the corona and solar wind
are fully ionized, the magnetic field lines are pinned to the solar wind as
it streams outward. The ends of the magnetic field lines are anchored to
the sun, as it rotates with an angular velocity Ω∗ = 3 × 10−6 sec−1. If the
magnetic pressures are negligibly small, and the ionized gas streams radially
outward, then the magnetic field lines in the equatorial plane will be drawn
outward in spirals. If the wind speed is constant, the magnetic field lines are
Archimedean spirals, with the shape

r(φ) − r0 =
ur

Ω∗

(φ − φ0) . (11.19)

The above analysis assumes that the magnetic force terms in the equations
of motion are negligibly small, and that the magnetic field lines are therefore
passively carried about by the gas flow. The magnetic force terms in the
radial direction are, in fact, very small compared to the gravitational term,
so the magnetic field has only a small effect on the radial outflow. However,
the magnetic force terms in the azimuthal direction are crucially important
in determining the rotational component of the wind’s velocity.

Start by assuming a steady-state axisymmetric model. In the equato-
rial plane of the sun, we assume that the magnetic field has no component
perpendicular to the plane. The magnetic field in the plane is

~B = Br(r)êr + Bφ(r)êφ (11.20)

and the wind velocity is

~u = ur(r)êr + uφ(r)êφ . (11.21)

The electric field in the ionized wind is ~E = −~u× ~B/c, and the steady-state

Maxwell’s equation ~∇× ~E = 0 reduces to the equation

1

r

d

dr
[r(urBφ − uφBr)] = 0 . (11.22)
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Integrating, we find

r(urBφ − uφBr) = constant = −Ω∗r
2Br , (11.23)

where Ω∗ is the rotation velocity of the sun.
Since the model is axisymmetric, the equation for the conservation of

angular momentum in the equatorial plane is

d

dr
(ruφ) =

Brr
2

Ṁ

d

dr
(rBφ) . (11.24)

Since Brr
2 = constant, we may instantly perform the integration to find that

r

(

uφ −
r2Br

Ṁ
Bφ

)

= L = constant . (11.25)

The constant L is the specific angular momentum carried away by the solar
wind. The first term in the above equation is the specific angular momentum
carried by the motions of the gas; the second term represents the angular
momentum carried by the magnetic field.

It is convenient to define the radial Alfvenic Mach number, MA ≡ ur/vA,
where vA is the Alfven velocity,

vA =

(

B2
r

4πρ

)1/2

. (11.26)

At the base of the corona, vA ≈ 300 km s−1; at 1 AU, the Alfven velocity has
fallen to vA ≈ 40 km s−1. The azimuthal velocity of the solar wind, in terms
of Ω∗, MA, and L, is

uφ = Ω∗r
LM2

Ar−2Ω−1
∗

− 1

M2
A − 1

. (11.27)

At the base of the corona, where the radial velocity ur is still small, the
Alfvenic Mach number is much smaller than one. At 1 AU, the Alfvenic
Mach number is MA ≈ 10. Thus, somewhere between the sun and the earth,
there exists an Alfvenic critical radius at which MA = 1. Let the radius at
this point be rA and the radial velocity be uA. Since the denominator in
the equation for uφ vanishes at rA, the numerator must vanish, too. Thus,
L = Ω∗r

2
A. The angular momentum per unit mass within the solar wind can
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be computed as if there were solid body rotation, at an angular velocity Ω∗,
out as far as the Alfven radius rA.

Because the angular momentum of the corona is being lost to the solar
wind, the sun is slowly being spun down. The rate at which the sun is losing
angular momentum is

J̇ = −LṀ = −Ω∗r
2
AṀ . (11.28)

For typical models of the magnetized solar wind, the Alfven radius is rA =
1.7 × 1012 cm = 24 R⊙ = 0.11 AU. With the sun’s angular velocity of Ω∗ =
3 × 10−6 sec−1 and mass loss rate of Ṁ = 2 × 10−14 M⊙ yr−1, this implies

J̇ = −1 × 1031 g cm2 sec−2 . (11.29)

Since the sun’s total angular momentum is J = 1.6 × 1048 g cm2 sec−1, the
time scale over which the sun will be spun down is

tJ = −J/J̇ ≈ 2 × 1017 sec ≈ 5 × 109 yr . (11.30)

This is a time comparable to the age of the sun, in contrast to the mass loss
time scale tM = M⊙/Ṁ ≈ 5 × 1013 yr. Although the solar wind will not
significantly affect the total mass of the sun, it will affect the total angular
momentum of the sun.

The angular velocity of the wind may be rewritten as

uφ =
Ω∗r

uA

uA − ur

1 − M2
A

(11.31)

and the azimuthal component of the magnetic field is

Bφ = −Br
Ω∗r

uA

r2
A − r2

r2
A(1 − M2

A)
. (11.32)

If we knew the velocity ur as a function of r, we could solve these equations to
find uφ(r) and Bφ(r). In practice, since the presence of rotation and magnetic
fields have little effect on the radial motions, we can use the standard Parker
wind solution to find ur(r). Well within the Alfven radius, the azimuthal
velocity has the value uφ = Ω∗r. Far outside the Alfven radius, ur is nearly
constant, and the Alfvenic Mach number increases as MA ∝ r. Thus, uφ

decreases at the rate uφ ∝ r−1. The maximum azimuthal velocity uφ occurs in
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Figure 11.4: The angular momentum content of the gas in the solar wind
(solid line) compared to the angular momentum content of the magnetic field
(dashed line).

the vicinity of the Alfven radius. The azimuthal component of the magnetic
field decreases at the rate Bφ ∝ r−1. Since Br ∝ r−2, at large radii, the
magnetic field will be mainly azimuthal; at small radii, the field will be
mainly radial.

At a radius r, the gas in the solar wind has a specific angular momentum

Lgas = uφr =
Ω∗r

2

uA

uA − ur

1 − M2
A

, (11.33)

plotted as the solid line in Figure 11.4. The magnetic field carries the specific
angular momentum

Lmag = L − Lgas = Ω∗

r2
A − r2

1 − M2
A

, (11.34)

which is shown as the dashed line in Figure 11.4. The ratio of angular
momentum in the gas to angular momentum in the magnetic field is, at
small radii,

Lgas/Lmag ≈

(

r

rA

)2

∼ 2 × 10−3

(

r

R⊙

)2

. (11.35)
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Figure 11.5: The termination shock, heliopause, and bow shock surrounding
the solar sytem.

At large radii, where r ≫ rA,

Lgas/Lmag ≈
ur

uA

− 1 ∼ 2
(

ur

700 km s−1

)

− 1 . (11.36)

Inside the Alfven radius, the magnetic field carries most of the angular mo-
mentum of the solar wind; outside the Alfven radius, it shares the job with
the gas.

The solar wind is shocked and decelerated when its kinetic energy density
ρu2

r/2 is comparable to the ambient pressure Pi of the interstellar medium.
This happens at a radius

rs ≈ 140 AU

(

Ṁ

10−14 M⊙ yr−1

)1/2
(

ur

700 km s−1

)1/2

, (11.37)

if the pressure of the ISM is taken to be Pi ≈ 3×10−13 dyne cm−2. The space-
craft Voyager 1 went through this termination shock in 2004 December,
when it was 94 AU from the Sun (Figure 11.5). Voyager 2 went through the
termination shock in 2006 May, when it was only 76 AU from the Sun; this
gives a idea of the non-sphericity of the termination shock.


