
Chapter 5

Spherical Blastwaves &

Supernova Remnants

One way to create a shock is to inject a very large amount of energy into
a very small volume. This happens in the interstellar medium whenever a
supernova goes off. Suppose an explosion instantaneously injects an amount
of energy E into an ambient medium of uniform density ρ1. The initial energy
release is considered to take place within an infinitesimally small volume.
Afterward, however, a spherical shock front will expand into the ambient
medium. Early in the course of expansion, the pressure within the shock,
P2 ∼ ρ1u

2
sh, is much larger than the ambient pressure P1 and any radiated

energy is much smaller than the explosion energy E. This regime, during
which the energy E remains constant, is known as the blastwave regime. In
a blastwave, the expansion velocity ush(r, t), density ρ(r, t), pressure P (r, t),
and other properties, are determined solely by the two initial parameters of
the system, E and ρ1.

The energy E has the dimensionality ML2T−2; the density ρ1 has the
dimensionality ML−3. These two parameters cannot be combined to form
a characteristic length scale or time scale for the problem. The solution for
the expanding shock front must then be a scale-free or self-similar solution.
The self-similar solution is a function of the dimensionless variable ξ, where

ξ ≡ rtlρm
1 En ; (5.1)

the exponents l, m, and n are determined by the requirement that ξ be
dimensionless. Since ξ has the dimensionality L1−3m+2nT l−2nMm+n, we see

45



46 CHAPTER 5. SPHERICAL BLASTWAVES & SNRS

that the required solution has the exponents l = −2/5, m = 1/5, and n =
−1/5, or

ξ = r
(

ρ1

Et2

)1/5

. (5.2)

When expressed in the dimensionless units, the properties of the expanding
shock front will depend only on ξ. For instance, the radius of the spherical
shock is

rsh = ξ0

(

Et2

ρ1

)1/5

, (5.3)

where ξ0 is a factor of order unity (for γ = 5/3, it turns out that ξ0 = 1.17).
The rate of expansion of the shock is

ush =
2

5
ξ0

(

E

ρ1t3

)1/5

. (5.4)

Thus,

ush =
2

5
ξ

5/2
0

(

E

ρ1

)1/2

r
−3/2

sh . (5.5)

The expanding shock wave slows as it expands. Using typical values for
supernova explosions,

rsh = 2.3 pc

(

E

1051 erg

)1/5 (

ρ1

10−24 g cm−3

)−1/5 (

t

100 yr

)2/5

(5.6)

ush = 9000 km s−1

(

E

1051 erg

)1/5 (

ρ1

10−24 g cm−3

)−1/5 (

t

100 yr

)−3/5

.(5.7)

For instance, SN1054 (which gave birth to the Crab Nebula) should have a
radius rsh ∼ 5 pc and expansion velocity ush ∼ 2000 km s−1, if it is still in the
blastwave phase of expansion. In fact, the Crab Nebula is observed to have
a radius of 3 pc and an expansion velocity of 900 km s−1. In fact, the Crab is
not exactly spherical and its expansion is not exactly energy-conserving, so
the discrepancy is not surprising.

Obviously, the self-similar blastwave solution is not good for all times.
As t → 0, for instance, the solution predicts infinitely rapid expansion. The
self-similar blastwave solution breaks down when the predicted expansion
velocity is larger than the velocity with which the supernova initially ejects
matter into the ambient medium. For a typical supernova, the initial ejection
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velocity is uej ∼ 104 km s−1; thus, the blastwave solution is invalid when the
supernova remnant is younger than ∼ 70 yr, for our ‘standard’ supernova
parameters.

The self-similar blastwave solution also breaks down when the expanding
shock front is very old. The pressure immediately inside the shock is, for an
extremely strong shock,

P2 =
2

γ + 1
ρ1u

2
sh (5.8)

=
8

25

1

γ + 1
ξ5
0Er−3

sh . (5.9)

Thus, the pressure within the blastwave falls off rapidly with radius. If we
insert numerical values, we find that

rsh ≈ 300 pc

(

E

1051 erg

)1/3 (

P2

4 × 10−13 dyne cm−2

)−1/3

. (5.10)

Thus, when a typical supernova remnant reaches a radius of 300 parsecs, the
internal pressure has dropped until it is comparable to the ambient pressure of
the interstellar medium. This violates our initial assumption that P2 ≫ P1.
For our typical supernova remnant, the assumption of negligible pressure
breaks down badly at radii of rsh ∼ 300 pc, corresponding to an age of t ∼
30 Myr.

In finding the blastwave solution, however, we made another assumption;
namely, that the energy lost in radiation was small compared to the explosion
energy E. At what point does this assumption break down? The temperature
within the shock will be, for ionized matter of cosmic abundances,

T2 =
2(γ − 1)

(γ + 1)2

m

k
u2

sh (5.11)

≈ 2 × 105 K

(

m

10−24 g

)(

E

1051 erg

)2/5 (

ρ1

10−24 g cm−3

)−2/5 (

t

105 yr

)−6/5

.(5.12)

At an age of 105 yr, the radius of the shock will be rsh ∼ 30 pc. The tem-
perature immediately within the shock will be T2 ∼ 2 × 105 K; the cooling
function at this temperature has the value ρL ∼ 10−21 erg cm−3 s−1. The
total energy radiated during the course of 105 years will be, very roughly,

Erad ∼ ρL(
4π

3
r3
sh)t ∼ 1051 erg . (5.13)
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Thus, we expect the energy-conserving blastwave solution to break down
because of radiative losses before it breaks down because of pressure equality.

Once radiative losses become significant, a dense shell forms behind the
radiative shock. The expanding supernova remnant then passes from its
blastwave phase to its snowplow phase. Figure 5.1 illustrates the transition
from the blastwave phase to the snowplow phase. During the ‘snowplow’
phase, the matter of the ambient interstellar medium is swept up by the ex-
panding dense shell, just as snow is swept up by a coasting snowplow. During
the blastwave phase, energy was conserved; during the snowplow phase, mo-
mentum is conserved. Let µ be the total momentum of the expanding shell,
so that a region of solid angle δΩ has momentum µδΩ/(4π). Since the mo-
mentum has dimensionality MLT−1, the radius in the self-similar snowplow
phase has the dependence

rsh = β0

(

µt

ρ1

)1/4

, (5.14)

where β0 is another factor of order unity. The expansion velocity during the
snowplow phase is

ush =
1

4
β0

(

µ

ρ1

)1/4

t−3/4 (5.15)

=
1

4
β−2

0

(

µ

ρ1

)

r−3
sh . (5.16)

During the snowplow phase, the momentum of the expanding supernova
shell will be of order µ ∼ Mshush ∼ 2 × 1043 g cm s−1. The snowplow phase
eventually ends when the expansion speed ush drops to the sound speed a1 =
(γP1/ρ1)

1/2 of the ambient medium. For our typical supernova remnants, this
happens at a time t ∼ 2 Myr, when the radius of the dense shell is rsh ∼ 60 pc.
At this point, the self-similarity of the solution breaks down, since there is
now a characteristic length scale rc = (E/P1)

1/3 in the problem. During this
last phase of expansion, the shock front degenerates into an acoustic wave,
with a velocity of expansion ush = a1.

So far, we have found the radius of the shock front as a function of time
for the blastwave and snowplow solutions. However, we do not yet know the
density, velocity, and pressure as a function of radius within the spherical
shock front. A solution for ρ, u, and P within a self-similar blastwave was
first found by the Russian physicist Leonid Sedov in the 1940’s.
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Figure 5.1: An expanding supernova remnant makes the transition from the
blastwave phase (upper image) to the snowplow phase (lower image). [Shu,
The Physics of Astrophysics, Volume II, Figure 17.4]
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The radius of the shock, for the adiabatic blastwave, is rsh = ξo(Et2/ρ1)
1/5,

and the velocity of expansion is ush = (2/5)rsh/t. If the shock is very strong,
the density, bulk velocity and pressure immediately inside the shock front
are found from the Rankine-Hugoniot conditions:

ρ2 =
γ + 1

γ − 1
ρ1 (5.17)

u2 =
2

γ + 1
ush (5.18)

P2 =
2

γ + 1
ρ1u

2
sh . (5.19)

But now, we ask, what are ρ, u, and P for 0 < r < rsh?
We can find these quantities by solving the equation of mass conservation,

∂ρ

∂t
+

1

r2

∂

∂r
(r2ρu) = 0, (5.20)

the equation of momentum conservation,

∂u

∂t
+ u

∂u

∂r
= −

∂P

∂r
, (5.21)

and the equation of energy conservation,

∂

∂t
(ρε +

1

2
ρu2) +

1

r2

∂

∂r
[r2ρu(ε + P/ρ +

1

2
u2)] = 0 , (5.22)

where ε = P/[(γ − 1)ρ].
Since the solutions for the blastwave is self-similar, the solutions must

take the form

ρ(r, t) =

[

γ + 1

γ − 1

]

ρ1α(ξ) (5.23)

u(r, t) =

[

4

5(γ + 1)

]

r

t
v(ξ) (5.24)

P (r, t) =

[

8

25(γ + 1)

]

ρ1

r2

t2
p(ξ) . (5.25)

The factors of ρ1, r, and t provide the proper dimensionality for the solutions.
The numerical factors in square brackets are inserted so that the dimension-
less density, velocity, and pressure have the normalization α(ξ0) = v(ξ0) =
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Figure 5.2: The Sedov solution for a spherical blastwave with γ = 5/3, in
units of the immediate post-shock values. [Shu, The Physics of Astrophysics,
Volume II, Figure 17.3]

p(ξ0) = 1. The equations of mass, momentum, and energy conservation can
now be converted into equations involving the functions α(ξ), v(ξ), and p(ξ).
After some numerical manipulation, the mass conservation equation becomes

−ξ
dα

dξ
+

2

γ + 1

[

2αv + ξ
d

dξ
(αv)

]

= 0 . (5.26)

The momentum conservation equation becomes

−v −
2

5
ξ
dv

dξ
+

4

5(γ + 1)

[

v2 + vξ
dv

dξ

]

+
2(γ − 1)

5(γ + 1)α

[

2p + ξ
dp

dξ

]

= 0 . (5.27)

The energy conservation equation, finally, becomes

−2(p + αv2) −
2

5
ξ(p + αv2) (5.28)

+
4

5(γ + 1)

[

5v(γp + αv2) + ξ
d

dξ
(v[γp + αv2])

]

= 0 .

Astonishingly, Sedov found an analytic solution to these equations. A plot
of the solutions is given Figure 5.2. As ξ → 0, the density α and the velocity
v go to zero, but the pressure p reaches the limiting value p = 0.306 (when
γ = 5/3). This implies that the temperature (T ∝ P/ρ) goes to infinity as
the radius goes to zero.
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The time has come to compare our theoretical results with observations
of actual supernova remnants (SNRs). Supernova remnants can be observed
that correspond to the first three phases of theoretical expansion. The first
phase is the free expansion of the matter of the exploded star. During this
phase, matter moves outward with a constant velocity veject. The remnant
associated with SN1987A is in the free expansion phase. The remnant Cas
A is at the end of its free expansion phase; it is ∼ 300 years old. At visible
wavelengths, many ‘knots’ of emission, moving radially outward with a ve-
locity of ∼ 6000 km s−1, can be seen. The knots are rich in oxygen, and are
interpreted as being clumps of matter that have been ejected from the center
of the star, where nucleosynthesis took place.

When the amount of interstellar gas swept up becomes comparable to
the initial mass of ejected matter, the SNR enters the blastwave phase. The
remnant of Tycho’s supernova is in the blastwave phase. The Crab nebula is
also in the blastwave phase; its age is ∼ 940 yr, and its expansion velocity is
∼ 900 km s−1.

When the energy radiated just behind the shock front is comparable to the
initial energy of the explosion, the SNR enters the snowplow phase. During
this phase, a dense cool shell forms directly behind the shock front. In theory,
the momentum of this shell is conserved. Observationally, it is found that
the internal pressure of SNRs in the snowplow phase is large enough to give
a significant push to the shell. The Cygnus Loop (alias the Veil Nebula) is
in the snowplow phase; its age is ∼ 4 × 104 yr, and its expansion velocity
is ∼ 120 km s−1. The dense shell is thermally unstable to the formation of
filaments; such filaments can be seen in optical photographs of the Cygnus
Loop.

Although the stages of SNR evolution can be fairly well described by our
simple theory, there are many deviations that should be mentioned. First of
all, the progenitors of SNRs are massive hot stars that have copious stellar
winds. Thus, at the time that the supernova goes off, it will be surrounded
by a low-density bubble that has been excavated by the stellar wind. As
long as the supernova ejecta are expanding into this low-density region, they
will sweep up very little mass, and the free expansion phase will be pro-
longed. Another complication is that the ambient interstellar medium is not
uniform. This inhomogeneity will blur the distinction between the blastwave
and snowplow phases; a portion of the shock front that is passing through a
dense cloud may be in the snowplow phase, while a neighboring portion that
is passing through the rarefied intercloud medium is still in the blastwave
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phase.
It should also be noted that massive stars tend to be born in stellar

associations. They enter their supernova phase before they have a chance
to drift apart. Thus, the remnants of the neighboring supernovas will merge
to form a single superbubble, which may be hundreds of parsecs across.
Such superbubbles are a primary source of the hot ionized component of the
interstellar medium.
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Chapter 6

Ionization Fronts, HII Regions,

& Planetary Nebulae

A shock front is the abrupt transition between two regions with different
densities, bulk velocities, and pressures. An ionization front is the abrupt
transition between a region of ionized gas and a region of neutral gas. The
boundary of an HII region is an approximation to a spherical ionization
front.

An HII region is a volume of photoionized gas surrounding a hot young
star (of spectral type O or B). A planetary nebula also consists of a volume
of ionized gas surrounding a central photoionizing star; the central star in a
planetary nebula, however, is an evolved star approaching its death throes.
Planetary nebulae tend to be denser and smaller than HII regions. The
physics of planetary nebulae is complicated by the fact that the photoioniza-
tion phase is preceded by the ejection of a large quantity of neutral gas with
a velocity of ∼ 20 km s−1. Because the structure of an HII region is simpler,
I will use it as my basic example of a photoionization region.

The gas in an HII region is ionized by photons emitted by the central star.
The ionization energy of hydrogen is 13.6 eV, corresponding to a wavelength
of 912 angstroms. To photoionize significant amounts of hydrogen, the stellar
temperature must be T ∼> 25,000 K. As the star continues to emit photons,
the HII region becomes larger. Eventually, enough energy is pumped into
the ionized material to raise its temperature and cause it to expand. Thus, a
generic HII region consists of a low-density, high-temperature, ionized region
expanding outward into the ambient high-density, low-temperature, neutral
medium.
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The original classic study of HII regions was performed by Bengt Strömgren
in 1939. He considered a simple model, which still managed to convey the
basic physics of HII regions. We will examine the ‘Strömgren sphere’, as his
model is called, and later examine real HII regions to see how they differ
from the ideal case. Strömgren assumed the presence of a uniform medium,
consisting of neutral atomic hydrogen, with number density n0. Suddenly,
at time t = 0, a hot star turns on at the origin. The star’s total output
of ionizing photons (in photons per second) is Nu. The initial effect of the
star’s radiation will be solely to ionize the hydrogen. Thus, the star will
be surrounded by a sphere of electrons and protons, with number density
ne = np = n0. The spherical volume of ionized gas will be separated from
the neutral medium by a thin transition layer, whose thickness is comparable
to the mean free path of an ionizing photon in the neutral medium. The mean
free path λi is given by the relation λi = 1/(n0σi), where the cross-section
for photoionization is σi ≈ 6 × 10−18 cm2 for hydrogen atoms.

Initially, the HII region expands outward at a rate given by the relation

Nu = n04πR2dR

dt
, (6.1)

which integrates to

R(t) =
(

3Nu

4πn0

t
)1/3

. (6.2)

However, an ionized hydrogen atom does not remain ionized forever. The
electrons and protons collide and recombine to form neutral hydrogen at a
rate Nrec = αneni. The recombination rate α(T ) has a value of α = 2.6×
10−13 cm3 s−1 at a temperature T = 104 K, which is a typical temperature
for an HII region. Once recombinations become important, the radius of the
HII region is given by the relation

Nu = 4πn0R
2dR

dt
+ αn2

0

4π

3
R3 . (6.3)

This has the solution

R(t) = Rs

(

1 − e−t/ts
)1/3

, (6.4)

where the characteristic time scale is ts = 1/(αn0) and the characteristic
length scale is the Strömgren radius,

Rs ≡

(

3Nu

4παn2
0

)1/3

. (6.5)
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Figure 6.1: The radius of a Strömgren sphere, in units of Rs, as a function
of time, in units of ts.

A plot of the Strömgren sphere’s radius as a function of time is given in
Figure 6.1. At times t ≫ ts, the radius of the HII region will approach the
Strömgren radius. An O5 star has Nu = 5 × 1049 s−1, and a B0 star has
Nu = 4 × 1046 s−1. If an O5 star is embedded in a cool neutral cloud with
n0 = 30 cm−3, it will create an HII region with radius Rs ∼ 4 × 1019 cm ∼

12 pc. The total mass of ionized hydrogen is ∼ 7000 M⊙. The time to create
the Strömgren sphere is ts ∼ 4000 yr.

The above analysis assumes that the hydrogen gas is static; this is a false
assumption. Although the Strömgren sphere is in ionization equilibrium, it is
not in dynamic equilibrium. The temperature of the neutral medium in which
the HII region will typically be ∼ 100 K. The measured temperatures of HII
regions are ∼ 7000 K. Moreover, the HII region has twice as many particles
per unit volume as the ambient medium, since its hydrogen is completely
ionized into protons and electrons. Thus, the pressure inside the HII region
is ∼ 140 times the pressure outside. The ionized region will expand outward.

Consider a plane parallel ionization front, across which ρ, P , and u, as
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well as the degree of ionization, are discontinuous. Let Φi be the flux of
ionizing photons reaching the ionization front. Let ρ1 and P1 be the density
and pressure of the neutral medium, and let u1 be the bulk velocity of the
neutral matter relative to the ionization front. Let ρ2 and P2 be the density
and pressure of the ionized medium, and let u2 be the bulk velocity of the
ionized matter relative to the front. The continuity equation takes the form

ρ1u1 = ρ2u2 = miΦi , (6.6)

where mi is the mean particle mass of the ionized gas. The momentum
conservation equation has the familiar form

P1 + ρ1u
2
1 = P2 + ρ2u

2
2 . (6.7)

The energy equation, however, takes a new and unfamiliar form. Our com-
bination ionization & shock front is radiative, but not isothermal. The tem-
perature T1 of the neutral medium is constant. The ionized medium is ra-
diatively cooled until it reaches a constant temperature T2 6= T1. In a fully
ionized medium, the equilibrium temperature that is set by a balance be-
tween heating and cooling is generally T2 ∼ 104 K, considerably higher than
the temperature T1 ∼ 100 K that is typical of the neutral atomic interstellar
medium.

In a gas consisting of pure hydrogen, the energy requirements are

P1

ρ1

=
kT1

mH

(6.8)

for the neutral gas, and
P2

ρ2

=
2kT2

mH

(6.9)

for the ionized gas. We can define the isothermal sound speeds for the
neutral and ionized media as a1 ≡ (P1/ρ1)

1/2 and a2 ≡ (P2/ρ2)
1/2. Making

use of the equations for the conservation of mass and momentum, the jump
in density across the front can be written in terms of the velocity u1 and the
sound speeds a1 and a2. A bit of algebraic manipulation tells us

ρ2

ρ1

=
1

2a2
2

[a2
1 + u2

1 ±
√

f(u1)] , (6.10)

where f(u1) = (a2
1 + u2

1)
2 − 4a2

2u
2
1. The function f(u1) can also be written in

the form
f(u1) = (u2

1 − u2
R)(u2

1 − u2
D) (6.11)
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where

uR ≡ a2 +
√

a2
2 − a2

1 (6.12)

uD ≡ a2 −
√

a2
2 − a2

1 . (6.13)

Physical reality demands that the ratio ρ2/ρ1 be a real number. Thus, the
velocity of the ionization front (relative to the neutral gas) must have either
u1 ≥ uR or u1 ≤ uD. The rapidly propagating ionization fronts (u1 ≥ uR) are
called R-type fronts; the slowly propagating ionization fronts (u1 ≤ uD)
are called D-type fronts. In this naming scheme, ‘R’ stands for ‘rarefied’
and ‘D’ stands for ‘dense’.1

In HII regions, it’s a fair approximation that a2 ≫ a1, so uR ≈ 2a2 and
uD ≈ (a1/a2)

2a2/2. An R-type front always has u1 > uR > a2 > a1, and is
supersonic with respect to the neutral medium. A D-type front always has
u1 < uD < a1 < a2, and is subsonic with respect to the neutral medium.

For a given propagation velocity u1, there are two possible values of ρ2/ρ1,
corresponding to taking the plus or the minus sign in the solution of the
quadratic equation. This is shown graphically in Figure 6.2, which is a plot
of the ratio ρ2/ρ1 as a function of u1. A front that has the larger density
contrast is called a strong front; a front that has the smaller density contrast
is a weak front. Thus, there are four types of ionization front possible; a
weak R-type front, a strong R-type front, a weak D-type front, and a strong
D-type front. It turns out that strong R-type fronts are unstable, and are not
seen in nature. Weak R-type fronts and both strong and weak D-type fronts
are known to exist, however, around HII regions and planetary nebulae.

In a weak R-type front, the incoming neutral gas is supersonic with re-
spect to the front (u1 > a1), and the outflowing ionized gas is also supersonic
with respect to the front (u2 > a2). In a strong R-type front, the incoming
neutral gas is supersonic, and the outflowing ionized gas is subsonic. In a
weak D-type front, the incoming neutral gas is subsonic, and the outflowing
ionized gas is also subsonic. In a strong D-type front, the incoming gas is
subsonic, and the outflowing ionized gas is supersonic.

Consider, for example, an expanding HII region. When the ionizing star
is first ‘turned on’, the spherical ionization front is very small; hence the flux
Φi is very large, resulting in a high velocity u1. Thus, the front is initially

1For a given flux Φi, as the gas becomes more rarefied (ρ1 → 0), the velocity u1 → ∞,
and an R-type front results. Similarly, as ρ1 → ∞, u1 → 0, and a D-type front results.
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Figure 6.2: Physically permissible values of the density contrast ρ2/ρ1 across
an ionization front with a2 = 10a1.
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a weak R-type front. In the limit that u1 ≫ a2 ≫ a1, the ratio of densities
inside and outside the HII region is

ρ2

ρ1

≈ 1 +
a2

2

u2
1

weak R . (6.14)

A weak R-type front compresses the gas only slightly. This period, when
the interior and exterior densities are nearly the same, is when Strömgren’s
approximation holds good.

As the ionization front surrounding the HII region expands, the flux of
ionizing photons Φi steadily decreases. Eventually, the velocity u1 drops to
a value u1 = uR. At this point, the front is an ‘R-critical’ front; the density
ratio is ρ2/ρ1 ≈ 2 and the velocity of the ionized gas is u2 ≈ a2. Once
the ionization front slows still farther, the R-type front can no longer exist.
What happens next is illustrated in Figure 6.3. When the velocity u1 drops
below uR, the R-critical front splits into a shock front followed by a D-critical
front. The shock front increases the density of the gas (by a factor of 4 if
M1 ≫ 1 and γ = 5/3), decreases the velocity of the gas, and increases the
sound speed. Because of the decrease in the bulk velocity and the increase in
the sound speed, the flow of neutral gas is now subsonic, and is ready to pass
through a D-type front that ionizes it. As the HII region expands farther,
the leading shock front gradually weakens, and the trailing D-critical front
develops into a weak D-type front. Thus, a bit of neutral gas will be first
compressed by the shock and then blasted with UV photons and ionized.

The shock front expands outward and decreases in amplitude until it fi-
nally becomes a sound wave of infinitesimal amplitude expanding outward
with velocity u1 = a1. If the photoionizing star is immortal, then the ion-
ization front will expand more and more slowly until HII region attains an
equilibrium state in which the pressure of the expanded ionized gas is equal
to the pressure of the neutral surrounding medium. The final equilibrium
radius, Rfinal, is given by the relation

Rfinal =

(

3Nu

4παn2
final

)1/3

, (6.15)

where the density nfinal within the HII region is given by the requirement of
pressure equilibrium:

2nfinalT2 = n0T1 . (6.16)
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Figure 6.3: The transition from an R-critical front to a shock front followed
by a D-critical front.
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Thus,

Rfinal =
(

2T2

T1

)2/3

Rs ∼ 27Rs . (6.17)

In practice, however, HII regions never reach this equilibrium state. The
massive O and B stars that ionize them become supernovae before then.

Observers classify real HII regions into five categories that correlate well
with the age of the region. An ultracompact HII region contains a single,
very young, hot star. Ultracompact HII regions are embedded deep within
molecular clouds, and can be observed only in the radio and the infrared.
They have radii R ∼< 0.1 pc and densities n ∼> 104 cm−3. An example of
an ultracompact HII region is the Becklin-Neugebauer object, located in a
molecular cloud near the Orion nebula.

As the HII region expands, it becomes a compact HII region. A compact
HII region contains a single, young, hot star; it has broken out of its molecular
cocoon, so it can be seen at optical wavelengths. Compact HII regions have
radii R ∼ 0.5 pc and densities n ∼ 5 × 103 cm−3. An example of a compact
HII region is the Orion nebula.

A standard HII region contains a single hot star; it typically forms a
‘blister’ on the surface of a molecular cloud. On one side, the expanding
ionized gas of the HII region is confined by the dense molecular cloud; on the
other side, it pushes out into the intercloud medium. Standard HII regions
have R ∼ 3 pc and n ∼ 300 cm−3. An example of a standard HII region is
the Omega nebula.

A large HII region contains several hot stars; it consists of several stan-
dard HII regions that have merged together. Large HII regions have R ∼

10 pc and n ∼ 50 cm−3. An example of a large HII region is the North
America nebula.

Finally, a giant HII region contains as many as 104 hot stars; it consists
of numerous large HII regions plus a common ionized envelope. Giant HII
regions have R ∼> 100 pc and n ∼< 10 cm−3. A famous example of a giant HII
region is 30 Doradus in the Large Magellanic Cloud.

Planetary nebulae contain one hot star apiece, but they show an increas-
ing radius and decreasing density similar to that of HII regions. The youngest
visible planetary nebulae have R ∼ 0.03 pc and n ∼ 104 cm−3. The oldest
planetary nebulae have R ∼ 1 pc and n ∼ 10 cm−3. The progenitor of a
planetary nebula is a star of initial mass 1− 8 M⊙ that has evolved onto the
asymptotic giant branch (AGB). At the end of its AGB stage, such a star
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Figure 6.4: A schematic luminosity – temperature diagram for the evolution
of stars destined to become planetary nebulae.

ejects its outer envelope at the relatively low velocity of 20 − 30 km s−1. A
central core of mass 0.6 − 1.4 M⊙ is left behind. This central core, which
evolves into a white dwarf, is the photoionization source for the planetary
nebula. The evolution of the central stars of planetary nebulae is given in
Figure 6.4.

The central photoionizing core has a temperature of 25,000 K → 200,000 K,
and a luminosity 10 L⊙ → 10,000 L⊙. The ejected matter that is photoion-
ized by the central core is initially cold and neutral, and consists partly of
molecules. (Thus, the ionization front in a planetary nebula is preceded by
a dissociation front.) Initially, the ionized matter surrounding the central
core consists entirely of the matter that has been ejected from the giant pro-
genitor. However, as the ionization front expands, it reaches the boundary of
the ejected matter, and reaches the lower-density interstellar matter beyond.
The ionization front races outward into the low-density surrounding matter.
Eventually, however, the temperature of the central white dwarf drops below
25,000 K and fails to maintain the ionization of the surrounding matter. The
planetary nebula gradually recombines, and dims into invisibility.


