
Chapter 7

Basic Turbulence

The universe is a highly turbulent place, and we must understand turbulence
if we want to understand a lot of what’s going on. Interstellar turbulence
causes the “twinkling” of radio sources, just as turbulence in the earth’s
atmosphere causes the twinkling of stars. Turbulence in stellar atmospheres
strongly modifies the structure of the star; in fact, the turbulent heat flux
can be larger than the conductive heat flux ~F and the turbulent stress tensor
can be larger than the viscous stress tensor

↔

π . Turbulent motions are seen
in HII regions, in molecular clouds, and in jets.

The first difficulty in dealing with turbulence is providing an adequate
definition. According to Webster’s New Collegiate Dictionary, turbulence is
“departure in a fluid from a smooth flow”. Turbulence is characterized by
the presence of irregular eddying motions – that is, motions in which the
vorticity ~ω ≡ ~∇× ~u is non-zero. An image of turbulent flow in a terrestrial
laboratory is given in Figure 7.1. Usually, a turbulent flow has a spectrum
of eddy sizes.1

In a turbulent flow, the fluid velocity ~u(~x, t) at a fixed point ~x varies
with time in a nearly random manner, as shown in the data of Figure 7.2.
From an alternative viewpoint, the velocity at a fixed time t varies with
position in a nearly random manner. Turbulence is a chaotic process; a
small change in the initial conditions ~u(~x, t0) results in a large change in the
conditions at a later time t. Since we cannot examine the development of the
turbulent velocity field in a deterministic manner, we are reduced to studying
the statistical properties of the turbulence.

1As it says in the poem by Lewis F. Richardson, ‘Big whirls have little whirls / Which
feed on their velocity, / And little whirls have lesser whirls / And so on to viscosity.’
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Figure 7.1: Laser-induced fluorescence image of an incompressible turbulence
boundary layer. [University of Iowa Fluids Laboratory]

Figure 7.2: Turbulent velocities within the Earth’s atmosphere, measured
18 m above the ground. Time and velocity are in arbitrary units.
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A flow that is not turbulent, in which the velocity varies smoothly and
predictably in space and time, is known as a laminar flow. Many flows
can be broken down into a laminar and a turbulent component. Note that
the random turbulent component of a fluid’s motion is distinct from the
random thermal component. The thermal component consists of the random
Brownian motion of the individual gas particles; each particle moves in a
straight line for a distance ∼ λ before an encounter with another particle
sends it off in a different direction. The turbulent component consists of the
eddying motion of macroscopic fluid elements; the eddies have a range of
sizes, but all eddies are very much larger than λ.

By distinguishing between the laminar component and the turbulent com-
ponent, we are separating the bulk velocity ~u of a gas into two parts:

~u(~x) = ~U(~x) + ~u′(~x) . (7.1)

where the laminar component is ~U = 〈~u〉 and the turbulent component is
~u′ = ~u − 〈~u〉. When I use the symbol 〈~u〉, I am referring to the average
value of ~u – but what does it mean, in this context, to take the average of
the velocity? In practice, what we must do is calculate the spatial average
within a volume V ,

〈~u〉 =
1

V

∫

V
~ud3x , (7.2)

or the time average during an interval τ ,

〈~u〉 =
1

τ

∫ t+τ

t
~udt . (7.3)

The Taylor hypothesis states that for fully developed turbulence, the spa-
tial average and the time average are equivalent.

Now, after removing the laminar velocity ~U , we are left with the turbu-
lent velocity ~u′. We will make things easier for ourselves by placing some
restrictions on the form of the turbulent velocity field. First, we will assume
that the turbulence is homogeneous and isotropic; that is, the statistical
properties of ~u′ are independent of position and direction. In addition, we
assume that the turbulence is incompressible; that is, the density of the
turbulent fluid is the same everywhere. This assumption is an extraordinarily
poor one for the interstellar medium, in which the density varies wildly from
place to place. However, the case in which the fluid is incompressible has the
great advantage of simplicity; if we assume incompressibility, we can actually
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find a few analytic results! These results will give us some insight into the
physics of the problem, which we can then apply to the more realistic case
of a self-gravitating, radiating, compressible fluid.

In an incompressible fluid, the continuity equation for the turbulent flow
simplifies to the form

~∇ · ~u′ = 0. (7.4)

The equation for momentum conservation is

∂~u′

∂t
+ (~u′ · ~∇)~u′ =

1

ρ
~∇P + ν∇2~u′ . (7.5)

I am assuming that the fluid exhibits Newtonian viscosity, and that the
kinematic viscosity, ν ≡ µ/ρ, is constant. The kinematic viscosity of air is
ν ≈ 0.15 cm2 s−1 at sea level and at room temperature. For neutral atomic
hydrogen, the kinematic viscosity is

ν ∼ 4 × 1021 cm2 s−1

(

T

104 K

)1/2 ( n

1 cm−3

)−1

. (7.6)

The kinematic velocity is approximately equal to the sound speed in a fluid
times the mean free path λ.

We can define a velocity correlation tensor for the turbulent velocity
in the following manner:

Rij(r) ≡ 〈u′

i(~x)u′

j(~x + ~r)〉 . (7.7)

Since the turbulent velocity field is homogeneous and isotropic (by assump-
tion), the correlation tensor is a function only of the distance r between the
two points and not on their location ~x within the velocity field. In an ideal
universe, we could measure the velocity vector everywhere within the tur-
bulent flow, subtract away the laminar component, and then compute the
correlation tensor Rij exactly. Unfortunately, this is difficult to do even in-
side a laboratory. Astronomers are even more badly hampered; usually the
best they can get is a line-of-sight velocity profile, which adds together the
radial velocities of all the matter along a given line of sight.

The trace of the velocity correlation tensor is

R(r) ≡
∑

i

Rii(r) . (7.8)
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In the limit that r → 0, R(r) → 〈|~u′|2〉. The trace can be used to define a
correlation length

Λt ≡
1

R(0)

∫

∞

0

R(r)dr . (7.9)

The correlation length, roughly speaking, is the size of the biggest eddies in
the turbulent flow.

Since turbulence exists with a range of eddy sizes, it is frequently conve-
nient to take the Fourier transform of the velocity field in order to consider
the Fourier components of different wavenumber. The components of the
velocity in Fourier space will be

~u~k =
1

(2π)3

∫

~u′(~r)e−i~k·~rd3r . (7.10)

The Fourier transform of the velocity correlation tensor is the energy spec-

trum tensor,

Φij(~k) =
1

(2π)3

∫

Rij(~r)e
−i~k·~rd3r . (7.11)

The spectrum Φij(~k) tells how much kinetic energy is contained in eddies with
wavenumber k. The tensors Rij and Φij both contain the same information
about the field; which tensor you use depends merely on whether it is more
convenient to work in real space or Fourier space.

In a homogeneous isotropic turbulent flow, it is possible, and also useful,
to define an energy spectrum function E(k) such that

E(k) ≡ 2πk2
∑

i

Φii(~k) . (7.12)

The total turbulent kinetic energy per unit mass is then

1

2
〈|~u′|2〉 =

∫

∞

0

E(k)dk . (7.13)

In a Newtonian fluid, the rate at which the turbulent kinetic energy is dissi-
pated by viscosity is

ǫd = 2ν
∫

∞

0

k2E(k)dk . (7.14)

Thus, the dissipation occurs at high wavenumbers – it is the smallest eddies
present that dissipate the turbulent energy through viscosity.



70 CHAPTER 7. BASIC TURBULENCE

For a turbulent flow to remain in a steady state, turbulent energy must be
added at the largest scales at the same rate ǫd at which it is being dissipated
at the smallest scales. If additional energy is not added, the turbulence
will gradually decay. In the earth’s atmosphere, for instance, the turbulence
is maintained by the addition of solar energy, which adds energy to the
atmosphere at the time-averaged rate ǫd ∼ 10 erg g−1 s−1.

In 1941, Kolmogorov predicted that the velocity field in incompressible
turbulent flows would be self-similar over a range of velocity scales.2 The
self-similarity, he stated, results from a dissipationless cascade of energy from
large scales (the big whirls) to small scales (the little whirls). The average
velocity difference between two points, in the Kolmogorov theory, is a func-
tion only of the distance r between the points and the energy dissipation rate
per unit mass ǫd.

The fully developed turbulent medium is characterized by only two quan-
tities, the mean rate of energy dissipation, ǫd, and the kinematic viscosity ν.
The dimensionality of ǫd is energy/time/mass, or L2T−3, and the dimension-
ality of ν is L2T−1. We can combine these two quantities to find the length
scale

lK =

(

ν3

ǫd

)1/4

, (7.15)

known as the Kolmogorov, or dissipational, length scale. The Kolmogorov
length scale is the size of the smallest eddies in the fluid. Eddies smaller
than the Kolmogorov scale rapidly dissipate their kinetic energy by viscous
heating and disappear. The eddies of size lK rotate with a velocity

uK = (νǫd)
1/4 , (7.16)

and dissipate their energy in a time roughly equal to

τK =
(

ν

ǫd

)1/2

. (7.17)

In the Earth’s atmosphere, ǫd ∼ 10 cm2 s−3 and ν ∼ 0.1 cm2 s−1. Thus,
the smallest eddies in the Earth’s atmosphere have lK ∼ 0.1 cm, which is
significantly longer than the mean free path λ ∼ 10−4 cm. The smallest
eddies swirl around with a velocity uK ∼ 1 cm s−1, dying away with a decay
time of τK ∼ 0.1 s.

2His results were published in the Proceedings of the Soviet Academy of Sciences, and
were initially neglected; Russians had other things to worry them during the year 1941.
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Kolmogorov, in making his assumption of self-similar turbulence, saw
that the power spectrum of the turbulence should have the form

E(k, t) = u2

K lKE∗(lKk) , (7.18)

where E∗ is a dimensionless function of the dimensionless wavenumber lKk.
The factor u2

K lK = ν5/4ǫ
1/4

d in front gives the energy spectrum its proper
dimensionality. When the wavenumber k of a turbulent element lies in the
range Λ−1

t ≪ k ≪ l−1

K , then it is in the inertial subrange, in which negligible
dissipation occurs, and the dominant energy process is the transfer of kinetic
energy from large eddies to smaller eddies by inertial forces. In the inertial
subrange, the power spectrum must be scale free, so that

E∗(lKk) = α(lKk)n (7.19)

is a pure power law (with α being our old friend, the “factor of order unity”).
Since viscous forces are negligible on this scale, the power spectrum E(k)

must also be independent of the value of the kinematic viscosity ν. Since
u2

K = ν1/2ǫ
1/2

d and lK = ν3/4ǫ
−1/4

d , we find

E(k) = ν1/2ǫ
1/2

d ν3/4ǫ
−1/4

d αν3n/4ǫ
−n/4

d kn . (7.20)

For the dependence of E on ν to vanish, we require n = −5/3, and

E(k) = αǫ
2/3

d k−5/3 . (7.21)

This spectrum, of the form E ∝ k−5/3, is referred to as the Kolmogorov

spectrum, and is a pretty good fit for many turbulent flows on scales be-
tween the correlation length Λt and the Kolmogorov length lK . A schematic
plot of the Kolmogorov spectrum is shown in Figure 7.3.

If u(l) is the velocity of eddies with size l, dimensional analysis tells us
that

E(k) ∼ lu(l)2 ∼ ǫ
2/3

d l5/3 (7.22)

and hence that

u(l) ∼ ǫ
1/3

d l1/3 = uK(l/lK)1/3 . (7.23)

On scales larger than lK the Reynolds number scales as Re ∝ l4/3, so on large
scales dissipation is negligible.
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Figure 7.3: The Kolmogorov spectrum for incompressible turbulence.

In the Earth’s atmosphere, the inertial range stretches from lK ∼ 0.1 cm
to the correlation length Λt ∼ 1 km. Within that range, the typical turbulent
velocity is

u(l) ≈ 10 cm s−1

(

l

1 m

)1/3

. (7.24)

The smallest eddies, with l ∼ lK ∼ 0.1 cm, take 0.1 seconds to whirl around.
The largest eddies, with l ∼ Λt ∼ 1 km, take 1000 seconds to whirl around.
It is these turbulent eddies that cause ‘twinkling’ and ‘seeing’.

Does the Kolmogorov spectrum apply (even approximately) to the inter-
stellar medium, which is most distinctly not an incompressible fluid? For in-
stance, it has been proposed that turbulence occurs within molecular clouds.
The temperature of molecular clouds is usually about 10 K. If the emission
lines in the spectra of molecular clouds are broadened only by the thermal
motions, they should have a width of ∆v ∼ 0.3 km s−1. In fact, the measured
widths are greater than this value. For instance, in 1981, Richard Larson
found that the relation

∆v ≈ 1.1 km s−1

(

l

1 pc

)0.38

(7.25)

gave a good fit to the measured velocity dispersions of molecular clouds.
Larson’s results are plotted in Figure 7.4. This observationally determined
relation is close to the ∆v ∝ l1/3 relation expected for a Kolmogorov spectrum
of turbulence.
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Figure 7.4: The internal velocity dispersion σ plotted versus the maximum
linear size L of molecular clouds. (The different letter symbols represent
different molecular cloud complexes.) [Larson, 1981, MNRAS, 194, 809]

If the relation were actually ∆v ∼ 1 km s−1(l/1 pc)1/3, and the molecular
gas were incompressible, that would imply ǫd = (∆v)3/l ∼ 3×10−4 cm2 s−3 ∼
2 × 10−4 L⊙/ M⊙. The kinematic viscosity of a dense molecular cloud is
ν ∼ 1017 cm2 s−1, implying a Kolmogorov length lK ∼ 4 × 1013 cm ∼ 3 AU.
The velocity of the smallest eddies would be uK ∼ 2 × 103 cm s−1 and they
would whirl around on a timescale τK ∼ 2 × 1010 s ∼ 600 yr.

However, treating molecular clouds as if they were incompressible fluids
with a Kolmogorov spectrum of turbulence is incredibly näıve. Most studies
of molecular clouds give the relation

∆v ≈ 1 km s−1

(

l

1 pc

)0.5

(7.26)

for the line width on a scale l; the results from one study are shown in
Figure 7.5. In addition, the average density of a molecular cloud scales as

n ≈ 4000 cm−3

(

l

1 pc

)−1.2

. (7.27)

Thus, the assumption of a constant density, incompressible fluid is a poor
one. In addition, the turbulent velocities are larger than the sound speed
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Figure 7.5: Velocity dispersion as a function of linear size for a sample of 273
molecular clouds within our galaxy. [Solomon et al., 1987, ApJ, 319, 730]
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a ∼ 0.3 km s−1; therefore, it is highly likely that shocks will form. Further-
more, energy will be added to the molecular clouds not only on the correla-
tion length Λt, but also on smaller scales (as the result of supernovae, stellar
winds, and other processes). Also, in a realistic view of interstellar turbu-
lence, the effects of gravity and magnetism must be taken into account. In
view of these complications, people who study turbulence in the ISM must
resort to numerical simulations. The simulation shown in Figure 7.6, for
instance, shows the large density contrasts typical of realistic simulations of
compressible turbulence.
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Figure 7.6: Gas density from a 10243 adaptive mesh simulation of supersonic
compressible turbulence (darker regions are denser). [Kritsuk et al., 2006,
ApJ, 638, L25]


