
Chapter 8

Spherical Accretion

Accretion may be defined as the gravitational attraction of material onto a
compact object. The compact object may be a black hole with a Schwarzschild
radius R∗ = 2GM∗/c

2 ∼ 3 km(M∗/ M⊙). Another possible compact object
is a neutron star, with mass M∗ ∼ 2 M⊙ and radius R∗ ∼ 10 km. Yet an-
other possible compact object is a white dwarf, with mass M∗ ∼ 1 M⊙ and
radius R∗ ∼ 104 km. The accretion of gas onto a compact object can be a
very efficient way of converting gravitational potential energy into radiation.
Consider a compact object of mass M∗ and radius R∗. If a blob of hydrogen
with mass m is allowed to drop onto the compact object, starting at infinity,
the amount of energy released is

Eacc =
GM∗m

R∗

=
RSch

2R∗

mc2 , (8.1)

where RSch is the Schwarzschild radius of the mass M∗. By comparison,
the conversion of the hydrogen into helium would yield an energy Enuc =
0.007mc2. Thus, accretion accretion onto a compact object with R∗ ∼

<

70RSch, such as a black hole or neutron star, is a more efficient mechanism
than nuclear fusion of H to He.

There is a limit to the rate Ṁ at which a compact object can accrete
matter. Suppose the infalling matter consists of ionized hydrogen. The
luminosity L of the central compact object exerts a radiation force on the free
electrons by Thomson scattering. The outward radial force on an electron
at a radius r is fout = σT L/(4πr2c), where σT = 6.7 × 10−25 cm2 is the
Thomson cross section of the electron. As each electron moves outward, it
drags a proton along with it in order to conserve charge neutrality. The
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inward gravitational force on the electron - proton pair is fin = GM∗mp/r
2.

There exists a limiting luminosity, called the Eddington luminosity, at
which the two forces cancel:

LEdd =
4πGM∗mpc

σT

= 3.4 × 104 L⊙

(

M∗

M⊙

)

. (8.2)

When the luminosity of the central compact object is greater than this value,
the surrounding hydrogen gas will be blown away by the radiation pressure.
If the Eddington luminosity is emitted as black-body radiation, the temper-
ature will be

Tbb =

(

LEdd

4πR2
∗
σSB

)1/4

=

(

GM∗mpc

R2
∗
σSB

)1/4

. (8.3)

where σSB is the Stefan-Boltzmann constant, and R∗ is the radius of the
surface from which the radiation is emitted (for a black hole, of course,
this surface will be outside the Schwarzschild radius). For a black hole ac-
creting at the Eddington limit, the temperature of the radiation will be
Tbb ∼ 4 × 107 K(M∗/ M⊙)−1/4, if the radiation comes from immediately out-
side the Schwarzschild radius. The spectrum of the emitted photons will
then peak at a photon energy E ∼ 20 keV(M∗/ M⊙)−1/4.

The existence of the Eddington luminosity implies the existence of a max-
imum accretion rate, ṀEdd, for an accreting compact object. If the accre-
tion energy Eacc is converted entirely into radiation, then the luminosity is
Lacc = GM∗Ṁ/R∗, and the maximum possible accretion rate is

ṀEdd =
4πmpcR∗

σT

= 9×1016 g sec−1(
R∗

1 km
) = 1×10−3 M⊙ yr−1(

R∗

R⊙

) . (8.4)

In reality, the conversion is not 100% efficient, the accretion is not perfectly
spherically symmetrical, and the radiation is not perfectly spherically sym-
metrical; thus, matter can be accreted at rates somewhat greater than ṀEdd.

Quasars and active galactic nuclei can have luminosities as great as 1014 L⊙.
If they are powered by accretion onto a central compact object, its mass must
be M∗ ∼

> 3 × 109 M⊙, with a Schwarzschild radius RSch ∼
> 8 light-hours. The

X-ray variability of bright AGNs and quasars is on the scale of hours, suggest-
ing that the central accreting object must be a black hole near its Eddington
luminosity; otherwise its radius and variability timescale would be too large.
If the central object is a black hole, the rate at which it must accrete matter in
order to radiate with L = 1014 L⊙ is Ṁ = L/(c2η) ∼ (η−1)7 M⊙ yr−1, where



81

η is the efficiency with which the accretion energy is converted to radiation.
The most luminous X-ray binaries within our own galaxy have luminosities
of about 3×104 L⊙, implying a mass of 1 M⊙ if they are powered by accretion
at the Eddington limit.

Now, let us consider the dynamics of spherically symmetric accretion. A
compact object of mass M is embedded in the ISM. Far from the accreting
compact object, the medium has a uniform density ρ∞ and a uniform pressure
P∞; the sound speed far from the accreting object thus has the value a∞ =
(γP∞/ρ∞)1/2. If the infall of matter has reached a steady state, then the
equation of mass conservation reduces to the form Ṁ = −4πr2ρu, where Ṁ
is the rate of accretion onto the compact object. Ignoring the self-gravity of
the accreting gas, the equation of momentum conservation is

u
du

dr
+

a2

ρ

dρ

dr
+

GM

r2
= 0 . (8.5)

From the equation of mass conservation, we know that

1

ρ

dρ

dr
= −

2

r
−

1

u

du

dr
. (8.6)

Substituting this result into the momentum conservation equation, we find
the result

1

2

(

1 −
a2

u2

)

d

dr
(u2) = −

GM

r2

[

1 −
2a2r

GM

]

. (8.7)

This equation is called the “Bondi equation”, after Hermann Bondi, who pi-
oneered the study of spherical accretion. It represents spherically symmetric,
steady state accretion of a non-self-gravitating gas.1

Now consider the term in square brackets on the right hand side of the
Bondi equation, above. As r → ∞, the sound speed a approaches the finite
value a∞. Thus, the term in square brackets is negative at large radii. As
r → 0, however, the term in square brackets tends to increase. At some
radius rs, it will equal zero, unless some form of heating raises the sound
speed to values a(r)2 > GM/(2r). Let us assume that there is a radius rs

at which 2a(rs)
2rs = GM , and the right hand side of the Bondi equation

vanishes. At the radius rs, the left hand side of the equation must also
vanish. This means that either

u(rs)
2 = a(rs)

2 (8.8)

1Bondi, 1952, MNRAS, 112, 195
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Figure 8.1: Solutions to the Bondi equation, divided into six families.

or
d(u2)

dr

∣

∣

∣

r=rs

= 0 . (8.9)

There are six families of solutions to the Bondi equation, characterized by
their behavior at the radius rs and in the limits r → ∞ and r → 0. These
families are illustrated in Figure 8.1.

Type 1: u(rs)
2 = a(rs)

2 , u2
→ 0 as r → ∞ . (8.10)

Type 2: u(rs)
2 = a(rs)

2 , u2
→ 0 as r → 0 . (8.11)

The type 1 and type 2 solutions are known as the transonic solutions; in
these solutions the radius rs is known as the sonic point.

Type 3:
d(u2)

dr

∣

∣

∣

r=rs

= 0 , u2 < a2 . (8.12)

Type 4:
d(u2)

dr

∣

∣

∣

r=rs

= 0 , u2 > a2 . (8.13)
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The type 3 and type 4 families of solution represent flow that is everywhere
subsonic (type 3) or everywhere supersonic (type 4).

Type 5: u(rs)
2 = a(rs)

2 , r > rs . (8.14)

Type 6: u(rs)
2 = a(rs)

2 , r < rs . (8.15)

The type 5 and type 6 families of solutions represent solutions that are math-
ematically permissible but physically impossible. They are double-valued,
giving two values of u2 at a given value of r. Since the bulk velocity u must
have a unique value at every point, we exclude families (5) and (6) as possible
solutions for spherical accretion. Moreover, for the case of spherical accre-
tion, we want solutions for which u2 → 0 as r → ∞. We thus exclude family
(4) and solution (2) from consideration, since they have supersonic infall at
large radius. This leaves us with two possible solutions. The solutions of type
(3) represent an accretion flow that is subsonic at all radii; they consist of a
gentle infall that gradually settles into hydrostatic equilibrium at small radii.
In most cases, accretion is not gentle; the accreted matter comes zooming in
at supersonic speeds at small radii. Therefore, we will focus our attention
on solution (1), which represents an accretion flow that is subsonic at r > rs

and supersonic at r < rs.

If the accretion is transonic, of type (1), then we can uniquely determine
the accretion rate Ṁt in terms of the mass M of the accreting object and
the density ρ∞ and the sound speed a∞ at infinity. Let us suppose that the
infall is adiabatic, with P ∝ ργ. The equation of momentum conservation
can then be integrated to yield the result

u(r)2

2
+

a(r)2

γ − 1
−

GM

r
=

a2
∞

γ − 1
. (8.16)

This quantity is known as the Bernoulli integral. Evaluating the Bernoulli
integral at the sonic point rs tells us that

a(rs)
2

(

1

2
+

1

γ − 1
− 2

)

=
a2
∞

γ − 1
, (8.17)

or

a(rs) = a∞

(

2

5 − 3γ

)1/2

. (8.18)



84 CHAPTER 8. SPHERICAL ACCRETION

This implies that

rs =
5 − 3γ

4

GM

a2
∞

(8.19)

and

ρ(rs) = ρ∞

(

2

5 − 3γ

)1/(γ−1)

. (8.20)

When the adiabatic index is γ = 5/3, the accreting gas doesn’t reach the
sonic point until rs = 0.

Using the relation Ṁ = 4πr2
sρ(rs)a(rs), we find that the transonic accre-

tion rate for the type (1) solution is

Ṁt = 4πqs
G2M2ρ∞

a3
∞

, (8.21)

where

qs(γ) =
1

4

(

2

5 − 3γ

)(5−3γ)/(2γ−2)

. (8.22)

The numerical value of qs ranges from qs = 1/4 at γ = 5/3 to qs = e3/2/4 ≈

1.12 when γ = 1. If the accreting matter is ionized hydrogen, the transonic
accretion rate has the value

Ṁt = 1.2 × 1010 g sec−1

(

M

M⊙

)2 (
ρ∞

10−24 g cm−3

)

(

T∞

104 K

)−3/2

. (8.23)

This amounts to about 10−16 M⊙ yr−1 for a 1 M⊙ accreting mass. The Ed-
dington accretion rate for a black hole is ṀEdd ∼ 3×1017 g sec−1(M/ M⊙), so
an isolated black hole in the ISM is in little danger of exceeding its Eddington
accretion rate.

The relation between the bulk velocity u(r) and the sound speed a(r) can
be computed from the equation

−u =
Ṁ

4πr2ρ(r)
=

Ṁ

4πr2ρ∞

(

a∞

a(r)

)2/(γ−1)

. (8.24)

Thus

u = −
qsG

2M2

r2a3
∞

(

a(r)

a∞

)−2/(γ−1)

, (8.25)
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or
u

a∞

= −
qs

4

(

r

ra

)−2
(

a(r)

a∞

)−2/(γ−1)

, (8.26)

with ra ≡ 2GM/a2
∞

. The “accretion radius” ra is the radius at which the
density ρ and sound speed a start to significantly increase above their ambient
values of ρ∞ and a∞. The relation between the sonic radius and the accretion
radius is rs = [(5−3γ)/8]ra. At large radii (r ≫ ra), the infall velocity, sound
speed, and density of the transonic flow are

u ≈ −
qsa∞

4

(

r

ra

)−2 [

1 −
1

2

ra

r

]

(8.27)

a ≈ a∞

[

1 +
γ − 1

4

ra

r

]

(8.28)

ρ ≈ ρ∞

[

1 +
1

2

ra

r

]

. (8.29)

For a gas with γ = 5/3, the infall velocity, sound speed, and density at small
radii (r ≪ ra) are

u ≈ −a ≈ −
a∞

2

(

r

ra

)−1/2

(8.30)

ρ ≈
ρ∞

8

(

r

ra

)−3/2

. (8.31)

If 1 ≤ γ < 5/3, the infall at r ≪ rs is supersonic, and the infalling gas is in
free fall. From the Bernoulli integral, we find that u2/2 ≈ GM/r, or

u ≈ −a∞

(

r

ra

)−1/2

. (8.32)

The density is then

ρ ≈
qsρ∞

4

(

r

ra

)−3/2

. (8.33)

Spherical accretion of gas thus has a characteristic density profile, with ρ ∝

r−3/2 at small radii and ρ = constant at large radii.
The gas will come pouring in with velocity u ∝ r−1/2 at small radii, while

the temperature of the gas increases to the value

T ≈
T∞

4

(

r

ra

)−1

(8.34)
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when γ = 5/3 and

T ≈ T∞

(

qs

4

)γ−1 ( r

ra

)−3(γ−1)/2

(8.35)

when 1 ≤ γ < 5/3. The velocity will not increase indefinitely; eventually the
gas will slam into the surface of the compact object – or disappear within
the event horizon if the compact object is a black hole. The velocity of the
gas just before it hits the compact object will be u ∼ −(2GM/R) ∼ −Vesc.

Spherical accretion is only a good approximation for isolated compact
objects. If the accreting mass is fed by a binary companion, or is located in
the center of an active galactic nucleus, an accretion disk will generally form.
The case to which spherical accretion applies is the case of an isolated black
hole or neutron star in the middle of the ISM. It is very unlikely, however,
that a stellar remnant will be at rest with respect to the ambient ISM. Direct
measurements of the radial velocities of pulsars indicate that pulsars in the
disk of our galaxy have a velocity dispersion of ∼ 100 km s−1. This is much
larger than the sound speed a ∼ 12 km s−1 in the warm neutral medium.
Thus, a typical pulsar will be moving at supersonic speeds with respect to
its ambient medium.

If the accreting body has a velocity V with respect to the ambient medium,
the transonic accretion rate has the form

Ṁt = 4πq̃
G2M2ρ∞

(a2
∞

+ V 2)3/2
, (8.36)

where q̃ is a factor of order unity. When V > a∞, a bow shock forms in front
of the accreting object, as shown in Figure 8.2, raising the temperature of the
gas and decreasing its bulk velocity relative to the central accreting mass. At
radii r ≪ ra ∼ 2GM/(V 2 + a2

∞
), the flow of the gas is approximately radial,

and takes the form of the spherically symmetric Bondi solution.
A compact object that is moving at highly supersonic speeds will accrete

mass at a rate Ṁ ∝ V −3. However, there is a lower limit to the accretion
rate that is dictated by the fact that the compact object has a physical cross
section equal to πR2. Thus, in the limit that the accreting object is moving at
a velocity V that is much greater than the escape velocity Vesc = (2GM/R)1/2

from its surface, the accretion rate is

Ṁt ≈ πR2ρ∞V . (8.37)
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Figure 8.2: The isovelocity contours (above) and isodensity contours (below)
for accretion onto a compact object moving with speed V = 2.4a∞ with
respect to the ambient gas.
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Figure 8.3: The mass accretion rate for a compact object as a function of
the speed with which is it moving relative to the surrounding gas.

To minimize the rate of accretion for a compact object, you should send it off
at a velocity equal to its escape velocity. A schematic plot of the accretion
rate as a function of the compact object’s velocity is given in Figure 8.3.


