
Chapter 9

Accretion Disks for Beginners

When the gas being accreted has high angular momentum, it generally forms
an accretion disk. If the gas conserves angular momentum but is free to
radiate energy, it will lose energy until it is on a circular orbit of radius
Rc = j2/(GM), where j is the specific angular momentum of the gas, and
M is the mass of the accreting compact object. The gas will only be able to
move inward from this radius if it disposes of part of its angular momentum.
In an accretion disk, angular momentum is transferred by viscous torques
from the inner regions of the disk to the outer regions.

The importance of accretion disks was first realized in the study of binary
stellar systems. Suppose that a compact object of mass Mc and a ‘normal’
star of mass Ms are separated by a distance a. The normal star (a main-
sequence star, a giant, or a supergiant) is the source of the accreted matter,
and the compact object is the body on which the matter accretes. If the
two bodies are on circular orbits about their center of mass, their angular
velocity will be

~Ω =

[

G(Mc + Ms)

a3

]1/2

ê , (9.1)

where ê is the unit vector normal to the orbital plane.

In a frame of reference that is corotating with the two stars, the equation
of momentum conservation has the form

∂~u

∂t
+ (~u · ~∇)~u = −

1

ρ
~∇P − 2~Ω × ~u − ~∇ΦR , (9.2)
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Figure 9.1: Sections in the orbital plane of equipotential surfaces, for a binary
with q = 0.2. The five Lagrange points, L1 through L5, are shown.

where ΦR is the Roche potential,

ΦR(~r) = −
GMc

|~r − ~r1|
−

GMs

|~r − ~r2|
−

1

2
|~Ω × ~r|2 . (9.3)

The vectors ~r1 and ~r2 are the positions of the two stars in the rotating frame
of reference; all distances are measured relative to the center of mass of the
system.

The shapes of the equipotential surfaces (where ΦR = constant) are dic-
tated by the mass ratio q ≡ Ms/Mc. Figure 9.1 shows the equipotential
surfaces for a binary system with Ms/Mc = 0.2. At very large distances,
r ≫ a, the equipotential surfaces are nearly spherical, and are centered on
the center of mass of the binary system. At very small distances from the
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two stars, the equipotential surfaces form a pair of nearly spherical surfaces,
centered on the two stars. It is at intermediate distances that the equipoten-
tial surfaces take on interesting shapes. Of particular interest in the context
of accretion is the ‘critical surface’, which has a dumbbell shape, and consists
of two Roche lobes, one for each star, which are connected at the inner

Lagrangian point L1. The L1 point is a saddle-point in the potential; the
gravitational acceleration at the L1 point is equal to zero. If the normal star,
in the process of stellar evolution, expands to fill its Roche lobe, then the gas
at the L1 point will be pushed, by its internal gas pressure, from the Roche
lobe of the normal star (Ms) to the Roche lobe of the compact star (Mc).
The mass transfer between the two components will change the period of the
binary system. If the total mass and the orbital angular momentum of the
system are constant, then the period of the system is P ∝ M−3

c M−3

s . The
period is minimized, given the constraint that Mc + Ms is constant, when
Mc = Ms. Kepler’s law tells us that a ∝ M−2

c M−2

s , which is also minimized
when Mc = Ms. When the normal ‘donor’ star is more massive than the
compact accretor (Ms > Mc), the loss of mass will decrease the separation
a and will decrease the size of the Roche lobe of the normal star; thus, the
mass loss will be naturally self-perpetuating. When Ms < Mc, however, the
separation a will increase as the normal star loses mass, and thus the mass
loss will tend to be cut off (unless evolutionary swelling continues to increase
the size of the mass-losing star, or loss of angular momentum from the binary
system shrinks the separation between the stars.)

The distance of the L1 point from the center of the compact star is well
approximated by the formula

b1

a
= 0.500 + 0.227 log q , (9.4)

so that even when the mass shed by the normal star crosses over the L1

saddle point, it has a considerable distance to travel until it can collide with
the compact star. Moreover, the gas that is passing through the L1 point has
considerable angular momentum. In a nonrotating frame of reference fixed
to the compact star, the L1 point is orbiting with a velocity v ∼ b1Ω. The
accreting matter that is being squirted through the L1 nozzle therefore has a
bulk velocity u⊥ ∼ v ∼ 2πb1/P perpendicular to the line between the stars.
Since the accreting matter is being squirted by pressure forces, the velocity of
the gas parallel to the line between the stars will be u‖ ∼ as, where as is the
sound speed in the outermost envelope of the mass-losing star. The normal
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temperatures of stellar envelopes are T ∼< 105 K, so typically you will have
u‖ ∼< 30 km s−1. If the masses of the two stars are roughly equal, however,
the use of Kepler’s law tells us

u⊥ ∼ 100 km s−1

(

Mc

M⊙

)1/3 (

P

1 day

)−1/3

. (9.5)

In general, then, u⊥ will be greater than u‖. The specific angular momentum
of the accreting gas will be j = b2

1
(2π/P ) = b2

1
(GMc)

1/2(1 + q)1/2a−3/2. If
it conserves angular momentum during infall, it will end up on a circular
orbit of radius Rc = (1 + q)(b1/a)4a. For q ∼> 0.5, the circular radius will be
roughly Rc ∼ 1 R⊙(P/1 day)2/3. Even for orbital periods as short as hours,
this radius is larger than the radius of a white dwarf (R ∼ 0.01 R⊙), to say
nothing of a neutron star (R ∼ 2 × 10−5 R⊙), or a solar mass black hole
(R ∼ 4 × 10−6 R⊙).

Let us start our study of the dynamics of disks with the thin disk ap-

proximation; we will assume that the height H of the disk in the z direction
is much smaller than the extent of the disk in the R direction. We will also
assume that the disk is axisymmetric. If the mass of the disk is negligible
compared to the mass of the central compact object, the angular velocity
will have the Keplerian form

Ω(R) = (GM/R3)1/2 , (9.6)

so that the circular velocity will be uφ(R) = RΩ(R) ∝ R−1/2. In addition to
the circular velocity uφ, the matter of the disk will have a small radial drift
velocity uR(R, t) that carries the gas inward or outward.

Consider the two thin annuli of matter on either side of the surface R =
constant. If the kinematic viscosity of the gas is ν, the viscous torque exerted
on the inner annulus by the outer annulus is

T (R) = 2πνΣR3
dΩ

dR
, (9.7)

where Σ(R, t) is the surface density of the disk. For a disk in which Ω
decreases with radius, T (R) is negative.

The mass conservation equation for a thin disk takes the form

R
∂Σ

∂t
+

∂

∂R
(RΣuR) = 0 . (9.8)
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The conservation equation for angular momentum takes the form

R
∂

∂t
(ΣR2Ω) +

∂

∂R
(ΣuRR3Ω) =

1

2π

∂T

∂R
. (9.9)

These two equations may be combined into a single equation

R
∂Σ

∂t
= −

1

2π

∂

∂R

[

1

(R2Ω)′
∂T

∂R

]

. (9.10)

(The prime denotes differentiation with respect to R). If we use the Keplerian
angular velocity Ω = (GM/R3)1/2 and the Newtonian viscous torque T =
2πνΣR3Ω′, the time evolution of the surface density is

∂Σ

∂t
=

3

R

∂

∂R

[

R1/2
∂

∂R
(νΣR1/2)

]

. (9.11)

This is the basic equation for the evolution of a Keplerian accretion disk.
Once we know the surface density as a function of time, the radial drift
velocity follows from mass conservation:

uR(R, t) = −
3

ΣR1/2

∂

∂R
(νΣR1/2) . (9.12)

Generally, the kinematic viscosity ν will be a function of R and t. How-
ever, the qualitative behavior of a viscous disk can be found by looking at
the simplest case, in which ν = constant. Suppose we start with an accretion
disk that is an infinitesimally thin ring, with mass m and radius R0:

Σ(R, t = 0) =
mδ(R − R0)

2πR0

. (9.13)

In terms of the dimensionless radius variable x ≡ R/R0 and the dimensionless
time variable τ ≡ t(12ν/R2

0
), the solution for the surface density is

Σ(x, τ) =
m

πR2
0

τ−1x−1/4 exp

[

−
1 + x2

τ

]

I1/4

(

2x

τ

)

, (9.14)

where I1/4 is a modified Bessel function. This solution is plotted in Figure 9.2
at four increasing values of τ . At early times (τ ≪ 1), the surface density is
nearly Gaussian around R = R0, with a width σ ≈ (6νt)1/2. At later times,
most of the mass has lost angular momentum and has moved inward, but
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Figure 9.2: The viscous evolution of an initially thin ring of mass m and
initial radius R0. [Pringle, 1981, ARAA, 19, 137]

there is a tail of matter that moves outward to larger and larger radii, and
which carries off most of the angular momentum.

A disk that starts as a thin ring will spread with time. In many cases of
interest, the accretion disk is fed by a steady stream of matter from outside,
and the disk settles into a steady state in which the rate at which gas is lost
from the inner edge is equal to the rate at which gas is added at the outer
edge. In a steady-state disk of this sort, the radial momentum equation is

uR
∂uR

∂R
−

u2

φ

R
+

1

ρ

∂P

∂R
+

GM

R2
= 0 , (9.15)

assuming Keplerian rotation. The inflow velocity uR is of order ν/R, and is
much smaller than the rotation velocity uφ. If we define the Mach number
of the rotation as Mφ ≡ uφ/a,

uφ =
(

GM

R

)1/2

[1 + O(M−2

φ )] . (9.16)

Perpendicular to the disk, the gas is in hydrostatic equilibrium, with

1

ρ

∂P

∂z
= −

GMz

R3
(9.17)
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or
a2

ρ

∂ρ

∂z
≈ −

u2

φ

R2
z (9.18)

for a thin disk. Equation (9.18) can be rewritten in the form

1

ρ

∂ρ

∂z
≈ −

M2

φ

R2
z . (9.19)

This has a solution

ρ ≈ ρ0 exp

[

−
z2

2H2

]

, (9.20)

where the scale height is H ≈ R/Mφ. Thus, the thin disk approximation
(H ≪ R) is equivalent to saying that the disk rotation is supersonic (Mφ ≫
1).

In a steady-state disk, the inward mass flux is

Ṁ = −2πRΣuR . (9.21)

Moreover, when ∂Σ/∂t = 0, the equation for the conservation of angular
momentum can be integrated to yield

−νΣ
∂Ω

∂R
= −ΣuRΩ −

C

2πR3
, (9.22)

where C is a constant of integration. For a disk in Keplerian rotation around
a star of radius R∗, the integration constant is C = Ṁ(GMR∗)

1/2. Thus,

νΣ =
Ṁ

3π

[

1 −
(

R∗

R

)1/2
]

. (9.23)

When R ≫ R∗, the surface density of a Keplerian viscous disk will be Σ ≈
Ṁ/(3πν), and the radial velocity will be uR ≈ −3ν/(2R).

Let D(R) be the rate per unit time per unit area at which the kinetic
energy of rotation is dissipated into heat by viscosity. The value of D is

D(R) =
1

2
νΣ

(

R
∂Ω

∂R

)2

. (9.24)

For a Keplerian disk, the viscous dissipation rate is

D(R) =
3GMṀ

4πR3

[

1 −
(

R∗

R

)1/2
]

. (9.25)
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The formula for the dissipation given above is independent of the value of
ν; it merely includes the assumption that the transfer of mass through the
accretion disk and the dissipation of energy within the disk are both regulated
by the viscosity.

The total disk luminosity is

Ldisk = 2π
∫ ∞

R∗

D(R)RdR =
1

2

GMṀ

R∗

. (9.26)

The disk luminosity is half of the total accretion luminosity Lacc = GMṀ/R∗.
Only half of the luminosity is emitted during the gradual passage of the gas
inward through the accretion disk; the other half must be emitted when the
gas makes the transition from the inner edge of the accretion disk to the
surface of the compact object.

What is the source of the kinematic viscosity ν that causes the inward
drift of the gas in the accretion disk? The first guess would be that ν comes
from standard molecular viscosity, the result of thermal collisions between
individual gas particles in a hot medium. In the case of standard viscosity,
the kinematic viscosity is ν ∼ aT λ, where where aT = (kT/m)1/2 is a typical
thermal velocity, and λ is the mean free path length.

Some more-or-less typical values for accretion disks, at a radius R ∼
1010 cm, are T ∼ 104 K and n ∼ 1016 cm−3. The mean free path (in an
ionized gas) is

λ =
k2T 2

πe4n
∼ 10−3 cm , (9.27)

the thermal velocity in the accretion disk is aT ∼ 106 cm s−1, and the kine-
matic viscosity is ν ∼ 103 cm2 sec−1. This value of the kinematic viscosity
yields a viscous accretion time scale of tacc = R2/ν ∼ 1017 sec ∼ 3 × 109 yr,
and the mass will be flowing in at the excruciatingly slow rate of uR =
−(3ν)/(2R) ∼ −5 cm yr−1.

To explain the observed accretion rates in X-ray binaries and protostars, a
much larger value of the kinematic viscosity is required. The Reynolds num-
ber for the standard molecular viscosity is Re = uφR/ν = (GMR)1/2/ν ∼
1015 at R = 1010 cm from a 1 M⊙ body, with ν = 103 cm2 sec−1. At such a high
Reynolds number, some physicists have argued, we might expect turbulence
to set in. The random eddies of the turbulence would cause viscosity, just as
random thermal motions cause viscosity on the molecular scale. The kine-
matic viscosity due to turbulence should be, from dimensional arguments,
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νt ∼ Λtut, where Λt is the size of the largest eddies, and ut is the r.m.s.
turbulent velocity. In a thin disk, the largest eddies can be no larger than
the disk thickness, so λt ∼< H. The r.m.s. turbulent velocity is unlikely to
be much larger than the sound speed (if it were, shocks would form and the
kinetic energy of turbulent motion would become thermalized); thus, we ex-
pect ut ∼< a. These considerations led Shakura and Sunyaev (1973) to invent
the alpha disk, in which the kinematic viscosity at a given radius is

ν(R, t) = αa(R, t)H(R, t) . (9.28)

The parameter α is expected, from the arguments given above, to have the
numerical value α ∼< 1.

The alpha disk is the most commonly used model for accretion disks.
However, by introducing α, we have merely parameterized our ignorance.
There is not even agreement as to the actual source of the viscosity. Some
astronomers, after pointing out that there are no observations that prove that
disks are turbulent, proposed that the viscosity is caused by magnetic stresses
due to a tangled magnetic field within the accretion disk. Such a disordered
field would give rise to an alpha disk with α ∼ v2

A/a2, where vA is the Alfven
velocity. Other researchers mutter about convective instabilities as a means of
transporting angular momentum; others invoke spiral density waves; others
propose more exotic mechanisms for transporting angular momentum. In
other words, no one knows for sure what causes the viscosity in accretion
disks; we just know that it exists, and that the most plausible mechanisms
result in viscosities that can be written in the form ν = αaH, where α ∼< 1.
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