The Evolution of Low Mass Stars

Key Ideas:

Low Mass = M < 4 M_{sun}

Stages of Evolution of a Low Mass star:

• Main Sequence star
• Red Giant star
• Horizontal Branch star
• Asymptotic Giant Branch star
• Planetary Nebula phase
• White Dwarf star

Main Sequence Phase

Energy Source: H fusion in the core

What happens to the He created by H fusion?

• Too cool to ignite He fusion
• Slowly build up an inert He core

Lifetime:

~10 Gyr for a 1 M_{sun} star (e.g., Sun)
~10 Tyr for a 0.1 M_{sun} star (red star)
~15 Myr for a 15 M_{sun} star (blue star)

Hydrogen Exhaustion

Inside: He core collapses & heats up.

Collapsing core heats the H shell above it, starting H fusion in a shell

H burning zone shoved into a shell

More fusion, more heating. Pressure > Gravity

Outside: Envelope expands and cools

Star gets brighter and redder.

Becomes a Red Giant Star

Red Giant Star
Climbing the Red Giant Branch

- Takes ~1 Gyr to climb the Red Giant Branch
 - He core contracting & heating, but no fusion
 - H burning to He in a shell around the core
 - Huge, puffy envelope ~ size of orbit of Venus

Top of the Red Giant Branch:
 - T_{core} reaches 100 Million K
 - Ignite He burning in the core in a flash.

Helium Burning

Triple-α Process:

- Fusion of 3 ^4He nuclei into ^{12}C (Carbon):
 \[
 ^4\text{He} + ^4\text{He} \rightarrow ^8\text{Be} + \gamma
 \]
 \[
 ^4\text{He} + ^8\text{Be} \rightarrow ^{12}\text{C} + \gamma
 \]

- Secondary reaction with ^{12}C makes ^{16}O (Oxygen):
 \[
 ^4\text{He} + ^{12}\text{C} \rightarrow ^{16}\text{O} + \gamma
 \]

Lecture 14 ended here

Helium Flash

- Electron degeneracy pressure
- Degenerate electrons do not behave like perfect gas.
- Pressure and temperature do not go hand in hand
- This leads to runaway nuclear reactions (like a bomb)

Horizontal Branch

- Outer layers: no thermonuclear reactions
- Hydrogen-fusing core
- Hydrogen-fusing shell
- Helium core, no thermonuclear reactions
- Helium-fusing core
- Red-giant star after helium fusion begins
Leaving the Giant Branch

Inside:
- Primary energy from He burning core.
- Additional energy from an H burning shell.

Outside:
- Star shrinks in radius, getting fainter.
- Gets hotter and bluer.

Moves onto the **Horizontal Branch**

Horizontal Branch Phase

Structure:
- He-burning core
- H-burning shell

Triple-α Process is inefficient, can only last for \sim100 Myr.

Build up a C-O core, but too cool to ignite Carbon fusion.

Asymptotic Giant Branch

After 100 Myr, core runs out of He
- C-O core collapses and heats up
- He burning shell
- H burning shell

Star swells and cools
- Climbs the Giant Branch again, but at higher Temperature

Asymptotic Giant Branch Star
The Instabilities of Old Age

He burning is very temperature sensitive: Triple-\(\alpha\) fusion rate \(\sim T^{40}\)

Consequences:
- Small changes in T lead to
- Large changes in fusion energy output

Star experiences huge Thermal Pulses that destabilize the outer envelope.

Core-Envelope Separation

Rapid Process: takes \(\sim 10^5\) years

Outer envelope gets slowly ejected (fast wind)

C-O core continues to contract:
- with weight of envelope taken off, heats up less
- never reaches Carbon ignition temperature of 600 Million K

Core and Envelope go their separate ways.

Planetary Nebula Phase

Expanding envelope forms a ring nebula around the contracting C-O core.
- Ionized and heated by the hot central core.
- Expands away to nothing in \(\sim 10^4\) years.

Planetary Nebula

Hot C-O core is exposed, moves to the left on the H-R Diagram
Planetary Nebula Phase

Core Collapse to White Dwarf

Contracting C-O core becomes so dense that a new gas law takes over. **Degenerate Electron Gas:**
- Pressure becomes independent of Temperature
- P grows rapidly & soon counteracts Gravity
Collapse halts when $R \sim 0.01 \, R_{\text{sun}} \approx R_{\text{earth}}$

White Dwarf
Mass—Radius relation of a White Dwarf

More massive a WD, smaller it is!

Maximum mass of a WD

There is a limit to the mass that can be supported by the pressure of degenerate electrons:

- Chandrasekhar Limit
 \[= 1.4 \text{ solar masses} \]

→ All white dwarfs must have mass less than 1.4 solar masses.

Summary of life of a low-mass star:

<table>
<thead>
<tr>
<th>Stage</th>
<th>Energy Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proto-star</td>
<td>Gravitational contraction</td>
</tr>
<tr>
<td>Main Sequence</td>
<td>H Burning Core</td>
</tr>
<tr>
<td>Red Giant</td>
<td>H Burning Shell</td>
</tr>
<tr>
<td>Horizontal Branch</td>
<td>He Core + H Shell</td>
</tr>
<tr>
<td>Asymptotic Giant</td>
<td>He Shell + H Shell</td>
</tr>
<tr>
<td>White Dwarf</td>
<td>None!</td>
</tr>
</tbody>
</table>

What happens to the helium-rich core of a star after the core runs out of hydrogen (mention the main stage)

A) It contracts and heats up
B) It expands and cools down
C) It heats up and expands
D) It cools down and contracts

When is electron-degeneracy pressure important in a low-mass star?

1) When He is burning in the core
2) During core H-burning
3) Just before the start of core He burning
4) In a proto-star evolving toward the main sequence

What makes a red giant star so large?

A) It has many times more mass than the Sun
B) The He-rich core has expanded, pushing the outer layers of the star outward.
C) Centrifugal force pushes the surface outwards.
D) The H-burning shell heats the envelop making it expand.
What happens to a low-mass star after the start of core He-burning?

It becomes:
A) Larger & cooler
B) Smaller & hotter
C) Larger & hotter
D) Smaller & cooler

In terms of a low-mass star’s evolutionary life, an asymptotic giant branch star is in the phase of:

A) He shell burning
B) He core burning
C) H core burning
D) C core burning

What is the event that follows the asymptotic giant branch phase in the life of a low-mass star?

A) He-flash
B) Onset of C burning
C) The ejection of a planetary nebula
D) Supernova explosion

A planetary nebula is:

A) An expanding gas shell surrounding a hot white dwarf
B) A gas cloud around a newly formed star in which planets are forming
C) A nebula caused by the explosion of a star
D) A gas cloud surrounding a planet