Abstract

The Cluster Lensing And Supernova survey with Hubble (CLASH; Postman et al. 2012) is a 524-orbit multi-cycle treasury program to observe 25 galaxy clusters each in 16 broadband filters with WFC3 and ACS. One of the many science goals of CLASH is the detection and analysis of supernovae (SNe) at both intermediate and high redshifts. We present HST ACS and WFC3 observations of three high redshift supernovae discovered in the CLASH fields.

The CLASH HST MCT Program

The CLASH observations consist of three fields per galaxy cluster. The “prime” field is centered on the central galaxy in each cluster. The main science goals of the prime field observations relate to the galaxy clusters and their properties, but the prime field data also allow us to search for supernovae. These include supernovae in the target cluster, as well as supernovae in the foreground or background. The background supernovae are especially interesting, because they may be gravitationally lensed by the cluster.

For each target cluster, CLASH additionally obtains data in two nearby parallel fields, with WFC3/IR or ACS, complementing whichever camera is simultaneously observing the prime field. The parallel field observations are optimized for finding high-redshift type Ia supernovae, and with our dedicated follow-up program (PI: A. Riess), we have the potential to discover and obtain light curves for SNe Ia with $z \gtrsim 2$.

Here we present three interesting supernovae discovered in CLASH data. The poster background shows a color composite of CLASH prime field observations of Abell 383 created by A. Koekemoer (STScI).

Acknowledgments

We thank S. Perlmutter and the Supernova Cosmology Project for communication and coordination. This research is supported by NASA/STScI and NSF CAREER award AST-0847157 to SWJ.

References