Problem 1
The following data are 30 observations of a 50 µCurie sample of radioactive 137Cs made using a Geiger-Müller Tube and a pulse counter. The units of the data are counts/30s.

24293 24934 24711 24520 24547 24668 24759 24717 24911 24754
24557 24543 24690 24684 24813 24693 24601 24336 24311 24848
24670 24510 24589 24787 24839 24617 24771 24746 24809 24792

a) Compute the mean and standard deviation of the data.

b) Compare your formal estimation of the sample standard deviation to the value you would predict assuming that the data follow a Poisson distribution.

c) What fraction of data, f, lie within 1 standard deviation of the mean? Compare this to the predicted fraction assuming the data are normally (Gaussian) distributed (a good approximation of the Poisson distribution in the limit of large central values).

d) Repeat parts (a) & (b) using only the first 10 observations in the table above. How does this affect the results for the standard deviation compared to the Poisson prediction?

e) Comment on the value of acquiring more data in these kinds of problems. Are there any dangers in collecting too much data?

The data above are available from www.astronomy.ohio-state.edu/~pogge/Ast350/Data/ps3.dat

Problem 2
The diameter D and height H of a cylindrical water tank can be measured to a precision of about 1%. To what precision can you estimate the total volume of the tank, V? Would it have been better to measure the tank’s radius, R, to a precision of 1% instead of its diameter? Be quantitative in your assessment.

Problem 3
You are using a photon-counting photometer on a telescope. This instrument measures the number of photons that arrive in one minute.

First, you move a star into the entrance aperture of the photometer. The “signal” that you measure is the sum of the photons from the star plus the photons from the night-sky background falling inside the aperture at the same time. After 5 measurements, you have these numbers:

$S = (\text{Star+Sky}) = \{1797, 1883, 1817, 1859, 1858\}$ photons/min
You then move the telescope to point to an adjacent region of blank sky, and measure the number of photons that arrive each minute from just the background sky. After making 5 “background” measurements, you have these numbers:

\[B = (\text{Sky Only}) = \{1363, 1383, 1332, 1368, 1379\} \text{ photons/min} \]

Using these data, estimate the following:

a) The mean photon counts/minute from the Star+Sky aperture (\(\bar{S} \)) and its uncertainty (\(\sigma_{\bar{S}} \)).

b) The mean photon counts/minute from the Sky-only aperture (\(\bar{B} \)) and its uncertainty (\(\sigma_{\bar{B}} \)).

c) The sky-subtracted star counts, \(S_{\text{star}} \approx \bar{S} - \bar{B} \), in photons/minute, and its uncertainty.

d) The ratio of the star’s counts to its uncertainty (i.e., the “Signal-to-Noise Ratio”).

e) From the signal-to-noise ratio computed in part (d), would you conclude that this star was significantly detected against the bright background sky?