Detection Methods.

• Direct Imaging. Radial velocities. Astrometry. • Timing. • Transits. Microlensing.

Underlying physics of all of these methods is relatively simple; this physics dictates their sensitivity.

Results from various methods.

- Over 1600 confirmed planets with 5 techniques.
- Clear evidence for substantial dynamical evolution.
- Low-mass planets are much more common than high-mass planets
- Giant planet abundance scales with host star mass and heavy element abundance.
- Almost all results are for planets interior to the snow line, or relatively massive planets.

Earth/Sun:

- 0.5% probability of alignment,
- 0.01% dimming,
- that lasts 0.1% of a year!

Locations of Kepler Planet Candidates

As of January 7, 2013

Over 4000 planet candidates found!

New Kepler Planet Candidates As of July 23, 2015

Microlensing.

Microlensing Basics.

Microlensing Events.

Detecting Planets.

(Bond et al. 2004)

A Multiple-Planet System.

- Single planet models fail.
- Two planets models work well.
- First multipleplanet system detected by microlensing.

(Gaudi et al 2008; Bennett et al 2010)

A Jupiter/Saturn Analog.

Host:

Mass = $0.51 + - 0.05 M_{Sum}$ Luminosity ~ 5% L_{Sun} Distance = 1510 +/- 120 pc **Planet b:** Mass = $0.73 + - 0.06 M_{Jup}$ Semimajor Axis = 2.3 +/- 0.5 AU **Planet c:** Mass = $0.27 + - 0.02 M_{Jup} = 0.90 M_{Sat}$ **Semimajor Axis = 4.6 +/- 1.5 AU**

(Gould et al. 2010)

Exoplanet Demographic Synthesis.

2.0±0.5 Planets per M Dwarf (mass>Earth, periods<10⁴ days)

0.17±0.08

Giant Planets Per M Dwarf

(mass>30×Earth, periods<10⁴ days)

(Clanton & Gaudi 2014a,b)

Future.

WFIRST.

Wide-Field Infrared Survey Telescope, (WFIRST).

- Next large space telescope being planned by NASA.
 Planned launch in 2023 (roughly).
- Think: Hubble Space Telescope, with a wide-angle lens.
- Will use one of two telescopes donated by the National Reconnaissance Office (NRO).
 - Two 2.4m space-qualified telescopes, donated to NASA.

Together, Kepler and WFIRST complete the statistical census of planetary systems in the Galaxy.

- ~3000 detections.
- Sensitive to analogs of all the solar systems planets except Mercury.
- Hundreds of freefloating planets.
- Galactic distribution of planets.
- Sensitive to lunarmass satellites.

