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Astronomy 8824: Problem Set 1 
Due Tuesday, September 3, 2019 

 
The goal of this problem set is to write a program to do numerical integrals of user specified 
functions, and to compare the performance of some simple algorithms for doing so. You 
should read sections 4.0-4.4 of Numerical Recipes as background. However, while their 
description of algorithms and their properties is good, you should write your own code rather 
than borrow the NR subroutines. 
Specifically, you will write a Python program that computes 

𝐼 = 𝑓 𝑥 𝑑𝑥
!

!
 

where a and b are finite limits of integration and we will use various choices for f(x) below. 
Start with the code available on David’s course web page, which implements the “Euler 
method” 

𝐼 = 𝑓(𝑥!

!

!!!

)ℎ! 

where N is the number of (equal-sized) integration steps and 

ℎ! =
𝑏 − 𝑎
𝑁 , 𝑥! = 𝑎 + (𝑖 − 1)ℎ! 

1. Look through the code so that you understand its structure. Note in particular that it 
automatically doubles the number of steps (starting at N = 4) until it converges to a specified 
fractional tolerance. The program calculates the integral with N = 4, then doubles the number 
of steps and compares the answers. If the fractional difference is larger than the tolerance, it 
doubles the number of steps again, continuing until the fractional difference between two 
successive evaluations is less than the tolerance. It also has a safeguard with a maximum 
number of steps, to prevent the program from running forever if it doesn’t converge. 
Using this code, compute the integral 

1
𝑥!/! 𝑑𝑥

!

!
 

 
How many steps (approximately) are required to get an answer with a fractional error |(I 
−Iexact)/Iexact| < 10−6? 
[There are four ways to run the program: (1) Make it executable, then integrate.py 1 5. 
(2) python integrate.py 1 5. (3) Start iPython in the directory where you have the 
program. From the iPython prompt, type %run integrate.py 1 5. In these three cases, 
the integration limits are read from the command line. (4) Copy and execute the code in a 
jupyter notebook.] 
For a specified number of steps, the integral is evaluated using either the function 
euler_loop or euler. The former uses a loop structure typical of fortran or C, while the 
latter uses array operations available in NumPy. 
Compare the speed of these two implementations using the %timeit function of iPython. 
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Start up iPython (by typing ipython at the command line). Then 
 %timeit -n 4 %run integrate.py 1 5 
will run the code twelve times (3 loops, n = 4 times in each loop) and report the average 
execution time in the best of the 3 loops. 
Do this once using the loop implementation of the integral and once using the array 
implementation. 
Which is faster and by how much? 
 
2. Modify the code so that it implements the “Trapezoidal Rule”: 

𝐼 =
1
2 𝑓 𝑥! +

1
2 𝑓(𝑥!!!)  

!

!!!

ℎ! 

(This seems at first sight to require twice as many function evaluations as the Euler method, 
but there is an obvious way to avoid this, which you should implement in your program.) 
You can modify either the euler or euler_loop function to accomplish this, or you can 
start your own code from scratch if you don’t like David’s. If you write your own code, you 
should maintain the automatic step-doubling-to-convergence feature. 
Numerically compute the integral from Part 1 with both methods. How many steps 
(approximately) are required to get an answer with a fractional error |(I −Iexact)/Iexact| < 10−4 for 
the Euler method and for the Trapezoidal Rule? What about 10−6? 
 
3. With step doubling, you can implement a neat trick, described in Numerical Recipes. Given 
estimates ITN and ITN/2 from the Trapezoidal Rule using N and N/2 steps, make the new 
estimate IS = (4 x ITN − ITN/2)/3. This approximation, Simpson’s Rule, should converge faster 
than the Trapezoidal Rule. Write a routine to compute an integral via Simpson’s Rule using 
this trick. This involves changing the integration driver routine; for any given N you are still 
using the Trapezoidal Rule. 
Make a plot of the error |(I −Iexact)/Iexact| vs. the step size h for the Euler, Trapezoidal, and 
Simpson’s Rule evaluations of the above numerical integral. Include this plot (log-log is 
recommended) as part of your solution set. Is the behavior what you expect? 
Note: If Simpson’s doesn’t converge noticeably faster than the Trapezoidal Rule, there is a 
bug in your program. 
 
4. For each of the following integrals, give the value of the integral I for each of the three 
numerical integration methods and the number of steps needed to get convergence to a 
fractional tolerance of 10−6. 

1
𝑥!/!(1+ 𝑥!/!)𝑑𝑥

!

!
 

sin 𝑥
𝑥 𝑑𝑥

!""

!
 

sin! 𝑥
𝑥! 𝑑𝑥

!"""

!
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𝑥 +
1
𝑥

!!

𝑑𝑥
!"""

!
 

1+ 𝑒!!! !!𝑑𝑥
!" !"""

!
 

 
Comment on the comparison of the last two integrals and the number of steps required to 
compute them. 
Note: If you are using an array-based implementation, you will need to use np.sin in your 
integrand, e.g., return (np.sin(x)/x). If you are using a loop-based implementation, you 
can use either np.sin or math.sin. Do you know why? 
 
5. Write a routine that implements the Midpoint Rule: 

𝐼 = 𝑓(𝑥!!!/!

!

!!!

)ℎ! 

where xi+1/2 = xi + hN/2. 
For the test integral of Part 1, compare the convergence of the Midpoint Method to that of the 
Euler, Trapezoid, and Simpson’s Rule methods. Add the Midpoint results to your 
convergence plot. 
Use your routine to compute the integrals 

1
𝑥!/! 𝑑𝑥

!

!
 

sin 𝑥
𝑥 𝑑𝑥

!

!
 

Why is the Midpoint Rule useful even though it is less accurate than Simpson’s Rule for the 
same number of steps? Why does the second integral converge much faster than the first 
integral? 
 
6. Numerically compute the integrals 

𝑑𝑥
𝑥! + 𝑥!

!

!
 

sin! 𝑥
𝑥! 𝑑𝑥

!

!
 

 
Explain how you did it. (Hint: See NR §4.4, or the lecture notes. You do not need to 
approximate ∞by a large finite number.) 
Getting an accurate result for the second integral is much harder than for the first integral. 
Why? 
 
7. Optional: There are numerical integration routines available in scipy.integrate. You can see 
what they are in iPython by import scipy.integrate as si and then si? and get 
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more information about individual routines via, e.g., si.quad? 
For the 3rd and 4th integrals from Part 4 (the ones with ulim=1000), use the scipy routines 
si.quad and si.romberg to evaluate the integrals. Do you get the same answers that you 
got from Simpson’s Rule? Use %timeit in iPython to compare their speed to that of your 
Simpson’s Rule program for these two integrals. What do you find? 
You can use the program si.py provided on David’s web page for this experiment if you 
wish. 
 
8. So that you end this exercise with something of practical use (and we’ll use it later in the 
semester), adapt your Simpson’s Rule integrator to a program that specifically computes the 
co-moving distance to an object at redshift z in a flat universe with a cosmological constant. 
The formula for the comoving distance is 

𝐷! 𝑧 =
𝑐
𝐻!

𝐻!
𝐻(𝑧!)𝑑𝑧′

!

!
 

with 
𝐻(𝑧)
𝐻!

= Ω!(1+ 𝑧)! + Ω! !/! 

 
Your program should take as arguments Ωm, H0 (in km s−1 Mpc−1), and z. Because we are 
assuming a flat universe, ΩΛ = 1 − Ωm. 
For Ωm = 0.3 and H0 = 67 km s−1 Mpc−1, what is the comoving distance to redshifts 0.5 and 2, 
in Mpc? 
 
For more on cosmological distances see: 

Hogg 1999, arXiv:astro-ph/9905116 
Weinberg et al. 2013, Phys Rep 530, 87, §2 
Aubourg et al. 2015, Phys Rev D, 92, 123516 (arXiv:1411.1074) 
 

 
 
 
 
 
 
 
 
 
 
 
Note: This problem set was originally developed by David Weinberg. 


