
Astronomy 8824 – Problem Set 1 for Autumn Semester 2019
Page 1 of 4

Astronomy 8824: Problem Set 1
Due Tuesday, September 3, 2019

The goal of this problem set is to write a program to do numerical integrals of user specified
functions, and to compare the performance of some simple algorithms for doing so. You
should read sections 4.0-4.4 of Numerical Recipes as background. However, while their
description of algorithms and their properties is good, you should write your own code rather
than borrow the NR subroutines.
Specifically, you will write a Python program that computes

𝐼 = 𝑓 𝑥 𝑑𝑥
!

!

where a and b are finite limits of integration and we will use various choices for f(x) below.
Start with the code available on David’s course web page, which implements the “Euler
method”

𝐼 = 𝑓(𝑥!

!

!!!

)ℎ!

where N is the number of (equal-sized) integration steps and

ℎ! =
𝑏 − 𝑎
𝑁 , 𝑥! = 𝑎 + (𝑖 − 1)ℎ!

1. Look through the code so that you understand its structure. Note in particular that it
automatically doubles the number of steps (starting at N = 4) until it converges to a specified
fractional tolerance. The program calculates the integral with N = 4, then doubles the number
of steps and compares the answers. If the fractional difference is larger than the tolerance, it
doubles the number of steps again, continuing until the fractional difference between two
successive evaluations is less than the tolerance. It also has a safeguard with a maximum
number of steps, to prevent the program from running forever if it doesn’t converge.
Using this code, compute the integral

1
𝑥!/! 𝑑𝑥

!

!

How many steps (approximately) are required to get an answer with a fractional error |(I
−Iexact)/Iexact| < 10−6?
[There are four ways to run the program: (1) Make it executable, then integrate.py 1 5.
(2) python integrate.py 1 5. (3) Start iPython in the directory where you have the
program. From the iPython prompt, type %run integrate.py 1 5. In these three cases,
the integration limits are read from the command line. (4) Copy and execute the code in a
jupyter notebook.]
For a specified number of steps, the integral is evaluated using either the function
euler_loop or euler. The former uses a loop structure typical of fortran or C, while the
latter uses array operations available in NumPy.
Compare the speed of these two implementations using the %timeit function of iPython.

Astronomy 8824 – Problem Set 1 for Autumn Semester 2019
Page 2 of 4

Start up iPython (by typing ipython at the command line). Then
 %timeit -n 4 %run integrate.py 1 5
will run the code twelve times (3 loops, n = 4 times in each loop) and report the average
execution time in the best of the 3 loops.
Do this once using the loop implementation of the integral and once using the array
implementation.
Which is faster and by how much?

2. Modify the code so that it implements the “Trapezoidal Rule”:

𝐼 =
1
2 𝑓 𝑥! +

1
2 𝑓(𝑥!!!)

!

!!!

ℎ!

(This seems at first sight to require twice as many function evaluations as the Euler method,
but there is an obvious way to avoid this, which you should implement in your program.)
You can modify either the euler or euler_loop function to accomplish this, or you can
start your own code from scratch if you don’t like David’s. If you write your own code, you
should maintain the automatic step-doubling-to-convergence feature.
Numerically compute the integral from Part 1 with both methods. How many steps
(approximately) are required to get an answer with a fractional error |(I −Iexact)/Iexact| < 10−4 for
the Euler method and for the Trapezoidal Rule? What about 10−6?

3. With step doubling, you can implement a neat trick, described in Numerical Recipes. Given
estimates ITN and ITN/2 from the Trapezoidal Rule using N and N/2 steps, make the new
estimate IS = (4 x ITN − ITN/2)/3. This approximation, Simpson’s Rule, should converge faster
than the Trapezoidal Rule. Write a routine to compute an integral via Simpson’s Rule using
this trick. This involves changing the integration driver routine; for any given N you are still
using the Trapezoidal Rule.
Make a plot of the error |(I −Iexact)/Iexact| vs. the step size h for the Euler, Trapezoidal, and
Simpson’s Rule evaluations of the above numerical integral. Include this plot (log-log is
recommended) as part of your solution set. Is the behavior what you expect?
Note: If Simpson’s doesn’t converge noticeably faster than the Trapezoidal Rule, there is a
bug in your program.

4. For each of the following integrals, give the value of the integral I for each of the three
numerical integration methods and the number of steps needed to get convergence to a
fractional tolerance of 10−6.

1
𝑥!/!(1+ 𝑥!/!)𝑑𝑥

!

!

sin 𝑥
𝑥 𝑑𝑥

!""

!

sin! 𝑥
𝑥! 𝑑𝑥

!"""

!

Astronomy 8824 – Problem Set 1 for Autumn Semester 2019
Page 3 of 4

𝑥 +
1
𝑥

!!

𝑑𝑥
!"""

!

1+ 𝑒!!! !!𝑑𝑥
!" !"""

!

Comment on the comparison of the last two integrals and the number of steps required to
compute them.
Note: If you are using an array-based implementation, you will need to use np.sin in your
integrand, e.g., return (np.sin(x)/x). If you are using a loop-based implementation, you
can use either np.sin or math.sin. Do you know why?

5. Write a routine that implements the Midpoint Rule:

𝐼 = 𝑓(𝑥!!!/!

!

!!!

)ℎ!

where xi+1/2 = xi + hN/2.
For the test integral of Part 1, compare the convergence of the Midpoint Method to that of the
Euler, Trapezoid, and Simpson’s Rule methods. Add the Midpoint results to your
convergence plot.
Use your routine to compute the integrals

1
𝑥!/! 𝑑𝑥

!

!

sin 𝑥
𝑥 𝑑𝑥

!

!

Why is the Midpoint Rule useful even though it is less accurate than Simpson’s Rule for the
same number of steps? Why does the second integral converge much faster than the first
integral?

6. Numerically compute the integrals

𝑑𝑥
𝑥! + 𝑥!

!

!

sin! 𝑥
𝑥! 𝑑𝑥

!

!

Explain how you did it. (Hint: See NR §4.4, or the lecture notes. You do not need to
approximate ∞by a large finite number.)
Getting an accurate result for the second integral is much harder than for the first integral.
Why?

7. Optional: There are numerical integration routines available in scipy.integrate. You can see
what they are in iPython by import scipy.integrate as si and then si? and get

Astronomy 8824 – Problem Set 1 for Autumn Semester 2019
Page 4 of 4

more information about individual routines via, e.g., si.quad?
For the 3rd and 4th integrals from Part 4 (the ones with ulim=1000), use the scipy routines
si.quad and si.romberg to evaluate the integrals. Do you get the same answers that you
got from Simpson’s Rule? Use %timeit in iPython to compare their speed to that of your
Simpson’s Rule program for these two integrals. What do you find?
You can use the program si.py provided on David’s web page for this experiment if you
wish.

8. So that you end this exercise with something of practical use (and we’ll use it later in the
semester), adapt your Simpson’s Rule integrator to a program that specifically computes the
co-moving distance to an object at redshift z in a flat universe with a cosmological constant.
The formula for the comoving distance is

𝐷! 𝑧 =
𝑐
𝐻!

𝐻!
𝐻(𝑧!)𝑑𝑧′

!

!

with
𝐻(𝑧)
𝐻!

= Ω!(1+ 𝑧)! + Ω! !/!

Your program should take as arguments Ωm, H0 (in km s−1 Mpc−1), and z. Because we are
assuming a flat universe, ΩΛ = 1 − Ωm.
For Ωm = 0.3 and H0 = 67 km s−1 Mpc−1, what is the comoving distance to redshifts 0.5 and 2,
in Mpc?

For more on cosmological distances see:

Hogg 1999, arXiv:astro-ph/9905116
Weinberg et al. 2013, Phys Rep 530, 87, §2
Aubourg et al. 2015, Phys Rev D, 92, 123516 (arXiv:1411.1074)

Note: This problem set was originally developed by David Weinberg.

