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Astronomy 8824: Problem Set 3 
Due Tuesday, October 1, 2019 

 

Root Finding and Minimization 
 
Background Reading: See David’s Numerical Methods Notes #3.  
 
Part 1: Root Finding 
 
Plot the functions:  

f(𝑥) = 0.25 − 0.6	𝑥 + 0.5	𝑥. − 0.2	𝑥/ 
and  

g(𝑥) = 𝑓(𝑥) + 0.02	 sin(2𝜋𝑥/0.4) 
over the range 0 £ x £ 2.  
 
Write a code to find the zero of each of these functions by the bisection method. 
 
Apply it to both functions and make plots illustrating the convergence of the method. Among 
other things, you should plot log(|f(x)|) vs. the number of iterations. 
 
Write a code to find the zero of each of these functions by the Newton-Raphson method.  
Note that you can easily evaluate the derivatives of these functions analytically. Impose 
boundaries at x = 0 and x = 2 on guesses. 
 
Apply it to both functions and make plots illustrating the convergence (or not) of the method. 
 
Comment on the relative strengths and weaknesses of bisection and Newton-Raphson for 
root-finding. 
 
 
Part 2. Minimization 
 
For this problem, take slight variations on the previous functions:  
 

f(𝑥) = 0.25 − 0.6	𝑥 + 0.5	𝑥. − 0.2	𝑥/ + 0.05	𝑥8 
and  

g(𝑥) = 𝑓(𝑥) + 0.02	 sin(2𝜋𝑥/0.45) 
 
over the range 0 £ x £ 2. Note both the addition of a 4th-order term in f(x) and the change of the 
sine period in g(x). Plot these functions. 
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Write a code to find the minimum of these functions using the Golden Section Search method.  Apply it 
for several different choices of initial guesses.  Make plots that illustrate its performance for the two 
cases, including log(|x-xmin|) and log(|f(x)-f(xmin)|) where xmin is the minimum that you find after 
convergence. 
 
Part 3. 3-D Minimization 
 
The routine minimize from the library scipy.optimize can implement the Nelder-Mead algorithm 
described in NR §10.4 (set method=”nelder-mead”). 
 
Look up the documentation for this routine and write a short program to minimize the function 
 

f(𝑥9, 𝑥., 𝑥/) = 𝑥9. + 3𝑥.8 + 5𝑥/< 
 

Try several different starting points with a tolerance of 10-6. Does the routine find the global minimum 
of this function? 
 
Now minimize the function 
 

g(𝑥9, 𝑥., 𝑥/) = (𝑥9 + 2 sin 𝑥9). + 3(𝑥. + 2 sin 𝑥.)8 + 5(𝑥/ + 2 sin 𝑥/)< 
 
Try several different starting points with a tolerance of 10-6. Does the routine find the global minimum 
of this function? Comment. 
 
Part 4. Determining H0 and Wm from the CMB 
 
In Assignment 1, you evaluated the comoving distance to a given redshift for a flat universe with a 
cosmological constant, ignoring the impact of radiation (which is negligible at low redshift). 
 
The more general expression for comoving distance, allowing space curvature and a dark energy 
equation of state 𝑤 = 𝑝/𝜌𝑐. assumed to be constant, is 
 

𝐷B(𝑧) =
𝑐
𝐻E
F

𝐻E
𝐻(𝑧G)

H

E
𝑑𝑧′ 

 
with 
 

𝐻(𝑧)
𝐻E

= KΩM(1 + 𝑧)/ + ΩO(1 + 𝑧)8 + ΩP(1 + 𝑧). + ΩQR(1 + 𝑧)/(9ST)U
9/.

 

 
where 
 

ΩP = 1 − ΩM − ΩO − ΩQR  
 
The value w=-1 corresponds to a cosmological constant, in which casethe z-dependence of the last 
term disappears. 
 
In addition to affecting the expansion rate H(z), curvature directly affects the comoving angular 
diameter distance DM(z): 
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𝐷V(𝑧) =
𝑐
𝐻E
sin	(WΩP𝑑B(𝑧))

W−ΩP
 

 
where dC(z) = DC(z)/(c/H0). 
 
To interpret this notation for positive ΩP, recall that sin(ix) = i sinh x. 
 
To save you some work, you may use David’s code cosmodist.py and cosmodist_subs.py from 
his web page, which compute the comoving and angular diameter distance for specified H0, ΩM, ΩP, 
and w. 
 
The notation ΩX represents the ratio of the energy density of component x to the critical density 
required for a flat universe. Because the critical density is proportional to H0

2
, physical densities are 

proportional to ΩXℎ. where 
 

ℎ ≡
𝐻E

100	km	s]9Mpc]9	
 

 
is a convenient dimensionless scaling of the Hubble constant. 
 
The value of ΩOℎ. = 4.183	 × 10]c is known from the temperature of the CMB and standard early 
universe neutrino physics. 
 
Modeling the Planck CMB power spectrum gives high-precision constraints on 
 

ΩMℎ. ≈ 0.1386 
and 
 

𝐷V(𝑧 = 1090) ≈ 13960	Mpc 
 
Take these two measurements to be exact, i.e., with no uncertainty. 
 
Modify your bisection root finding routine so that instead of calling a generic function it calls the 
cosmodist function and finds the value of H0 that satisfies the above constraints, assuming a flat 
universe with a cosmological constant (Wk = 0, w = -1). 
 
(a) What are the values of H0 and ΩM that satisfy the above equations? 
 
(b) Why did we need to include radiation in our calculation even though ΩOℎ. is only ~4 x 10-5? 
 
(c) Suppose we allowed Wk ¹ 0, w ¹ -1. Would the two CMB constraints that you used here still suffice 
to determine H0 and ΩM?  Why or why not? 
 
Note: This problem set was developed by David Weinberg. 


