Astronomy 8824: Problem Set 4

Due Tuesday, October 29, 2019

Multi-variate Gaussians and Simple MCMC

Background Reading:

For bivariate and multivariate Gaussians, see section 3.5 of Ivezic et al.

For MCMC, see sections 5.8.1 and 5.8.2 of Ivezic et al., and section 15.8 of the 3rd edition of Numerical Recipes. Note that this topic was not in the 1st or 2nd edition. Useful journal article references are Dunkley et al. 2005, MNRAS, 356, 925 and the more comprehensive review of Sharma 2017, ARAA, 55, 213.

Part 1: Bivariate Gaussian

Generate 5000 random data pairs (p_1 , p_2) where p_1 and p_2 are drawn independently from Gaussians of standard deviation σ_1 = 2 and σ_2 = 0.5, respectively (with mean zero). Use the python routine np.random.normal.

Compute new data pairs (x, y) with $x = p_1 \cos \alpha - p_2 \sin \alpha$ and $y = p_1 \sin \alpha + p_2 \cos \alpha$ for $\alpha = \pi/6$.

Plot these two distributions (e.g., as tiny dots with different colors) over the top of each other, and plot as x and y-axis histograms the marginal distributions of p_1 , p_2 , x, and y.

Using equations 3.85 - 3.87 of Ivezic et al., compute the expected values of σ_X , σ_Y , and σ_{XY} . Are the marginal distributions for x and y in your plot Gaussians with the expected widths? Overplot Gaussians for comparison.

What is the covariance matrix of (x, y)? Compute this analytically, though it may be useful to compare it to your numerical estimate.

Draw 5000 random data pairs from a bivariate Gaussian with this covariance matrix using np.random.multivariate normal.

Compare this distribution and the marginal distributions of x and y to the ones you got by your previous procedure and comment on the result.

If you want an example of using np.random.multivariate_normal, and some routines to make some useful plots, see my starter notebook on the course webpage.

Part 2. MCMC realization of a 2-d probability distribution

The probability distribution for the bivariate Gaussian distribution in Part 1 is:

$$p(x) = \frac{1}{2\pi\sqrt{\det C}} \exp\left\{-\frac{1}{2}x^T C^{-1}x\right\}$$

where x = (x,y) and the covariance matrix C is

$$C = \begin{bmatrix} \sigma_X^2 & \sigma_{XY} \\ \sigma_{XY} & \sigma_Y^2 \end{bmatrix}.$$

Implement a simple Markov Chain Monte Carlo (MCMC) routine:

- 1. Start at a user-specified location (x_0, y_0) .
- 2. At each iteration generate a trial point (x_{i+1}, y_{i+1}) with:

$$x_{i+1} = x_i + h\sigma_X \mathcal{N}(0,1)$$

$$y_{i+1} = y_i + h\sigma_Y \mathcal{N}(0,1)$$

where $\mathcal{N}(0,1)$ is a Gaussian random variable of zero mean and unit dispersion (chosen separately for x and y) and h is a user-specified scaling of the step size.

- 3. If $p(x_{i+1}, y_{i+1}) > p(x_i, y_i)$ accept the step, i.e., add the new pair to the chain and take your next trial step from this new position.
- 4. If $p(x_{i+1}, y_{i+1}) < p(x_i, y_i)$ then accept the step with probability $p(x_{i+1}, y_{i+1})/p(x_i, y_i)$ (draw a uniform random deviate and compare it to this ratio). If the step is not accepted, add the previous point (x_i, y_i) to the chain and generate a new trial point.
- 5. Output (or just plot within your program) the final distribution of the chain. Also keep track of and report the fraction of trial steps that are accepted, i.e., the ratio of the final length of the chain to the total number of steps needed to produce it.

Use this program to generate a 5000-element chain starting from (x, y) = (1, 1) with step scaling h = 1. Plot the distribution of points from this chain, and the corresponding marginal distributions, over the bivariate Gaussian distribution from Part 1. If your programs are working, you should get good agreement.

Try several different starting points and compare the results. You can just describe this comparison in words.

Change h from 1 to 0.1. Compare the distribution to that for h = 1 (with a plot), and compare the fraction of steps that are accepted.

Change h from 1 to 2.5. Compare the distribution to that for h = 1 (with a plot), and compare the fraction of steps that are accepted.

In generating the initial bivariate Gaussian and computing the covariance matrix for the MCMC, change σ_2 from 0.5 to 0.1. Compare to your previous results, for h = 1.

Comment on issues of efficiency and accuracy in MCMC computations and strategies that could improve the efficiency for the σ_2 = 0.1 case.

Part 3. Cosmic MCMC: Parameters of the Universe

Here we will do a simplified version of the statistical analysis in Aubourge et al. (2015), Phys Rev D.

You will need to adapt David's program cosmodist.py from PS 3, or your own code that does the equivalent. This time, we will use its ability to compute distances for $\Omega_k \neq 0$ and w = -1. Refer back to PS 3 for the relevant equations. Because you'll evaluate this integral many times, I recommend adopting a tolerance of 3 x 10^{-5} , which is adequate given the uncertainties of our observational constraints.

As the cosmological constraints, take the following (the first two are from the CMB, and others are from BAO measurements):

```
\Omega_{\rm m}\,h^2 = 0.1386 ± 0.0027

D_{\rm M}(z = 1090) = 13962 ± 10 Mpc

D_{\rm M}(z = 2.34) = 5381 ± 170 Mpc

H(z = 2.34) = 222 ± 5 km s<sup>-1</sup> Mpc<sup>-1</sup>

D_{\rm M}(z = 0.57) = 2204 ± 31 Mpc

H(z = 0.57) = 98 ± 3 km s<sup>-1</sup> Mpc<sup>-1</sup>

D_{\rm M}(z = 0.32) = 1249 ± 25 Mpc
```

Compute the likelihood of the data for a given set of cosmological parameters as $L \propto \exp\{-\chi^2/2\}$, where χ^2 is computed from the above data values ignoring any error covariances (i.e., $\chi^2 = \sum (y_i - y_{\text{mod},i})^2/\sigma_i^2$).

Adapt your MCMC code to create a chain for cosmological parameter values. You should set it up to allow steps in 4 parameters: Ω_m , h, w, and Ω_k .

First consider a flat universe, with Ω_k = 0, but allowing free w. Create a 2000-point, 3-d MCMC using the parameters Ω_m , h, and w, where h = H₀/100 km s⁻¹ Mpc⁻¹. (Use your 4-d code but set the step size in the Ω_k dimension to zero.) For a starting point I suggest Ω_m = 0.3, h = 0.68, w = -1, and for initial step sizes I suggest Δ = 0.03 in each of these three parameters.

Note that Δ here refers to the actual steps in Ω_m , h, and w. These data give parameter errors that are roughly in this ballpark. Do not further multiply 0.03 by the expected standard deviations of these parameters — that would be like taking h = 0.03 in Part 2, and you already saw (I hope) that h = 0.1 leads to chains that do not explore the likelihood surface very well. Warning: with Δ = 0.03 your acceptance fraction in the MCMC will be low (around \sim 1%), but if you take a much smaller step then you will not get good likelihood sampling.

Plot the distribution of your points in the planes w vs. Ω_m , w vs. h, and Ω_m vs. h. You may find it useful to use the python package corner by Daniel Foreman-Mackey.

Now consider a universe with w = -1 and free Ω_k . Create a 2000-point, 3-d MCMC using the parameters Ω_m , h, and Ω_k . (This time set the step size in the w dimension to zero.) For a starting point I suggest Ω_m = 0.3, h = 0.68, Ω_k = 0, and for initial step sizes I suggest trying Δ = 0.03 in the first two parameters and Δ = 0.003 in Ω_k .

Plot the distribution of your points in the planes Ω_k vs. Ω_m , Ω_k vs. h, and Ω_m vs. h.

For reference, you may want to look at Figure 8 of Aubourg et al. (the wCDM and o Λ CDM panels), but you should not expect to get exactly the same results. The main simplifications are that you are not including covariances of the errors and that I have converted the BAO measurements to absolute units using the best-fit value of the sound horizon r_d , which is well known (to 0.4%) but not perfectly known; a full calculation would consider its dependence on cosmological parameters.

Note: This problem set was developed by David Weinberg.