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Astronomy 8824: Problem Set 7 
Due Friday, December 6, 2019 

Systematics and Nuisance Parameters 
 
Parts 2 and 3 illustrate two different ways of dealing with calibration errors and their impact on a 
measurement of H0. You’ll compare results at the end, but don’t automatically carry your ideas from 
Problem 2 over to Problem 3. 
 
Part 1. Best-fit slope and intercept with correlated errors 
Download the file ps7data.tgz from the class website. This contains ten data sets generated with five 
different covariance matrices, with two random number seeds per covariance matrix (and a data file 
for Part 3). The five covariance matrices are the ones from Part 4 of Problem Set 5.  
 
a) Write an analytic expression for the best-fit intercept θ1 and best-fit slope θ2 in terms of the Fisher 
matrix and the covariance matrix?  
 
b) For each of these ten realizations compute the best-fit slope and intercept, using the appropriate 
covariance matrix for each case. Also report the uncertainties on both quantities.  
 
Hint: see Stats Notes #4, page 6.  
 
Part 2: Calibration errors in measurement of H0, covariance matrix approach 
The goal of this exercise is to estimate the Hubble constant using Type Ia supernova distances to 
galaxies and quantify the uncertainties. 
 
Assume (unrealistically) that you have calibrated the mean absolute magnitude (at peak luminosity) of 
Type Ia SNe with no uncertainty, from local galaxies whose distance is known by other means but 
which are too close to estimate H0 because of peculiar velocities. 
 
By comparing the peak apparent magnitude of SNe found in distant galaxies to this absolute 
magnitude, you get an estimate of ln d to each of these galaxies. Assume that the error in ln d has a 
constant value σ for all of your sample galaxies, which may be realistic if the error is dominated by the 
intrinsic scatter of supernova luminosities rather than by measurement uncertainties. I’m using ln d 
rather than d because a realistic error distribution is closer to Gaussian in ln d. 
 
You also measure the recession velocity v for each galaxy, with negligible uncertainty (which requires 
your galaxies to be distant enough that peculiar velocities can be ignored). 
 
Hubble’s law, v = H0d, can thus be written ln d = ln v – ln H0. If we think of the velocities as our 
independent variables xi and the distance measurements as our data values yi, then inferring H0 
comes down to determining the intercept of y = x+b, where the slope is fixed to unity because we are 
assuming that Hubble’s law is correct for some value of H0. 
 
(a) For 16 measurements, each with σ = 0.08, what is the expected fractional uncertainty in H0? 
 
(b) Now throw in a (realistic) wrinkle: the distant supernovae are observed with a different telescope 
and filter set from the local calibrator sample, so there is an uncertainty in ln d that affects all of the 
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measurements in the same way. 
 
Specifically, if the calibration error is Δ, then the observed value yi,obs will be Gaussian distributed with 
dispersion σ about yi,true + Δ, where yi = ln di. 
 
We don’t know Δ, of course, or we would just remove it and calibrate our data to the same system. 
However, we may know the plausible range of Δ — i.e., the calibration uncertainty σ2

Δ = <Δ2>. (We’ve 
done the best we can on calibration, so <Δ>= 0.) 
 
The value of σΔ is just about half the uncertainty of the photometric calibration in magnitudes.  
 
Optional question: Why is this the case?  
 
A realistic value for good observations might be σΔ ≈ 0.01 − 0.02. 
 
Give a mathematical argument that the covariance matrix of the errors in this case is: 
 

Cij = σ2δij + σ2
Δ 

 
where δij is the Kronecker-δ. (Hint: go back to the basic definition of Cij, and think about what happens 
when you take expectation values.) 
 
(c) For N = 16, σ = 0.08, σΔ = 0.02, what is the uncertainty in H0? 
 
(d) More generally, for what conditions on N, σ, and σΔ does the calibration uncertainty make an 
important contribution to the overall uncertainty in H0? 
 
(e) Suppose that the sample of 16 comes from two different telescopes, e.g. points i = 1,8 from 
telescope 1 and i = 9,16 from telescope 2, each with its own calibration uncertainty σΔ,1 or σΔ,2. 
Assume that the two calibration errors are uncorrelated with each other. What is the covariance matrix 
for the full data set? 
 
(f) What is the uncertainty in H0 for σΔ,1 = σΔ,2 = 0.02? For σΔ,1 = σΔ,2 = 0.04? For σΔ,1 = σΔ,2  = 0.01? 
 
Part 3. Calibration errors in H0 measurement, treated via marginalization 
The dataset h0.data is also in the file ps7data.tgz. This has 16 data points and columns 2 and 3 are 
ln(v/km s-1) and ln(d/Mpc).  
 
Data points 1 − 8 come from Telescope 1 with calibration uncertainty σΔ,1 and points 9 − 16 from 
Telescope 2 with calibration uncertainty σΔ,2. 
 
Assume that apart from the calibration uncertainty the errors σ in ln d are Gaussian with dispersion 
0.08. 
 
Treat σΔ,1 and σΔ,2 as nuisance parameters, and adopt Gaussian priors on their values: 
 

𝑝 Δ =
1

2𝜋𝜎!!
exp −

Δ!

2𝜎!!
 

 
with σ2

Δ = 0.02 for both calibration offsets. Adopt a flat prior on ln H0. 
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(a) The probability of a given set of data points depends on H0, Δ1, and Δ2: 
 

p(ln H0, Δ1, Δ2) ∝ exp(−χ2/2). 
 

What is an analytic expression for χ2? 
 
(b) Write an MCMC program for the 3-dimensional parameter space ln H0, Δ1, and Δ2, using the data 
points above. 
 
From your MCMC chain, plot distributions in the three parameter planes ln H0 vs. Δ1, ln H0 vs. Δ1, and 
Δ1, vs Δ2. For example, you may use corner. 
 
(c) What is your estimate of H0 and its fractional error, marginalized over Δ1, and Δ2? 
 
What can you infer from your data about the relative values of the calibration errors Δ1, and Δ2? 
 
(d) If you widen your prior on the calibrations to σΔ  = 0.04, how does your fractional error on H0 
change? 
 
If you sharpen your prior on the calibrations to σΔ  = 0.01, how does your fractional error on H0 
change? 
 
(e) How do the uncertainties in H0 that you find from this marginalization approach compare to the 
ones you computed via the covariance matrix approach in Problem 2? 
 
Note: This problem set was developed by David Weinberg. 


