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Abstract 

For my M.Sc. thesis research, I have utilized advanced computational techniques to calculate 

energy levels, transition probabilities, and oscillator strengths and lifetimes for Titanium (Ti) ions, 

Ti I and Ti II. I employed SUPERSTRUCTURE, an atomic structure code which implements 

Thomas-Fermi-Dirac-Amaldi potential for the electron-electron interaction and takes into account 

relativistic effects in Breit-Pauli approximation. I studied various types of transitions, allowed 

electric dipole (E1), and forbidden electric quadrupole (E2), electric octupole (E3), magnetic 

dipole (M1), and magnetic quadrupole (M2). I compared the energies and oscillator strengths with 

those available at the compiled tables of National Institute of Standards and Technology (NIST) 

for accuracy determination. We also computed the lifetimes of levels obtained using a different 

code called LIFETIME. I have presented lifetimes for 5 fine structure levels of Ti I and 16 fine 

structure levels of Ti II. We studied the spectral features of both Ti I and Ti II to determine the 

dominating ranges of wavelengths for strong spectral lines for possible detection in astrophysical 

spectra and applications. For Ti I, we investigated ten different electron    configurations (3𝑑𝑑24𝑠𝑠2 ,

3𝑑𝑑34𝑠𝑠 , 3𝑑𝑑24𝑠𝑠4𝑝𝑝 , 3𝑑𝑑34𝑝𝑝 , 3𝑑𝑑34𝑑𝑑 , 3𝑑𝑑34𝑓𝑓 , 3𝑑𝑑35𝑠𝑠 , 3𝑑𝑑4 , 3𝑑𝑑4𝑠𝑠24𝑝𝑝 , 3𝑑𝑑24𝑠𝑠4𝑑𝑑). These 

configurations resulted in 839 fine structure energy levels, enabling us to calculate a total of 

372,775 transitions of all allowed and forbidden types. For Ti II, we worked with a set of ten 

electron configurations (3𝑝𝑝63𝑑𝑑24𝑠𝑠 , 3𝑝𝑝63𝑑𝑑3, 3𝑝𝑝63𝑑𝑑4𝑠𝑠2 , 3𝑝𝑝63𝑑𝑑24𝑝𝑝 , 3𝑝𝑝63𝑑𝑑24𝑑𝑑 , 3𝑝𝑝63𝑑𝑑24𝑓𝑓,

3𝑝𝑝63𝑑𝑑4𝑠𝑠4𝑝𝑝 , 3𝑝𝑝63𝑑𝑑4𝑠𝑠5𝑝𝑝 , 3𝑝𝑝53𝑑𝑑4 , 3𝑝𝑝43𝑑𝑑5). These configurations yielded 969 fine structure 

energy levels and a total of 474,320 allowed and forbidden transitions. I have presented tables of 

comparative studies of our results with the NIST data and discussed the comparisons. Our results 

show fair to good agreement. Large discrepancies, particularly with high lying energy levels, are 

also noted. We conducted the spectral analysis of Ti I and Ti II by plotting oscillator strength 

against wavelength. The figures are presented showing the strength of lines of these two ions at 

wavelengths that can be used for detection, analysis and modeling of astrophysical and laboratory 

plasma. Our research provides valuable insights into the atomic properties and spectral behavior 

of Ti I and Ti II, contributing to a deeper understanding of these elements.  
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Chapter 1  

 Introduction 

In the ever-evolving landscape of atomic and molecular physics, the exploration of the 

fundamental properties of matter continues to stand as a testament to human curiosity and scientific 

progress. Within this dynamic domain, the study of atoms and ions remains a cornerstone, offering 

insights into the complex dance of electrons and the quantum mechanical phenomena that underpin 

our physical reality. Among the elements that have consistently beckoned scientists and researchers 

due to their intriguing electronic configurations and versatile applications, titanium (Ti) emerges 

as an enticing subject of study. In this thesis, we embark on a compelling expedition into the realm 

of titanium chemistry, focusing our gaze on Ti(I) (neutral titanium) and Ti(II) (Ti+ ) ions. Our 

overarching aim: to unveil the enigmatic properties of these ions, with a particular emphasis on 

their oscillator strength, energy levels, and transition probabilities, utilizing the powerful atomic 

structure code, SUPERSTRUCTURE. 

1. 1 Astrophysical Significance of studying Titanium 

• Stellar Composition Analysis: Stars are essentially gigantic nuclear reactors where 

various nuclear reactions occur. The elements present in a star, including Ti ions, emit 

specific spectral lines when they undergo transitions between energy states. By accurately 

determining the atomic data of Ti ions, such as transition probabilities and oscillator 

strengths, astronomers can precisely identify and quantify the amount of titanium and other 

elements in stars. This, in turn, helps in characterizing the chemical composition of stars, 

a critical factor in understanding their evolution and life cycles. 

• Stellar Temperature Determination: The temperature of a star influences the distribution 

of electrons in its atomic and ionic states. Accurate atomic data for Ti ions allows 

astronomers to analyze the intensity and shape of spectral lines produced by Ti ions in a 

star's spectrum. By comparing these lines to theoretical models that incorporate your 

research data, astronomers can better estimate the temperature of stars. This is invaluable 
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for classifying stars, understanding their evolutionary stages, and determining their 

luminosities. 

• Stellar Evolution Models: Stellar evolution models rely on accurate atomic data to 

simulate the life cycles of stars. Our research can enhance the precision of these models by 

providing improved atomic data for Ti ions. This, in turn, allows for more accurate 

predictions of how stars evolve, including their lifetimes, size changes, and eventual fates 

(e.g., becoming supernovae or evolving into white dwarfs). 

• Astrophysical Spectroscopy: Observational astronomers use spectroscopy to collect data 

on distant celestial objects. Your research can benefit these astronomers by providing them 

with a more comprehensive and precise database of Ti ions' atomic properties. This 

improved data can lead to more accurate interpretations of observed spectra, allowing 

astronomers to infer crucial information about the stars, galaxies, and other cosmic objects 

they study. 

• Cosmic Abundance Studies: Understanding the abundance of elements like titanium in 

different regions of the universe is vital for cosmological studies. By contributing to the 

accuracy of atomic data for Ti ions, Our research indirectly aids in determining the cosmic 

abundance of titanium. This information can shed light on the history of element formation 

in the universe. 

• Planetary Nebulae: Ti ions are also found in the spectra of planetary nebulae, which are 

remnants of stars that have exhausted their nuclear fuel. Accurate atomic data is essential 

for analyzing the spectra of these nebulae. Our research can facilitate a better understanding 

of the chemical composition and physical conditions within planetary nebulae, providing 

insights into the late stages of stellar evolution. 

1. 2 Titanium in Red giants 

Red giants, massive stars in the later stages of their evolution, exhibit a fascinating array of 

elemental compositions, and one of the notable elements found in these celestial giants is titanium 

(Ti). In red giants, like those studied in the cosmos, titanium is produced through various 

nucleosynthesis processes. During the helium-burning phase of a red giant's life cycle, helium 

fuses into heavier elements, including titanium, through a series of nuclear reactions. This titanium 
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enrichment has significant implications for the chemical makeup of the universe, as it contributes 

to the formation of elements that eventually find their way into planetary systems and, potentially, 

the building blocks of life. Moreover, the presence of titanium in red giants is of interest to 

astronomers and astrophysicists studying the evolution of stars and the synthesis of elements 

within these stellar giants, shedding light on the intricate processes that shape the cosmos. 

Here are a few notable red giants where the presence of Titanium ions has been observed: 

• Arcturus (Alpha Boötis): Arcturus is one of the brightest stars in the night sky and is 

classified as a K-type giant. It exhibits  Ti lines in its spectrum, making it a prominent 

example of a red giant containing titanium [1]. 

• Aldebaran (Alpha Tauri): Aldebaran is the brightest star in the constellation Taurus and 

is also a K-type giant. Titanium lines are detectable in its spectrum [2]. 

• Betelgeuse (Alpha Orionis): Betelgeuse is a red supergiant rather than a red giant, but it 

is a noteworthy example of a massive evolved star. Titanium, among other elements, is 

present in its spectrum. Betelgeuse is famous for its variability and its prominent place in 

the constellation Orion [3]. 

• Mira (Omicron Ceti): Mira is a well-known variable star that undergoes pulsations, 

causing its brightness to change over time. It is a red giant with Ti lines present in its 

spectrum. Mira is significant for its contribution to our understanding of stellar 

variability[4]. 

. 

1. 3 Titanium (Ti) in exoplanets 

Titanium (Ti) is an element that can be found in the compositions of exoplanets, but its presence 

and abundance can vary depending on several factors. Here's a brief overview of the role of 

titanium in exoplanets: 

• Rocky Exoplanets: Titanium is a common element in rocky materials on Earth and in our 

solar system. Exoplanets that are rocky in nature, similar to Earth or Mars, can contain 

titanium as a component of their crusts and mantles. The abundance of titanium in these 

exoplanets depends on their formation and subsequent geological processes. 
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• Chemical Composition: The abundance of titanium in an exoplanet's crust and mantle 

depends on the chemical composition of the protoplanetary disk from which it formed. 

Different regions of a protoplanetary disk can have varying levels of titanium, which can 

influence the composition of the resulting exoplanets. 

• Stellar Metallicity: The metallicity of the host star can also play a role in the composition 

of exoplanets, including the presence of titanium. Metallicity refers to the abundance of 

elements heavier than hydrogen and helium in a star. Stars with higher metallicity are more 

likely to have exoplanets with rocky compositions containing elements like titanium. 

• Exoplanet Formation: The process of exoplanet formation can influence the distribution 

of elements like titanium within a planetary system. Rocky exoplanets can accrete material 

from the protoplanetary disk, and the availability of titanium-containing dust and solids 

during this process can affect the exoplanet's composition. 

• Observation and Characterization: Detecting the presence of titanium in exoplanets 

often relies on indirect methods such as spectroscopy. Astronomers analyze the light from 

a host star as it passes through an exoplanet's atmosphere or is reflected off its surface. 

Specific spectral features related to titanium or other elements can be used to infer their 

presence. 

• Exoplanetary Atmospheres: Titanium can also be present in the atmospheres of certain 

exoplanets. For instance, in hot Jupiter-type exoplanets (gas giants with high temperatures), 

titanium oxide (TiO) has been detected in their atmospheres. TiO can influence the 

temperature structure and spectral properties of these atmospheres. 

• Exoplanetary Research: Researchers studying exoplanets aim to determine their 

compositions and properties. Understanding the presence and abundance of elements like 

titanium in exoplanets provides insights into their formation and evolution. It can also help 

us categorize exoplanets into different classes based on their composition and atmospheric 

characteristics. Atmospheres of certain exoplanets through spectroscopic observations.  

There exist a number of documented cases in the field of exoplanetary research wherein the 

element titanium (Ti) has been successfully detected 
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• WASP-19b: Another hot Jupiter exoplanet, WASP-19b, has been found to have TiO in 

its atmosphere. It's a transiting exoplanet located about 815 light-years away from Earth 

[5]. 

• KELT-9b: KELT-9b is an extremely hot gas giant exoplanet orbiting a very hot and 

massive host star. TiO has been detected in its atmosphere, and this exoplanet is known 

for its scorching temperatures [6]. 

 

1. 4 Titanium in Large Magellanic cloud (LMC)  

The Large Magellanic Cloud (LMC) is a satellite galaxy of our Milky Way and is located in the 

southern hemisphere. It is a prominent target for astronomers studying distant galaxies and stellar 

populations. Titanium (Ti) is one of many elements found in the stars of the LMC[7]. Here's some 

information about the presence of Ti in the LMC: 

• Stellar Composition: The LMC contains a diverse population of stars, ranging from 

massive young stars to older, evolved ones. These stars have varying chemical 

compositions, including the presence of elements like titanium. The abundance of Ti in 

LMC stars can vary from star to star. 

• Chemical Abundance Studies: Astronomers have conducted spectroscopic studies of 

stars in the LMC to determine their chemical compositions, including the abundance of 

elements like titanium. These studies aim to understand the metallicity of the LMC's stellar 

population, which provides insights into its formation history and evolution. 

• Stellar Evolution: The LMC serves as an important laboratory for studying stellar 

evolution. By analyzing the chemical compositions of LMC stars, astronomers can gain 

insights into the nucleosynthesis processes that have occurred in this galaxy, including the 

production of elements like titanium through various stages of stellar evolution. 
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• Galactic Structure: The chemical composition of stars in the LMC is essential for 

understanding the galaxy's overall structure and history. Studying the distribution of 

elements like titanium helps astronomers map the LMC's stellar populations and 

investigate its interaction with the Milky Way. 

  

Figure 1.1: Large Magellanic Cloud 

Figure 1.2: Ti I in LMC spectra. Ti line at 15544 Å 
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• Supernovae and Stellar Explosions: Titanium is produced and ejected into space during 

the explosive deaths of massive stars in supernova events. By studying the presence of 

titanium in the LMC's interstellar medium, astronomers can learn about the history of 

supernova explosions in this galaxy. 

• Astronomical Observations: Observations of the LMC, including spectroscopic data, 

have revealed the presence of titanium lines in the spectra of its stars. These lines are used 

to determine the chemical composition of LMC stars and provide insights into their 

physical properties. 

Overall, titanium is one of the many elements that astronomers study in the Large Magellanic 

Cloud to better understand the galaxy's stellar populations, chemical history, and role in the broader 

context of galaxy formation and evolution. The LMC continues to be a valuable target for 

observational and theoretical studies in the field of astrophysics. 

1. 5 Empowering Research with SUPERSTRUCTURE (An atomic 

structure code ) 

The relentless pursuit of knowledge has led to the development of advanced computational tools 

that allow us to probe deeper into the atomic and molecular worlds. SUPERSTRUCTURE, a 

specialized atomic structure code, stands as a formidable instrument in this endeavor. It empowers 

us to explore the intricate electronic structures of atoms and ions with unprecedented precision and 

comprehensiveness. Our journey to unravel the quantum mechanical secrets of Ti(I) and Ti(II) ions 

takes flight on the wings of this exceptional computational tool. 

1. 6 Tripartite Research Goals 

This thesis is meticulously structured around three interrelated objectives: 

I. Determining Energy Levels: Our primary goal within this study is to accurately determine 

the energy levels associated with Ti(I) (neutral titanium) and Ti(II) (singly ionized 

titanium) ions. This objective entails precise calculations facilitated by the powerful 

SUPERSTRUCTURE code. With this specialized computational tool, our aim is to 

quantitatively ascertain the energies corresponding to various electronic states and 
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illuminate the electronic configurations of these ions. This foundational pursuit serves as 

the bedrock of our research, providing us with a comprehensive understanding of the 

energy characteristics intrinsic to Ti(I) and Ti(II) ions. It is through this meticulous process 

that we gain valuable insights into the quantum mechanical behaviors of these ions, 

forming the essential foundation upon which our investigation is built. 

II. Navigating Transition Probabilities: Our second mission delves into the labyrinthine 

world of transition probabilities for electronic transitions within Ti(I) and Ti(II) ions. 

Harnessing the computational prowess of the SUPERSTRUCTURE code, we aim to unveil 

the complexities of particle interactions, leading to a profound understanding of the relative 

strengths of various transitions and their consequential impact on observed spectra. 

III. Unveiling Oscillator Strengths: At the heart of our expedition lies the meticulous 

determination of oscillator strengths—an elemental parameter that quantifies the 

probability of electronic transitions. Through the precision and finesse of the 

SUPERSTRUCTURE code, we intend to unveil the quantum mechanical intricacies 

governing these transitions, shedding light on the profound subtleties of Ti(I) and Ti(II) 

ions. 

 

 

1. 7 Significance and Innovation 

This research holds profound significance on multiple fronts. Firstly, it enriches our foundational 

knowledge of atomic and molecular properties, providing a more profound understanding of the 

electronic intricacies of Ti(I) and Ti(II) ions. Secondly, the application of the 

SUPERSTRUCTURE code in this study symbolizes a paradigm shift in computational 

methodologies, opening new horizons for scientific exploration. Moreover, the outcomes of this 

research carry the potential to catalyze innovation in materials science, spectroscopy, and advanced 

technological applications, forging a path toward new scientific discoveries and technological 

advancements. 
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1. 8 Navigating the Thesis Landscape 

The landscape of this thesis unfolds as follows: 

Chapter 2 provides an in-depth review of the relevant literature, highlighting previous studies on 

titanium ions and their spectroscopic properties. 

Chapter 3 and Chapter 4 delve into the theoretical framework related to our research. 

Chapter 5 discusses the computational methodologies that underpin our research, elucidating the 

principles and capabilities of the SUPERSTRUCTURE code. 

Chapter 6 presents the results of our calculations, including the energy tables, transition 

probabilities, and oscillator strengths for Ti(I) and Ti(II) ions and offers a comprehensive analysis 

of the findings and their implications 

Finally, Chapter 7 serves as the culmination of our scientific odyssey, summarizing our 

groundbreaking discoveries, accentuating their significance, and charting new horizons for future 

research. 

. 
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Chapter 2  

 Literature review 

2. 1 For Ti I 

1930s-1940s: Early Study of Titanium's Atomic Energy Levels 

In the early 1930s, the study of titanium's atomic energy levels began with the compilation by 

Bacher and Goudsmit in 1932[8]. At that time, only the first four spectra out of the total 22 spectra 

of titanium had been systematically studied, reflecting the limited state of knowledge. Progress 

was made by 1949 when Moore [9]compiled data for the first 13 spectra of titanium, signifying a 

substantial improvement in our understanding of titanium's atomic energy levels. During this era, 

oxygen was the heaviest atom for which some energy levels for all stages of ionization were 

known, emphasizing the challenges of studying heavier elements. 

 

1970s-1980s: Infrared Spectroscopy and Titanium I Oscillator Strengths 

In more recent years, the significance of infrared (IR) stellar spectroscopy has grown substantially. 

This growth is primarily attributed to advancements in IR detectors in both ground-based and 

satellite-based spectrographs. However, the analysis of costly IR astrophysical spectra has been 

limited primarily to the examination of molecular bands and a restricted set of atomic transitions 

in the near IR spectrum. This limitation arises from the absence of precise laboratory-derived 

atomic oscillator strengths in the IR range. This deficiency is particularly pronounced when 

studying cool stars and brown dwarfs, as their energy emission peaks within the IR spectrum 

(Lyubchik et al., 2004)[10] 
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The acquisition of precise oscillator strengths for specific neutral atoms is essential for determining 

critical stellar properties, including effective temperature, metallicity, and surface gravity 

(Lyubchik et al., 2004)[10]. 

The existing laboratory atomic database for Titanium I (Ti I) in the IR spectral range presents a 

notable deficiency. The longest wavelength spectral line for Ti I with a measured oscillator strength 

is recorded at 1.06 μm Whaling et al. in 1977 [11]. Beyond this wavelength, available oscillator 

strengths are derived from the semi-empirical calculations of Kurucz in 1995 [12]. 

However, calculating theoretical and semi-empirical oscillator strengths with the required 

precision for accurate abundance determinations is a formidable challenge, often accompanied by 

uncertainties ranging from 10 to 20 percent. This challenge becomes particularly significant when 

dealing with weak transitions, which may be the only viable lines for comprehensive astrophysical 

spectrum analysis. 

 

1980s-1990s: Progress in Ti I Oscillator Strengths 

The most comprehensive compilation of Ti I oscillator strengths to date was conducted by Martin 

et al. in 1988 [13]. This compilation spanned from the visible to the near-infrared (IR) and 

incorporated studies by Smith & Kühne in 1978, as well as Blackwell et al. in 1982a, 1982b, and 

1983.[14][15] 

It's important to note that the oscillator strengths initially determined by Blackwell and colleagues 

underwent re-examination by Grevesse et al. in 1989, which recommended an upward adjustment 

of these values by 0.056 dex, equivalent to a 14 percent increase [16]. 

Subsequently, Nitz et al. in 1998 contributed to the field by publishing experimentally measured 

oscillator strengths, introducing uncertainties of approximately 10 percent for certain even parity 

levels [17]. 

Additionally, various studies in the 1980s and 1990s employed time-resolved Laser-Induced 

Fluorescence (LIF) techniques to conduct experimental lifetime measurements on Ti I (Salih & 

Lawler, 1990; Lawler, 1991; Lowe & Hannaford, 1991; Rudolph & Helbig, 1982)[18][19] 
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Recent Years: Advances in Experimental Techniques 

In recent years, substantial advancements have been made in experimental techniques for studying 

titanium's atomic properties, particularly in the higher stages of ionization. Today, experimental 

results are available for every stage of titanium's ionization. These advancements have been driven 

by the need to interpret new spectroscopic observations of the sun at shorter wavelengths obtained 

from rocket- and satellite-borne spectrographs. These observations necessitated more energetic 

light sources for accurate analysis. 

2. 2 For Ti II 

1930s: Initial Understanding of Titanium (Ti) in Stellar Spectra 

Titanium (Ti), a lighter element in the iron-group, garnered attention for its singly ionized state, Ti 

II, known for its abundant spectral lines observed in the ultraviolet, visible, and near-infrared 

spectra of B, A, and F stars. These lines were also observed in stellar winds, as reported by Hartman 

et al. in 2004 [20] 

2000: Precise Oscillator Strengths for Ti I 

Nilsson et al. (2000)[21] conducted a comprehensive investigation aiming to provide precise 

oscillator strength data for 44 transitions within titanium ion Ti I. Employing the time-resolved 

laser-induced fluorescence (TR-LIF) technique, they meticulously measured oscillator strengths 

spanning a wavelength range from 300 to 800 nm. The study compared these experimental results 

with existing theoretical and experimental data, providing valuable tables with measured oscillator 

strengths, uncertainties, and robust references. Additionally, the authors compiled energy levels 

and lifetimes for Ti I, encompassing various multiplets, and offered recommendations for future 

measurements, making this study a vital reference in atomic physics, astrophysics, and 

spectroscopy. 

2008: Radiative Lifetimes of Ti II 

Radiative lifetimes for 33 metastable states of Ti II were determined through a combination of 

experimental and theoretical approaches, using the pseudo-relativistic Hartree–Fock (HFR) 
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method by Cowan, as reported by Palmeri et al. in 2008[22]. This method effectively accounted 

for valence–valence and core–valence correlations. 

1980s-1990s: Diverse Methods for Ti II Properties 

Researchers employed various techniques to explore Ti II's properties. Kwiatkowski et al. 

(1985)[23] utilized laser-induced fluorescence (LIF) to measure lifetimes for 18 levels of Ti II. 

Bizzarri et al. (1993)[24] used time-resolved LIF on a slow Ti ion beam to assess lifetimes for 42 

Ti II levels, useful for calculating transition probabilities for 100 emission lines. Similarly, 

Langhans et al. (1995)[25] used LIF to determine radiative lifetimes for 66 Ti II levels. 

Roberts et al. (1973) [26]employed beam-foil techniques to calculate lifetimes for specific Ti II 

levels. Pickering et al. (2001)[27] and Wood et al. (2013)[28] harnessed Fourier transform 

spectroscopy to measure oscillator strengths, transition probabilities, and lifetimes for specific Ti 

II levels. 

2001-2006: Advanced Methods and Computation 

Wiese et al. (2001) [29]conducted high-sensitivity absorption spectroscopy experiments to 

measure oscillator strengths for vacuum ultraviolet resonance transitions within Ti II. Luke 

(1999)[30] employed a configuration interaction method to calculate transition rates between 

selected Ti II levels. Bautista et al. (2006) [31]used the AUTOSTRUCTURE code to compute 

transition rates and lifetimes for Ti II levels characterized by specific configurations. 

2016-2020: Advanced Techniques for Higher-Excitation States 

Lundberg et al. (2016)[32] utilized laser-induced fluorescence and Cowan's pseudo-relativistic 

Hartree–Fock method to calculate oscillator strengths, transition probabilities, and lifetimes for 

higher-excitation states of Ti II, accommodating core-polarization effects. Finally, Li et al. 

(2020)[33] employed the multiconfiguration Dirac–Hartree–Fock and relativistic configuration 

interaction methods (GRASP2018) to compute energy levels, oscillator strengths, and lifetimes for 

singly ionized titanium. 

 



21 | P a g e  
 

Within the scope of our thesis, our primary focus will be on the investigation of energy level 

configurations, transition probabilities, and the lifetimes of both Titanium I (Ti I) and Titanium II 

(Ti II) ions. This study aims to contribute to the field by providing a detailed comparative 

assessment, aligning our research findings with the established values available in the National 

Institute of Standards and Technology (NIST) database or experimental data available in the 

literature. This comprehensive analysis will offer valuable insights into the accuracy and reliability 

of our collected data, thus enhancing the understanding of these critical atomic properties. 
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Chapter 3  

 Quantum Mechanical Framework  for Atomic Systems 

3. 1 Single electron system 

The Schrödinger equation is a fundamental equation in quantum mechanics that describes the 

behavior of a quantum system. It can be applied to different types of systems, such as single 

electron systems or multi electron systems. 

A single electron system is a system that contains only one electron, such as a hydrogen atom or 

an ionized helium atom. The Schrödinger equation for a single electron system in one dimension 

is: 

𝐻𝐻𝐻𝐻 = 𝐸𝐸𝐻𝐻 (3.1) 

 

−ℏ2

2𝑚𝑚
𝑑𝑑2𝐻𝐻
𝑑𝑑𝑥𝑥2

+ 𝑉𝑉(𝑥𝑥)𝐻𝐻 = 𝐸𝐸𝐻𝐻 (3.2) 

 

where ℏ is the reduced Planck constant, 𝑚𝑚 is the mass of the electron, 𝐻𝐻 is the wave function of 

the electron, 𝑉𝑉(𝑥𝑥) is the potential energy function, and 𝐸𝐸 is the total energy of the system. The 

wave function 𝐻𝐻 contains all the information about the quantum state of the electron, such as its 

position, momentum, and spin 

3. 2 Multi-electron atomic systems 

The description of a multi-electron atomic system presents significantly greater complexity 

compared to the treatment of hydrogen, primarily due to the presence of multiple electrons 

interacting within the atomic framework. In the case of hydrogen, the Hamiltonian operator for a 
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single electron encompasses only one potential term, which corresponds to the electron-nucleus 

Coulomb attraction potential denoted as V(r). 

However, when extending the quantum mechanical treatment to a system with multiple electrons, 

several critical considerations come into play: 

 

i. Incorporating One-Electron Operators: Firstly, it becomes necessary to account for all 

individual one-electron operators. These operators encompass the kinetic energy of each 

electron as it moves within the atomic system, as well as the attractive potential arising 

from the electron-nucleus interaction. The summation of these one-electron operators 

ensures a comprehensive representation of the system's behavior. 

 

ii. Incorporating Two-Electron Coulomb Repulsion Operators: Additionally, the 

complexity escalates as the quantum description necessitates the inclusion of two-electron 

Coulomb repulsion operators. These operators account for the electrostatic repulsion that 

arises when two electrons within the atomic system approach each other, which constitutes 

a substantial interaction term. 

 

For instance, the Helium atom or ions with helium-like electron configurations serve as pertinent 

examples where these considerations culminate in the formulation of the two-electron Hamiltonian 

operator. This operator encapsulates the intricate interplay of kinetic energies, electron-nucleus 

attraction potentials, and the Coulombic repulsion between electron pairs. 

Schrodinger equation for multi-electron system can be written as: 

𝐻𝐻𝐻𝐻 = 𝐸𝐸𝐻𝐻 

 Where, 
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𝐻𝐻 =
𝑝𝑝12

2𝑚𝑚
+
𝑝𝑝22

2𝑚𝑚
−
𝑒𝑒2𝑍𝑍
𝑟𝑟1

−
𝑒𝑒2𝑍𝑍
𝑟𝑟2

+
𝑒𝑒2

|𝒓𝒓1 − 𝒓𝒓2|
(3.3) 

                                       

with the two electrons in positions r1 and r2. 

The multi-electron Hamiltonian, reduced to number equations with atomic units (Ry),  

And  𝐻𝐻 = 𝐻𝐻0 + 𝐻𝐻1 

𝐻𝐻0 = � 
𝑁𝑁

𝑖𝑖=1

�−∇𝑖𝑖2 −
2𝑍𝑍
𝑟𝑟𝑖𝑖
� (3.4) 

𝐻𝐻1 = � 
𝑗𝑗<𝑖𝑖

2
𝑟𝑟𝑖𝑖𝑗𝑗

(3.5) 

which accounts for the two-electron Coulomb interaction. It becomes evident that beyond the 

scenario of a single electron, a direct solution Ψ from the Schrödinger equation is no longer 

feasible. In such cases, the approach necessitates the initiation with a trial function Ψ t, typically 

represented parametrically. A prominent instance of this approach, employed in single-particle 

expansions, is the utilization of Slater-type orbitals denoted as 𝑃𝑃𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆(𝑟𝑟). However, merely having 

a trial function is insufficient; it is imperative to establish constraints on the parameters within this 

function to ensure its usefulness. 

 

This crucial prescription is known as the variational principle, a fundamental concept in quantum 

mechanics. The well-established Rayleigh–Ritz variational principle is a cornerstone in this 

context, as it sets an upper limit on the eigenvalue derived from the Schrödinger equation when 

employing a trial function. When applied specifically to the many-electron Hamiltonian, as 

discussed previously and as embodied in the Hartree–Fock scheme elaborated upon in the 

subsequent section, this leads to the formulation of the Hartree–Fock variational principle: 
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𝛿𝛿⟨𝛹𝛹|𝐻𝐻|𝛹𝛹⟩ = 0 (3.6) 

 

with soln    E=Emin , notably because the spectrum of the non-relativistic Hamiltonian is bounded 

from below. 

 

The Hartree–Fock variational principle plays a pivotal role in the study of many-electron systems, 

facilitating the determination of energetically favorable electronic configurations within complex 

atomic and molecular systems, taking into account the intricate interplay of electron-electron 

interactions and electron-nucleus interactions. This principle serves as a cornerstone in 

computational quantum chemistry, aiding in the prediction of molecular structures and properties 

with significant scientific and practical applications. 

 

3. 3 The Hartree–Fock method 

In the realm of quantum mechanics, when dealing with systems comprising multiple electrons 

under non-relativistic conditions, an analytical solution to the associated Hamiltonian becomes an 

unattainable pursuit. Instead, the Schrödinger equation is supplanted by the variational equation 

(Eq.3.6). The dominant and widely adopted methodology at the core of most quantum mechanical 

treatments in this context is the Hartree–Fock method. Commencing with a comprehensive set of 

integro-differential equations, the trial functions within this framework iteratively approach the 

elusive 'true' solution. It is important to note that these iterations are bound by the finite number of 

configurations specified for the functions. 

 

The numerical instantiation of this approach adheres to the pioneering work of Hartree, who 

established a self-consistent iterative procedure for the determination of interelectron potentials 

and electronic wavefunctions [34]. Nevertheless, it's worth highlighting that the original Hartree 

method lacked the incorporation of electron exchange effects. This deficiency was rectified by 
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Fock[35], who expanded upon the methodology by introducing wavefunction antisymmetrization, 

thereby accounting for electron exchange effects in an ab-initio fashion. This iterative framework, 

augmented by the inclusion of electron exchange, is formally known as the self-consistent Hartree–

Fock method [34]. 

We initiate our investigation using the exact Hamiltonian expressed as a Rydberg–Bohr scaled 

number equation, specifically referencing Equations (3.4) and (3.5) 

𝐻𝐻 = � 
𝑁𝑁

𝑖𝑖=1

�−∇𝑖𝑖2 −
2𝑍𝑍
𝑟𝑟𝑖𝑖
� + � 

𝑗𝑗≠𝑖𝑖

2
𝑟𝑟𝑖𝑖𝑗𝑗

(3.7) 

we also define the concise notation for the one-electron operator, 

𝑓𝑓𝑖𝑖 ≡ −∇𝑖𝑖2 −
2𝑍𝑍
𝑟𝑟𝑖𝑖

(3.8) 

representing the kinetic energy term p2/2m and the nuclear potential, as well as the two-electron 

operator, 

𝑔𝑔𝑖𝑖𝑗𝑗 ≡
2
𝑟𝑟𝑖𝑖𝑗𝑗

(3.9) 

Then the Rydberg–Bohr scaled Hamiltonian becomes, 

𝐻𝐻 = � 
𝑖𝑖

𝑓𝑓𝑖𝑖 + � 
𝑗𝑗≠𝑖𝑖

𝑔𝑔𝑖𝑖𝑗𝑗 ≡ 𝐹𝐹 + 𝐺𝐺 (3.10) 

Here, F and G represent interaction operators encompassing all electrons within the atom. It is 

important to note that the electron-electron interaction, in conjunction with the electron-nuclear 

interaction, collectively transforms the non-hydrogenic atom into a many-body problem that 

cannot be solved exactly. In the Schrödinger equation for hydrogen, where the Coulomb potential 

is traditionally represented as 2𝑍𝑍/𝑟𝑟, a potential 𝑉𝑉(𝑟𝑟) must be introduced. This potential, 𝑉𝑉(𝑟𝑟), is 

designed to accommodate the individual electron wavefunctions 𝐻𝐻(𝑟𝑟,𝜗𝜗,𝜙𝜙,𝑚𝑚𝑠𝑠). The wavefunction 

ψ is expressed as a spin-orbital, which is a product of a spatial coordinate function 𝜑𝜑(𝑟𝑟) and a spin 

function 𝜁𝜁𝑚𝑚𝑠𝑠, with spin components ±1/2. 
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𝐻𝐻𝑛𝑛,𝑛𝑛,𝑚𝑚𝑙𝑙,𝑚𝑚𝑠𝑠(𝑟𝑟,𝜗𝜗,𝜑𝜑,𝑚𝑚𝑠𝑠) = 𝜑𝜑(𝒓𝒓)𝜁𝜁𝑚𝑚𝑠𝑠 (3.11) 

 

In our analysis, we introduce a formalism to represent the spin-orbital by substituting spatial 

coordinates with quantum numbers, 

𝐻𝐻𝑛𝑛,𝑛𝑛,𝑚𝑚𝑙𝑙,𝑚𝑚𝑠𝑠 =  𝜑𝜑(𝑛𝑛𝑛𝑛𝑚𝑚𝑛𝑛)𝜁𝜁 (𝑚𝑚𝑠𝑠). It's essential to recognize that within the electron configuration of the 

atom, each electron is influenced by the collective potential generated by all other electrons. 

Consequently, a pivotal challenge lies in constructing the potential, 𝑉𝑉(𝑟𝑟𝑖𝑖), from the set of all 

𝐻𝐻𝑖𝑖 specific to the i-th electron in a self-consistent manner. This objective underpins the core of the 

self-consistent iterative methodology applied in solving the Hartree–Fock equations. 

Furthermore, the individual electronic states 𝐻𝐻𝑖𝑖 play a crucial role in the assembly of the 

comprehensive atomic wavefunction for a given state within the multi-electron atom. Assuming 

the atom constitutes an N-electron system, the total atomic wavefunction manifests as the product 

of individual one-electron spin-orbitals. 

 

𝝍𝝍𝒏𝒏,𝒍𝒍,𝒎𝒎𝒍𝒍,𝒎𝒎𝒔𝒔(𝒓𝒓,𝜽𝜽,𝝓𝝓,𝒎𝒎𝒔𝒔) = ∏𝒊𝒊=𝟏𝟏
𝑵𝑵  𝝍𝝍𝒏𝒏𝒊𝒊,𝓵𝓵𝒊𝒊,𝒎𝒎𝓵𝓵𝒊𝒊 ,𝒎𝒎𝒔𝒔𝒊𝒊

= �𝝍𝝍𝒏𝒏𝟏𝟏,𝒍𝒍𝟏𝟏,𝒎𝒎𝒍𝒍𝟏𝟏 ,𝒎𝒎𝒔𝒔𝟏𝟏
� �𝝍𝝍𝒏𝒏𝟐𝟐,𝒍𝒍𝟐𝟐,𝒎𝒎𝒍𝒍𝟐𝟐 ,𝒎𝒎𝒔𝒔𝟐𝟐

�… �𝝍𝝍𝒏𝒏𝑵𝑵,𝓵𝓵𝑵𝑵,𝒎𝒎𝓵𝓵𝑵𝑵 ,𝒎𝒎𝒔𝒔𝑵𝑵
� (𝟑𝟑.𝟏𝟏𝟐𝟐) 

However, a straightforward product representation of the total wavefunction falls short in 

accounting for electron exchange, a crucial aspect that necessitates the interchange of electronic 

coordinates to adhere to the general antisymmetry postulate. The wavefunction must undergo a 

change in sign upon the exchange of coordinates between any two electrons, whether in terms of 

their spatial or spin properties. 

The Hartree–Fock description of a multi-electron system integrates the essential 

antisymmetrization aspect into the wavefunction representation. To illustrate this, let's consider the 

example of the Helium atom. The mathematical formulation of a two-particle antisymmetric 

wavefunction can be expressed as: 

Ψ(1,2) =
1
√2

[𝐻𝐻1(1)𝐻𝐻2(2) − 𝐻𝐻1(2)𝐻𝐻2(1)] (3.13) 
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Indeed, this representation corresponds to the standard expansion of the determinant of a  

2×2 matrix, with its elements associated with the two electrons and their respective coordinates. 

In mathematical terms, it can be expressed as follows: 

 

Ψ =
1
√2

�𝐻𝐻1(1)    𝐻𝐻1(2)
𝐻𝐻2(1)    𝐻𝐻2(2)� (3.14) 

  

The concept of antisymmetry becomes evident in this context. The interchange of coordinates 1 

and 2 results in a change in the sign of the determinant, as expressed in (Eq. 3.14). However, it's 

crucial to note that when both coordinates of the two electrons become identical, the corresponding 

quantum state cannot exist. This is because the antisymmetric wavefunction described in (Eq. 3.14) 

would possess two identical rows or columns, leading to a determinant value of zero. 

In helium-like two-electron systems, the average potential energy of electron 1 in the field of 

electron 2 is described as: 

𝑈𝑈1(𝑟𝑟1) = ∫ 𝐻𝐻∗(𝒓𝒓2)
2
𝑟𝑟12

𝐻𝐻(𝒓𝒓2)d𝒓𝒓2 (3.15) 

Similarly, we can express the potential energy of electron 2 within the influence of electron 1. 

With this consideration, we introduce the definition of an effective one-electron Hamiltonian 

operator as: 

𝐻𝐻𝑖𝑖 =
𝑝𝑝𝑖𝑖2

2𝑚𝑚
−
𝑒𝑒2𝑍𝑍
𝑟𝑟𝑖𝑖

+ 𝑈𝑈𝑖𝑖(𝑟𝑟𝑖𝑖). (3.16) 
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In correspondence to the Schrödinger equation applied to each individual electron, we establish 

the following equations: 

 

𝐻𝐻1(𝒓𝒓1)𝐻𝐻(𝒓𝒓1) = 𝜖𝜖1𝐻𝐻(𝒓𝒓1)
𝐻𝐻2(𝒓𝒓2)𝐻𝐻(𝒓𝒓2) = 𝜖𝜖2𝐻𝐻(𝒓𝒓2). (3.17) 

 

Here, 
• 𝐻𝐻(𝒓𝒓1) and 𝐻𝐻(𝒓𝒓2) are the wavefunctions associated with electrons 1 and 2. 
• 𝐻𝐻1(𝒓𝒓1) and 𝐻𝐻2(𝒓𝒓2) represent the Hamiltonian operators for electrons 1 and 2, respectively. 
• 𝜖𝜖1 and 𝜖𝜖2 denote the eigenvalues corresponding to electrons 1 and 2, respectively. 

 

The Hartree–Fock equations for a system consisting of two electrons are presented herein. These 

equations exhibit coupling with respect to the radial distance 'r' (r-dependence), as well as spin 

dependence, which arises due to the exchange effect. However, the explicit expression of spin 

dependence is not provided in the preceding equations. 

The operator 𝐻𝐻1(𝒓𝒓1) is intrinsically dependent on the electron wave function 𝐻𝐻(𝒓𝒓2). Consequently, 

to solve 𝐻𝐻1(𝒓𝒓1), it becomes imperative to have knowledge of 𝐻𝐻(𝒓𝒓2). To address this, a preliminary 

or trial electron wave function 𝐻𝐻(𝒓𝒓2) is initially adopted, and it is utilized to derive the electron 

wave function 𝐻𝐻(𝒓𝒓1)in accordance with the variational criterion, as denoted by (Eq. 3.8). 

 

Notably, owing to the identical forms of the wave functions 𝐻𝐻(𝒓𝒓1) and 𝐻𝐻(𝒓𝒓2) the updated wave 

function 𝐻𝐻(𝒓𝒓2) is subsequently employed to derive 𝐻𝐻(𝒓𝒓1) once more. This iterative process 

persists until the desired level of accuracy is achieved. This computational methodology is 

commonly referred to as the Hartree–Fock self-consistent field method, abbreviated as HF-SCF. 

Drawing an analogy with the helium atom, we can represent the wave function for an N-electron 

system in the determinantal form as follows: 
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Ψ =
1
√𝑁𝑁!

�

𝐻𝐻1(1) 𝐻𝐻1(2) … 𝐻𝐻1(𝑁𝑁)
𝐻𝐻2(1) 𝐻𝐻2(2) … 𝐻𝐻2(𝑁𝑁)

… … … …
𝐻𝐻𝑁𝑁(1) 𝐻𝐻𝑁𝑁(2) … 𝐻𝐻𝑁𝑁(𝑁𝑁)

� (3.18) 

 

Equation (3.18) is referred to as the Slater determinant. Similar to the two-electron determinant 

(Eq. 3.14), when all coordinates of any two electrons coincide, it results in two identical rows or 

columns within the determinant, causing the determinant to become zero. This observation leads 

us to the immediate implication of the Pauli exclusion principle: no two electrons can possess 

identical spatial and spin quantum numbers simultaneously. 

In the expression 𝐻𝐻𝑎𝑎, each subscript ′𝑎𝑎′ represents a set of four quantum 

numbers (𝑛𝑛, 𝑛𝑛,𝑚𝑚𝑛𝑛 ,𝑚𝑚𝑠𝑠) while each variable ′𝑖𝑖′ corresponds to spatial coordinates '𝑟𝑟' and spin-

coordinates in the position ′𝑖𝑖′ of electron ′𝑎𝑎′. It's noteworthy that a spin-orbital carries a parity 

factor of (−1)𝑛𝑛, and as a consequence, the Slater determinant possesses a well-defined parity, 

which is determined by  (−1)∑ 𝑛𝑛𝑖𝑖𝑖𝑖   across all particles. This parity can result in the Slater 

determinant being either even or odd under the inversion transformation, where 𝑟𝑟𝑖𝑖 is transformed 

to −𝑟𝑟𝑖𝑖, depending on whether the sum  ∑ 𝑛𝑛𝑖𝑖𝑖𝑖  is even or odd. 

The calculations of atomic structure follow the initial prescription outlined by Hartree, which 

involves the development of a self-consistent iterative procedure for determining both the inter-

electron potentials and the electronic wavefunctions [34]. It is worth noting that the original 

Hartree method lacked consideration for the electron exchange effect. To address this limitation, 

the self-consistent Hartree-Fock method was introduced, which also employs an iterative scheme 

[34]–[36]. 

In the context of atomic wavefunctions, characterized by a set of quantum numbers (𝑛𝑛𝑛𝑛), the atomic 

wavefunction can be expressed as a composition of individual spin-orbital wavefunctions, denoted 

as 𝐻𝐻𝑛𝑛𝑛𝑛  =  𝜑𝜑(𝑛𝑛𝑛𝑛𝑚𝑚𝑛𝑛)𝜁𝜁(𝑚𝑚𝑠𝑠). Here, 𝐻𝐻𝑛𝑛𝑛𝑛 represents the atomic wavefunction for a specific electronic 

configuration with quantum numbers (𝑛𝑛𝑛𝑛).  

 



31 | P a g e  
 

Moreover, it is crucial to acknowledge that the wavefunctions 𝐻𝐻𝑎𝑎(𝑗𝑗) are subject to the 

orthonormality condition, ensuring that they are properly normalized and orthogonal to each other, 

a fundamental requirement in quantum mechanics. 

⟨𝐻𝐻𝑎𝑎(𝑗𝑗)𝐻𝐻𝑏𝑏(𝑗𝑗)⟩ = 𝛿𝛿𝑎𝑎𝑏𝑏 (3.19) 

It's worth noting that the Hartree-Fock variational principle implies that the chosen wavefunction 

corresponds to the ground state energy 

𝐸𝐸0 ≤ 𝐸𝐸[Ψ] = ⟨Ψ|𝐻𝐻|Ψ⟩ (3.20) 

In the Hartree-Fock method, the initial trial wavefunction is a Slater determinant. This substitution 

of the wavefunction determinant leads to the introduction of one-operator terms, involving one-

electron functions, and two-operator integrals, much like in the case of helium. The expectation 

value of the one-electron or one-body term can be readily evaluated as 

⟨Ψ|𝐻𝐻0|Ψ⟩ = � 
𝑘𝑘

⟨𝐻𝐻𝑘𝑘(𝑖𝑖)|𝐻𝐻0|𝐻𝐻𝑘𝑘(𝑖𝑖)⟩ = � 
𝑘𝑘

𝐼𝐼𝑘𝑘 (3.21) 

H1 represents the sum of two-electron or two-body operators, which can be expressed as follows: 

⟨Ψ|𝐻𝐻1|Ψ⟩ = �  
𝑘𝑘,𝑛𝑛≠𝑘𝑘

��𝐻𝐻𝑘𝑘(𝑖𝑖)𝐻𝐻𝑛𝑛(𝑗𝑗) �
2
𝑟𝑟𝑖𝑖𝑗𝑗
� 𝐻𝐻𝑘𝑘(𝑖𝑖)𝐻𝐻𝑛𝑛(𝑗𝑗)�− �𝐻𝐻𝑘𝑘(𝑖𝑖)𝐻𝐻𝑛𝑛(𝑗𝑗) �

1
𝑟𝑟𝑖𝑖𝑗𝑗
� 𝐻𝐻𝑛𝑛(𝑖𝑖)𝐻𝐻𝑘𝑘(𝑗𝑗)�� (3.22) 

 

summing over all 𝑁𝑁(𝑁𝑁 −  1)/2 pairs of orbitals. We can also write it as 

 

⟨Ψ|𝐻𝐻1|Ψ⟩ =
1
2
� 
𝑘𝑘

�  
𝑛𝑛

��𝐻𝐻𝑘𝑘(𝑖𝑖)𝐻𝐻𝑛𝑛(𝑗𝑗) �
2
𝑟𝑟𝑖𝑖𝑗𝑗
� 𝐻𝐻𝑘𝑘(𝑖𝑖)𝐻𝐻𝑛𝑛(𝑗𝑗)� − �𝐻𝐻𝑘𝑘(𝑖𝑖)𝐻𝐻𝑛𝑛(𝑗𝑗) �

1
𝑟𝑟𝑖𝑖𝑗𝑗
� 𝐻𝐻𝑛𝑛(𝑖𝑖)𝐻𝐻𝑘𝑘(𝑗𝑗)�� (3.23) 

Here the first term is called direct term  
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𝐽𝐽𝑘𝑘𝑛𝑛 = �𝐻𝐻𝑘𝑘(𝑖𝑖)𝐻𝐻𝑛𝑛(𝑗𝑗) �
1
𝑟𝑟𝑖𝑖𝑗𝑗
� 𝐻𝐻𝑘𝑘(𝑖𝑖)𝐻𝐻𝑛𝑛(𝑗𝑗)� (3.24) 

This expression represents the average value of the interaction 1/𝑟𝑟𝑖𝑖𝑗𝑗 relative to 𝐻𝐻𝑘𝑘(𝑖𝑖)𝐻𝐻𝑛𝑛𝑛𝑛(𝑗𝑗). The 

second term is commonly referred to as the exchange term 

𝐾𝐾𝑘𝑘𝑛𝑛 = �𝐻𝐻𝑘𝑘(𝑖𝑖)𝐻𝐻𝑛𝑛(𝑗𝑗) �
1
𝑟𝑟𝑖𝑖𝑗𝑗
� 𝐻𝐻𝑛𝑛(𝑖𝑖)𝐻𝐻𝑘𝑘(𝑗𝑗)� (3.25) 

This term represents the matrix element of the interaction, specifically 1/𝑟𝑟𝑖𝑖𝑗𝑗  between two quantum 

states,  𝐻𝐻𝑘𝑘(𝑖𝑖)𝐻𝐻𝑛𝑛(𝑗𝑗)  and  𝐻𝐻𝑛𝑛(𝑖𝑖)𝐻𝐻𝑘𝑘(𝑗𝑗) , which results from the interchange of electrons within the 

system . Hence total energy is  

𝐸𝐸[Ψ] = � 
𝑖𝑖

𝐼𝐼𝑖𝑖 +
1
2
� 
𝑖𝑖

�  
𝑗𝑗

�𝐽𝐽𝑖𝑖𝑗𝑗 − 𝐾𝐾𝑖𝑖𝑗𝑗� (3.26) 

𝐸𝐸 should be stationary with respect to the variations of the spin-orbitals; 𝐻𝐻𝑖𝑖 subject to 𝑁𝑁2 

orthonormality conditions. Hence the variational principle introduces 𝑁𝑁2 Lagrange multipliers (or 

variational parameters) 𝜆𝜆𝑘𝑘𝑛𝑛, such that (incorporating the orthonormal conditions) 

𝛿𝛿𝐸𝐸 −��𝜆𝜆𝑘𝑘𝑛𝑛
𝑛𝑛𝑘𝑘

  𝛿𝛿⟨𝐻𝐻𝑘𝑘 ∣ 𝐻𝐻𝑛𝑛⟩ = 0 (3.27) 

 

From the above equation it is seen that 𝜆𝜆𝑘𝑘𝑛𝑛 = 𝜆𝜆𝑘𝑘𝑛𝑛∗  and hence 𝑁𝑁2 Lagrange multipliers may be 

considered as the elements of a Hermitian matrix. Any Hermitian matrix can be diagonalized by a 

unitary transformation. Hence, we can assume that the matrix of Lagrange multipler 𝜆𝜆𝑘𝑘𝑛𝑛 is diagonal 

with elements 𝐸𝐸𝑘𝑘𝛿𝛿𝑘𝑘𝑛𝑛, that is, 

 

𝛿𝛿𝐸𝐸 −�𝐸𝐸𝑘𝑘
𝑘𝑘

 𝛿𝛿⟨𝐻𝐻𝑘𝑘 ∣ 𝐻𝐻𝑘𝑘⟩ = 0 (3.28) 
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Varying the Schrödinger equation with respect to spin-orbitals 𝐻𝐻𝑖𝑖 and using the above relations, 

we can find, for the 𝑁𝑁 spin-orbitals, the set of integro-differential equations 

�−∇𝑖𝑖2 −
2𝑍𝑍
𝑟𝑟𝑖𝑖
� 𝐻𝐻𝑘𝑘(𝑖𝑖) + ��  

𝑛𝑛

 �  𝐻𝐻𝑛𝑛∗(𝑗𝑗)
2
𝑟𝑟𝑖𝑖𝑗𝑗
𝐻𝐻𝑛𝑛(𝑗𝑗)d𝑗𝑗� 𝐻𝐻𝑘𝑘(𝑖𝑖)

−�  
𝑛𝑛

 ��  𝐻𝐻𝑛𝑛∗(𝑗𝑗)
2
𝑟𝑟𝑖𝑖𝑗𝑗
𝐻𝐻𝑘𝑘(𝑗𝑗)d𝑗𝑗� 𝐻𝐻𝑛𝑛(𝑖𝑖) = 𝐸𝐸𝑘𝑘𝐻𝐻𝑘𝑘(𝑖𝑖) (3.29)

 

where the summation over 𝑘𝑘 extends over the 𝑁𝑁 occupied spin-orbitals, and the integral ∫ … d𝑗𝑗 

implies an integration over the spatial coordinates 𝑟𝑟 and a summation over the spin-coordinate of 

electron 𝑗𝑗. These equations are the Hartree-Fock equations of a multi-electron system. We can 

separate the spin functions from the spin-orbital by writing 𝐻𝐻𝑘𝑘(𝑖𝑖) = 𝑢𝑢𝑘𝑘(𝑟𝑟𝑖𝑖)𝜒𝜒1/2,𝑚𝑚𝑙𝑙
𝑘𝑘 and using the 

orthonormality condition �𝜒𝜒1/2,𝑚𝑚𝑙𝑙
𝑘𝑘𝜒𝜒1/2,𝑚𝑚𝑙𝑙

𝑗𝑗� = 𝛿𝛿𝑚𝑚𝐿𝐿
𝑘𝑘,𝑚𝑚𝐿𝐿

𝑗𝑗 . Then the Hartree-Fock equations are in a 

form that involves only the spatial part, 

�−∇𝑖𝑖2 −
2𝑍𝑍
𝑟𝑟𝑖𝑖
� 𝑢𝑢𝑘𝑘(𝒓𝒓𝑖𝑖)  + ��  

𝑛𝑛

 �  𝑢𝑢𝑛𝑛∗�𝒓𝒓𝑗𝑗�
2
𝑟𝑟𝑖𝑖𝑗𝑗
𝑢𝑢𝑛𝑛�𝒓𝒓𝑗𝑗�d𝒓𝒓𝑗𝑗� 𝑢𝑢𝑘𝑘(𝒓𝒓𝑖𝑖)

−�  
𝑛𝑛

 𝛿𝛿𝑚𝑚𝐿𝐿
𝑘𝑘,𝑚𝑚𝐿𝐿

𝑙𝑙 ��  𝑢𝑢𝑛𝑛∗�𝒓𝒓𝑗𝑗�
2
𝑟𝑟𝑖𝑖𝑗𝑗
𝑢𝑢𝑘𝑘�𝒓𝒓𝑗𝑗�d𝒓𝒓𝑗𝑗� 𝑢𝑢𝑛𝑛(𝒓𝒓𝑖𝑖) = 𝐸𝐸𝑘𝑘𝑢𝑢𝑘𝑘(𝒓𝒓𝑖𝑖) (3.30)

 

The integrals are frequently represented in terms of direct and exchange operators. Specifically, 

the direct operator 𝑉𝑉𝑛𝑛𝑑𝑑is defined as: 

𝑉𝑉𝑛𝑛𝑑𝑑(𝒓𝒓𝑖𝑖) = �𝑢𝑢𝑛𝑛∗�𝒓𝒓𝑗𝑗�
1
𝒓𝒓𝑖𝑖𝑗𝑗

𝑢𝑢𝑛𝑛�𝒓𝒓𝑗𝑗�𝑑𝑑𝒓𝒓𝒋𝒋 (3.31) 

which represents the electrostatic repulsion potential due to electron 𝑗𝑗, averaged over the orbital 

𝑢𝑢𝑛𝑛. In addition to the direct operator, there is the non-local exchange operator, which is defined as: 

𝑉𝑉𝑛𝑛ex(𝒓𝒓𝑖𝑖)ψ(𝑖𝑖) = 𝛿𝛿𝑚𝑚𝐿𝐿
𝑘𝑘,𝑚𝑚𝐿𝐿

𝑙𝑙 ��  𝑢𝑢𝑛𝑛∗�𝒓𝒓𝑗𝑗�
1
𝑟𝑟𝑖𝑖𝑗𝑗
𝑢𝑢𝑘𝑘�𝒓𝒓𝑗𝑗�𝑑𝑑𝒓𝒓𝑗𝑗� × 𝑢𝑢𝑛𝑛(𝒓𝒓𝑖𝑖)𝜒𝜒1

2,𝑚𝑚𝐿𝐿
𝑙𝑙 = 𝛿𝛿𝑚𝑚𝐿𝐿

𝑘𝑘,𝑚𝑚𝐿𝐿
𝑙𝑙 𝑉𝑉𝑛𝑛ex(𝒓𝒓𝑖𝑖)𝜒𝜒1

2,𝑚𝑚𝐿𝐿
𝐼𝐼 (3.32) 
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𝑉𝑉𝑛𝑛ex (𝒓𝒓𝑖𝑖)  acts on the spatial coordinates only. The Hartree-Fock equation (Eq. 3.31) for a given 

spin-orbital for electron 𝑖𝑖 may be written in terms of the one- and two-electron operators 𝑓𝑓𝑖𝑖 and 

𝑔𝑔𝑖𝑖𝑗𝑗 defined in (Eq. 3.24) and (Eq.  3.25) 

𝑓𝑓𝑖𝑖𝐻𝐻𝑖𝑖(1) + ��  
𝑗𝑗≠𝑖𝑖

 �  𝐻𝐻𝑗𝑗∗(2)𝑔𝑔12𝐻𝐻𝑗𝑗(2)d𝑉𝑉�𝐻𝐻𝑖𝑖(1)

 −�  
𝑗𝑗≠𝑖𝑖

 ��  𝐻𝐻𝑗𝑗∗(2)𝑔𝑔12𝐻𝐻𝑖𝑖(2)d𝑉𝑉�𝐻𝐻𝑗𝑗(1) = 𝜖𝜖𝑖𝑖𝐻𝐻𝑖𝑖(1)

(3.33) 

Several important physical aspects of these equations merit attention. 

• Firstly, the two-electron integration variable, denoted as 𝑑𝑑𝑉𝑉, encompasses all spatial and 

spin coordinates, succinctly represented as (1) and (2). 

• Secondly, it's crucial to acknowledge that the summation for each electron 𝑖𝑖 inherently 

involves interactions with all other electrons, with the exception of itself, as is self-evident. 

• Thirdly, the second term on the left side of the equation represents the repulsive Coulomb 

interaction between electron 𝑖𝑖 and electron 𝑗𝑗. In contrast, the third term on the left side is 

referred to as the "exchange term," a concept without a classical analogue. Nonetheless, 

the exchange effect is a physical phenomenon intricately linked to the spin of the electron: 

two electrons sharing the same spin quantum number 𝜁𝜁(𝑚𝑚𝑠𝑠) cannot simultaneously occupy 

the same spatial position 𝒓𝒓. 

• Furthermore, the two integrals featured on the left side of the equation are denoted as the 

"direct integral" 𝐽𝐽 (as per Eq. 3.24) and the "exchange integral" 𝐾𝐾 (as per Eq. 3.25) which 

can also be expressed as: 

𝐽𝐽𝑗𝑗(1)𝐻𝐻𝑖𝑖(1) = ��  𝐻𝐻𝑗𝑗∗(2)𝑔𝑔12𝐻𝐻𝑗𝑗(2)d𝑉𝑉�𝐻𝐻𝑖𝑖(1)

𝐾𝐾𝑗𝑗(1)𝐻𝐻𝑗𝑗(1) = ��  𝐻𝐻𝑗𝑗∗(2)𝑔𝑔12𝐻𝐻𝑖𝑖(2)d𝑉𝑉�𝐻𝐻𝑗𝑗(1)
(3.34) 

Note the interchange of 𝑖𝑖 and 𝑗𝑗 in the 𝐾𝐾-integral with respect to the 𝐽𝐽-integral. In the next 

chapter, we shall make use of these integrals to express the matrix elements. 
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3. 4  Central field approximation for a multi-electron system 

Calculations of wavefunctions and energies within the Hartree-Fock approximation were 

historically challenging until the advent of powerful computers. In many cases, and even today, 

the central field approximation has been widely employed to mitigate these difficulties. The central 

field approximation helps simplify the treatment of electron-electron interactions. 

Specifically: 

• The term 𝐻𝐻1 in the context of the Hartree-Fock approximation contains non-central forces 

between electrons, including a significant spherically symmetric component. 

 

• In this approach, it is assumed that each electron experiences the average charge 

distribution resulting from the presence of all other electrons. To model this, a potential 

energy function 𝑉𝑉(𝑟𝑟𝑖𝑖) is constructed using a one-electron operator and is a good 

approximation to the actual potential of the i th electron in the field of the nucleus and the 

other N − 1 electrons. When these contributions are summed over all electrons, the resulting 

charge distribution is spherically symmetric. This approximation serves as a reasonably 

accurate representation of the actual potential energy. 

 

• The effective potential experienced by each electron due to electron–nuclear attraction and 

electron–electron repulsion, in 𝐻𝐻0 and 𝐻𝐻1 respectively, consists of a radial and a non-radial 

part. The central-field approximation involves neglecting the non-radial part, while 

retaining the radial part assumed to be dominant. Unlike the Hartree–Fock method, where 

we explicitly account for the electron–electron interaction, we now seek an effective 

potential 𝑈𝑈(𝑟𝑟) which combines the radial electron– nuclear term 𝑍𝑍𝑒𝑒2/𝑟𝑟𝑖𝑖 with an averaged 

radial component of the electron–electron term. The approximate 𝑁𝑁 -electron Hamiltonian 

then becomes 

𝐻𝐻 = −�  
𝑁𝑁

𝑖𝑖=1

ℏ2

2𝑚𝑚
∇𝑖𝑖2 + 𝑈𝑈(𝑟𝑟) (3.35) 
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                                               Where, 

𝑈𝑈(𝑟𝑟) = −�  
𝑁𝑁

𝑖𝑖=1

𝑒𝑒2𝑍𝑍
𝑟𝑟𝑖𝑖

+ ��  
𝑁𝑁

𝑖𝑖≠𝑗𝑗

 
𝑒𝑒2

𝑟𝑟𝑖𝑖𝑗𝑗
� (3.36) 

𝑈𝑈(𝑟𝑟) is central field potential. at first sight, it should be noticed that 𝑈𝑈(𝑟𝑟) contains the 

electron–nuclear potential term 𝑍𝑍/𝑟𝑟 , which increases in magnitude with 𝑍𝑍 . Therefore, 

for a given number of electrons  𝑁𝑁 the central-field approximation improves in accuracy 

with increasing charge 𝑧𝑧 ≡  (𝑍𝑍 −  𝑁𝑁 +  1) of an ion, or along an isoelectronic sequence. 

First, we note that the boundary conditions on 𝑈𝑈(𝑟𝑟) are 

 

𝑈𝑈(𝑟𝑟) = �
−
𝑍𝑍
𝑟𝑟

, 𝑟𝑟 → 0

−
𝑧𝑧
𝑟𝑟

, 𝑥𝑥 → ∞
(3.37) 

 
 
 

3. 5  Thomas–Fermi–Dirac approximation 

A notably valuable approach in the realm of atomic physics is the Thomas-Fermi-Dirac-Amaldi 

(TFDA) model [37]. This model offers an effective framework by making the assumption of 

spherically symmetric charge distribution. Its precursor, the Thomas-Fermi model, characterized 

atomic electrons as a degenerate Fermion gas governed by the relationship between electron 

density and the maximum momentum, known as the Fermi momentum (𝑝𝑝𝐹𝐹). According to this 

model, electrons are considered to occupy cells in phase space, each with a volume of ℎ3, 

accommodating two electrons—one with spin up and the other with spin down. These cells are 

entirely filled up to a maximum Fermi momentum of (𝑝𝑝𝐹𝐹). Consequently, the spatial electron 

density can be described as: 

𝜌𝜌 =
4
3𝜋𝜋𝑝𝑝𝐹𝐹

3

ℎ3
2

(3.38) 
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An enhancement over the Thomas-Fermi model is achieved by incorporating a simplified 

treatment of the electron-electron exchange effect. In the presence of electron-electron exchange, 

electrons with the same spin exhibit spatial avoidance—a crucial requirement dictated by the 

antisymmetry principle, fundamental for the existence of the electron system. 

Leveraging principles of quantum statistics, the Thomas-Fermi-Dirac-Amaldi (TFDA) model 

introduces a continuous function 𝝋𝝋(𝒙𝒙) that satisfies: 

 

𝑈𝑈(𝑟𝑟) =
𝒵𝒵eff(𝜆𝜆𝑛𝑛𝑛𝑛 , 𝑟𝑟)

𝑟𝑟
= −

𝑍𝑍
𝑟𝑟
𝜙𝜙(𝑥𝑥), (3.39) 

                               Where, 

𝜙𝜙(𝑥𝑥) = e−
𝑍𝑍𝑍𝑍
2 + 𝜆𝜆𝑛𝑛𝑛𝑛 �1 − e−

𝑍𝑍𝑍𝑍
2 � ,  𝑥𝑥 =

𝑟𝑟
𝜇𝜇

, (3.40) 

                and 𝜇𝜇 is a constant: 

𝜇𝜇 = 0.8853 �
𝑁𝑁

𝑁𝑁 − 1�
2
3
𝑍𝑍−

1
3 (3.41) 

The function 𝜙𝜙(𝑥𝑥) is a solution of the potential equation 

d2𝜙𝜙(𝑥𝑥)
d𝑥𝑥2

=  
1
√𝑥𝑥

𝜙𝜙(𝑥𝑥)
3
2 (3.42) 

From (Eq. 3.37) the boundary conditions on 𝜙𝜙(𝑥𝑥) are 

𝜙𝜙(0) = 1,  𝜙𝜙(∞) = −
𝑍𝑍 − 𝑁𝑁 + 1

𝑍𝑍
(3.43) 

Having determined a central potential 𝑈𝑈(𝑟𝑟), for example as in the TFDA approximation above, 

we compute the one-electron orbitals 𝑃𝑃𝑛𝑛𝑛𝑛(𝑟𝑟) by solving the wave equation 

�
d2

 d𝑟𝑟2
−
𝑛𝑛(𝑛𝑛 + 1)
𝑟𝑟2

+ 2𝑈𝑈(𝑟𝑟) + 𝜖𝜖𝑛𝑛𝑛𝑛� 𝑃𝑃𝑛𝑛𝑛𝑛(𝑟𝑟) = 0 (3.44) 
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This is similar to the radial equation  for the hydrogenic case, with the same boundary conditions 

on 𝑃𝑃𝑛𝑛𝑛𝑛(𝑟𝑟) as 𝑟𝑟 → 0 and 𝑟𝑟 → ∞, and (𝑛𝑛 − 𝑛𝑛 + 1) nodes. The secondorder radial differential 

equation is solved numerically since, unlike the hydrogenic case, there is no general analytic 

solution. Equation 2.125 may be solved by both inward and outward integration, matching the two 

solutions at a suitable point. As 𝑟𝑟 → 0, the outward solution is given by the first few points of a 

power series expansion. The inward solution begins from the asymptotic region 𝑟𝑟 → ∞, using an 

exponentially decaying function appropriate for a bound state, such as the normalized Whittaker 

function, 

𝑊𝑊(𝑟𝑟) = e−
𝑧𝑧𝑍𝑍
𝑣𝑣 �

2𝑧𝑧𝑟𝑟
𝑣𝑣 ��1 + � 

∞

𝑘𝑘=1

 
𝑎𝑎𝑘𝑘
𝑟𝑟𝑘𝑘�

𝒩𝒩 (3.45) 

where 𝑣𝑣 = 𝑧𝑧
√𝜖𝜖

 is the effective quantum number (and as such not necessarily an integer) and 𝜖𝜖 is 

the eigenvalue. The coefficients are 

𝑎𝑎1 = 𝑣𝑣{𝑛𝑛(𝑛𝑛 + 1) − 𝑣𝑣(𝑣𝑣 − 1)}
1

2𝑧𝑧
(3.46) 

𝑎𝑎𝑘𝑘 = 𝑎𝑎𝑘𝑘−1𝑣𝑣{𝑛𝑛(𝑛𝑛 + 1) − (𝑣𝑣 − 𝑘𝑘)(𝑣𝑣 − 𝑘𝑘 + 1)}
1

2𝑘𝑘𝑧𝑧
(3.47) 

and the normalization factor is 

𝒩𝒩 = �
𝑣𝑣2

𝑧𝑧
Γ(𝑣𝑣 + 𝑛𝑛 + 1)Γ(𝑣𝑣 − 1)�

−12
(3.48) 

The one-electron spin-orbital functions then assume the familiar hydrogenic form familiar 

hydrogenic form 

𝐻𝐻𝑛𝑛,ℓ,𝑚𝑚ℓ,𝑚𝑚𝑠𝑠(𝑟𝑟,𝜃𝜃,𝜙𝜙,𝑚𝑚𝑠𝑠) = 𝜙𝜙(𝑟𝑟,𝜃𝜃,𝜙𝜙)𝜁𝜁𝑚𝑚𝑠𝑠

                                                         = 𝑅𝑅𝑛𝑛ℓ(𝑟𝑟)Yℓ,𝑚𝑚ℓ(𝜃𝜃,𝜙𝜙)𝜁𝜁𝑚𝑚𝑠𝑠

                                               =
𝑃𝑃𝑛𝑛ℓ(𝑟𝑟)
𝑟𝑟

Yℓ,𝑚𝑚ℓ𝜁𝜁𝑚𝑚𝑠𝑠 .
(3.49) 
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The TFDA one-electron orbitals are determined through statistical treatment applied to a free-

electron gas. However, this approach overlooks the inherent shell structure that is a fundamental 

aspect of the Hartree-Fock method, where electron-electron interactions give rise to distinct 

electron shells. 

3. 6  Relativistic Breit-Pauli Approximation 

The relativistic Breit-Pauli approximation is a method of accounting for some of the relativistic 

effects in the electronic structure of multi-electron systems, such as atoms and molecules. It is 

based on the expansion of the relativistic Hamiltonian in powers of the fine-structure constant 𝛼𝛼 

which is a measure of the strength of the electromagnetic interaction. The Breit-Pauli 

approximation includes the terms up to the order of 𝛼𝛼2 which are the most important for low-

energy phenomena. 

The necessity of the relativistic Breit-Pauli approximation for treating multi-electron systems 

arises from the fact that the non-relativistic Schrödinger equation does not capture all the physical 

features of the quantum systems, such as the spin-orbit coupling, the Darwin term, and the mass-

velocity correction. These effects can have significant influences on the energy levels, transition 

probabilities, and magnetic properties of the systems, especially for heavy elements or high angular 

momentum states. 

Key features of the relativistic Breit-Pauli approximation include: 

• Incorporation of Special Relativity: Special relativity becomes significant when the 

speed of electrons approaches a significant fraction of the speed of light (c). This can occur 

in heavy atoms with high nuclear charge or in highly excited states. The Breit-Pauli 

approximation accounts for relativistic effects, such as the relativistic increase in electron 

mass and the correction to the electron kinetic energy due to its velocity. 

• Spin-Orbit Interaction: The Breit-Pauli approximation includes the spin-orbit 

interaction, which arises from the relativistic correction to the electron's kinetic energy. 

This interaction couples the electron's orbital angular momentum with its intrinsic spin 

angular momentum, leading to fine structure splitting in atomic spectra. 
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• Darwin Term: This term accounts for the relativistic correction to the electron's kinetic 

energy due to the spatial variation of the electrostatic potential around the nucleus. It 

contributes to the Lamb shift in atomic spectra. 

• Breit Interaction: The Breit interaction is a relativistic correction to the electron-electron 

interaction potential. It includes terms that account for the finite speed of electromagnetic 

interactions and the magnetic interaction between electrons. These corrections are typically 

small but become important in heavy atoms. 

 

For a multi-electron system, the relativistic Breit-Pauli equation is: 

 

𝐻𝐻𝐵𝐵𝐵𝐵𝐻𝐻 = [𝐻𝐻𝑁𝑁𝑁𝑁 + 𝐻𝐻mass + 𝐻𝐻Dar + 𝐻𝐻𝑠𝑠𝑠𝑠 +

1
2
� 
𝑁𝑁

𝑖𝑖≠𝑗𝑗

 �𝑔𝑔𝑖𝑖𝑗𝑗(𝒔𝒔𝒔𝒔 + 𝒔𝒔𝒔𝒔′) + 𝑔𝑔𝑖𝑖𝑗𝑗(𝑠𝑠𝑠𝑠′) + 𝑔𝑔𝑖𝑖𝑗𝑗(𝑐𝑐𝑠𝑠𝑠𝑠′) + 𝑔𝑔𝑖𝑖𝑗𝑗(𝑑𝑑) + 𝑔𝑔𝑖𝑖𝑗𝑗(𝒔𝒔𝒔𝒔′)�]𝐻𝐻 (3.50) 

where the non-relativistic Hamiltonian is 

𝐻𝐻𝑁𝑁𝑁𝑁 = ��  
𝑁𝑁

𝑖𝑖=1

 �−𝛻𝛻𝑖𝑖2 −
2𝑍𝑍
𝑟𝑟𝑖𝑖

+ � 
𝑁𝑁

𝑗𝑗>𝑖𝑖

 
2
𝑟𝑟𝑖𝑖𝑗𝑗
�� (3.51) 

the Breit interaction is 

𝐻𝐻𝐵𝐵 = � 
𝑖𝑖>𝑗𝑗

�𝑔𝑔𝑖𝑖𝑗𝑗(𝑠𝑠𝑠𝑠 + 𝑠𝑠𝑠𝑠′) + 𝑔𝑔𝑖𝑖𝑗𝑗(𝑠𝑠𝑠𝑠′)� (3.52) 

and one-body correction terms are 

𝐻𝐻mass = −
𝛼𝛼2

4
� 
𝑖𝑖

𝑝𝑝𝑖𝑖4 (3.53) 

𝐻𝐻Dar =
𝛼𝛼2

4
� 
𝑖𝑖

𝛻𝛻2 �
𝑍𝑍
𝑟𝑟𝑖𝑖
� (3.54) 
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𝐻𝐻𝑠𝑠𝑠𝑠 =
𝑍𝑍𝑒𝑒2 ℎ2

2 𝑚𝑚2𝑐𝑐2𝑟𝑟3
 𝐿𝐿 ⋅ 𝑆𝑆 (3.55) 

Here, 𝐻𝐻mass ,𝐻𝐻Dar , 𝐻𝐻𝑠𝑠𝑠𝑠 are the relativistic mass-velocity correction, Darwin and spin–orbit terms. 

Spin-orbit interaction energy: 𝐸𝐸𝑆𝑆𝑆𝑆 = 1
2

 𝐴𝐴ℏ2[ 𝐽𝐽( 𝐽𝐽 + 1) − 𝐿𝐿(𝐿𝐿 + 1) − 𝑆𝑆(𝑆𝑆 + 1)] where 𝐴𝐴 is the fine 

structure splitting constant which is proportional to z as 𝐴𝐴 ∝ 𝑧𝑧4

𝑛𝑛3
 and separation between two fine 

structure levels is given by 1
2
𝐴𝐴ℏ2𝑗𝑗 
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Chapter 4  

 Atomic Radiative Processes and Transitions  

4. 1 Radiative processes 

Radiative processes are the physical phenomena of energy transfer in the form of electromagnetic 

radiation. They occur when a medium releases or absorbs energy by emitting or absorbing photons, 

which are the elementary particles of light. The propagation of radiation through a medium is 

affected by absorption, emission, and scattering processes. The equation of radiative transfer 

describes these interactions mathematically. 

Radiative processes are important for understanding the spectra and the dynamics of various 

astrophysical and laboratory systems, such as stars, planets, nebulae, plasmas, lasers, and LEDs. 

They can provide information about the temperature, density, composition, structure, and evolution 

of these systems. They can also affect the energy balance, the chemical reactions, and the radiative 

feedback of these systems. 

Below, we present an overview of several radiative processes 

1. Photoexcitation and de-excitation 

Photoexcitation and deexcitation are processes where an atom or a molecule absorbs or emits a 

photon and changes its energy state. The reaction can be written as: 

𝐴𝐴 + ℎ𝜈𝜈 ↔ 𝐴𝐴∗ 

where 𝐴𝐴 is the atom or molecule in the ground state, 𝐴𝐴∗ is the atom or molecule in the excited state, 

and ℎ𝜈𝜈 is the photon energy. 

We need to study these processes because: 

i. They are important for understanding the spectra and the dynamics of atomic and molecular 

systems, as well as their interactions with electromagnetic radiation. 
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ii. They can provide information about the energy levels, transition probabilities, and lifetimes 

of the excited states. 

iii. They can affect the population distribution, the temperature, and the pressure of the 

systems. 

2. Photoionization and radiative recombination 

Photoionization and radiative recombination are processes where an atom or a molecule loses or 

gains an electron due to the absorption or emission of a photon. The reaction can be written as: 

𝐴𝐴 + ℎ𝜈𝜈 ↔ 𝐴𝐴+ + 𝑒𝑒− 

where 𝐴𝐴 is the atom or molecule in the neutral state, 𝐴𝐴+ is the atom or molecule in the ionized 

state, 𝑒𝑒− is the free electron, and ℎ𝜈𝜈 is the photon energy. 

We need to study these processes because: 

i. They are important for understanding the ionization and recombination rates of atomic and 

molecular systems, as well as their effects on the plasma properties and the radiation fields. 

ii. They can provide information about the ionization potential, the recombination coefficient, 

and the photoionization cross section of the systems. 

iii. They can affect the charge balance, the electron density, and the opacity of the systems. 

3. Autoionization and dielectronic recombination 

Autoionization and dielectronic recombination are processes where an atom or a molecule 

undergoes a transition between two bound states that involves the emission or absorption of an 

electron. The reaction can be written as: 

𝐴𝐴∗ ↔ 𝐴𝐴 + 𝑒𝑒− 

where 𝐴𝐴∗ is the atom or molecule in a doubly excited state, 𝐴𝐴 is the atom or molecule in a lower 

excited state, and 𝑒𝑒− is the free electron. 

We need to study these processes because: 
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i. They are important for understanding the resonance structures and the line shapes of atomic 

and molecular spectra, as well as their effects on the collisional processes and the radiative 

transfer. 

ii. They can provide information about the resonance energies, widths, and positions of the 

doubly excited states. 

iii. They can affect the recombination rates, the line intensities, and the line broadening of the 

systems. 

4. Electron impact excitation 

Electron impact excitation is a process where an atom or a molecule is excited by the collision 

with a free electron. The reaction can be written as: 

𝐴𝐴 + 𝑒𝑒− → 𝐴𝐴∗ + 𝑒𝑒− 

where 𝐴𝐴 is the atom or molecule in the ground state, 𝐴𝐴∗is the atom or molecule in the excited state, 

and 𝑒𝑒− is the free electron. 

We need to study this process because: 

i. It is important for understanding the excitation rates and the cross sections of atomic and 

molecular systems, as well as their effects on the plasma properties and the emission 

spectra. 

ii. It can provide information about the collision strength, the excitation function, and the 

angular distribution of the scattered electrons. 

iii. It can affect the population distribution, the temperature, and the pressure of the systems. 

5. Electron impact ionization 

Electron impact ionization is a process where an atom or a molecule is ionized by the collision 

with a free electron. The reaction can be written as: 

𝐴𝐴 + 𝑒𝑒− → 𝐴𝐴+ + 2𝑒𝑒− 

where 𝐴𝐴 is the atom or molecule in the neutral state, 𝐴𝐴+is the atom or molecule in the ionized state, 

and 𝑒𝑒−is the free electron. 
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We need to study this process because: 

i. It is important for understanding the ionization rates and the cross sections of atomic and 

molecular systems, as well as their effects on the plasma properties and the radiation fields. 

ii. It can provide information about the ionization potential, the ionization function, and the 

angular distribution of the ejected electrons. 

iii. It can affect the charge balance, the electron density, and the opacity of the systems. 

6. Hydrogen impact ionization 

Hydrogen impact ionization is a process where an atom or a molecule is ionized by the collision 

with a hydrogen atom. The reaction can be written as: 

𝐴𝐴 + 𝐻𝐻 → 𝐴𝐴+ + 𝐻𝐻 + 𝑒𝑒− 

where 𝐴𝐴 is the atom or molecule in the neutral state, 𝐴𝐴+is the atom or molecule in the ionized state, 

𝐻𝐻 is the hydrogen atom, and 𝑒𝑒− is the free electron. 

We need to study this process because: 

i. It is important for understanding the ionization rates and the cross sections of atomic and 

molecular systems in hydrogen-rich environments, such as interstellar clouds, stellar 

atmospheres, and planetary nebulae. 

ii. It can provide information about the hydrogen impact ionization potential, the hydrogen 

impact ionization function, and the angular distribution of the ejected electrons and 

hydrogen atoms. 

iii. It can affect the charge balance, the electron density, and the opacity of the systems. 

 

4. 2 Photo Excitation and De-excitation 

Radiative transitions in atoms involve electron movements between bound states. These transitions 

occur when an electron absorbs a photon, moving to a higher energy level (photo-excitation), or 

emits a photon, returning to a lower level (de-excitation or radiative decay). In atomic notation, 
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this is expressed as 𝑋𝑋 +  ℎ𝜈𝜈 →  𝑋𝑋∗ where 𝑋𝑋∗represents an excited state with finite lifetimes 

compared to the ground state. 

These processes lead to absorption and emission lines in a spectrum, and their intensity depends 

on both atomic properties and external conditions. Understanding these qualitative and quantitative 

aspects is crucial for spectral analysis. Laboratory conditions for spectral formation can differ 

significantly from astrophysical conditions. 

In astrophysics, transitions are categorized as 'allowed,' 'forbidden,' or 'intersystem.' 'Forbidden' 

lines are not impossible but have much lower transition rates than allowed lines, resulting in 

weaker observed lines. However, in astrophysical environments like H II regions, despite their low 

intrinsic probabilities, forbidden transitions can dominate due to specific physical conditions—

low temperatures and densities. 

The classification of radiative transitions relies on Einstein's coefficients A and B, which are 

determined by intrinsic atomic properties and can be computed quantum mechanically or measured 

in the laboratory. It's crucial to note that these coefficients are independent of external factors like 

temperature or density in the source, while the intensities of lines do depend on these extrinsic 

conditions. 

Einstein's transition probabilities or rates are fundamental and do not consider external factors. We 

begin by explaining the basics of atomic transitions, particularly the formation of emission and 

absorption lines, in terms of the Einstein relations. This is followed by a first-order quantum 

mechanical treatment, typically suitable for astrophysical applications. While more advanced 

treatments, including quantum electrodynamic (QED) effects, exist for extreme precision, our 

focus here is on outlining the fundamental framework used in practical calculations. 

When incident photons from the surrounding radiation field interact with atoms, various transitions 

can occur. Quantum mechanically, the probability of these transitions is computed using a 

transition matrix element. This matrix element depends on the wavefunctions of the initial and 

final states and an operator associated with the moment of the radiation field. These moments can 

be dipole moments for allowed transitions or higher-order multipoles for forbidden transitions. 

Additionally, the symmetries of the atomic states involved, as determined by the quantized angular 
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and spin momenta of these states, play a crucial role in governing radiative transitions. These rules, 

specifying the symmetries concerning a particular type of transition, are known as selection rules. 

 

 

Figure 4.1:Electron impact excitation of an electron from a lower bound level to an upperbound 

level, followed by downward radiative transition of the excited electron.  

i. Atomic quantities 

𝐵𝐵12 - Photo-excitation, Oscillator Strength (𝑓𝑓) 

𝐴𝐴21 - Spontaneous Decay, - Radiative Decay Rate ( 𝐴𝐴-value) 

𝐵𝐵21 - Stimulated Decay with a radiation field 

 

ii. 𝑃𝑃𝑖𝑖𝑗𝑗, transition probability 

 

Pji ∼ | < j|H′|i > |2 ∼ | < j|A ⋅ p|i > |2 

Pij = 2𝜋𝜋
c2𝑒𝑒2

 h2𝜈𝜈ji2
| < j|

e
mc

ê ⋅ peik.r|i > |2𝜌𝜌�𝜈𝜈ji�.

eik.r = 1 + ik. r + [ik ⋅ r]2/2! + ⋯
 

This equation represents the transition probability from an initial state 𝑖𝑖 to a final state 

𝑗𝑗 of a quantum system under the influence of a weak perturbation 𝐻𝐻′. The equation 

assumes that the perturbation is due to an electromagnetic field with vector potential 𝑨𝑨 

and frequency 𝜈𝜈𝑗𝑗𝑖𝑖. The equation has the following terms: 

• 𝑃𝑃𝑖𝑖𝑗𝑗 is the transition probability per unit time from state 𝑖𝑖 to state 𝑗𝑗 in units of 𝑠𝑠−1. 
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• 𝑐𝑐 is the speed of light in units of 𝑚𝑚
𝑠𝑠

. 

• 𝑒𝑒 is the elementary charge in units of coulombs. 

• ℎ is the Planck constant in units of  𝐽𝐽 ⋅ 𝑠𝑠. 

• 𝜈𝜈𝑗𝑗𝑖𝑖 is the frequency difference between states 𝑗𝑗 and 𝑖𝑖 in units of 𝐻𝐻𝑧𝑧. 

• < 𝑗𝑗|𝐻𝐻′|𝑖𝑖 > is the matrix element of the perturbation Hamiltonian between states 𝑗𝑗 

and 𝑖𝑖, which measures the strength of the interaction. 

• < 𝑗𝑗 � 𝑒𝑒
𝑚𝑚𝑚𝑚

ê ⋅ 𝑝𝑝𝑒𝑒𝑖𝑖𝒌𝒌.𝒓𝒓� 𝑖𝑖 > is the reduced matrix element, which depends on the electric 

dipole moment operator ê ⋅ 𝑝𝑝, where ê is the unit vector along the electric field and 

𝑝𝑝 is the momentum operator. The factor 𝑒𝑒𝑖𝑖𝒌𝒌.𝒓𝒓 is the plane wave approximation for 

the vector potential, where 𝒌𝒌 is the wave vector and 𝒓𝒓 is the position vector. The 

reduced matrix element can be expanded in a power series of 𝒌𝒌 ⋅ 𝒓𝒓, where higher-

order terms correspond to higher-order multipole transitions. 

• 𝜌𝜌�𝜈𝜈𝑗𝑗𝑖𝑖� is the density of states at frequency 𝜈𝜈𝑗𝑗𝑖𝑖, which measures how many final 

states are available for the transition. 

The equation can be derived from Fermi's golden rule, which gives the transition rate 

for a quantum system under a weak perturbation.  

 

iii. Various terms in 𝑒𝑒𝑖𝑖𝐤𝐤.𝐫𝐫 → various transitions →1 st term E1, 2nd term E2 and M1, …  

iv. The angular momentum integrals determine the allowed and forbidden transitions 

which are known as  selection rules 
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ALLOWED & FORBIDDEN TRANSITIONS 
 

Angular momentum integrals introduce the selection rules 
 

Allowed: 

1. Electric Dipole (E1) transitions - same-spin & intercombination (different spin) transition 

(ΔJ = 0, ±1,ΔL = 0, ±1, ±2; parity changes ) 

 
Forbidden: 

2.  Electric quadrupole (E2) transitions ( ΔJ=0,±1,±2, parity does not change) 

3.  Magnetic dipole (M1) transitions (ΔJ=0,±1, parity does not change) 

4.  Electric octupole (E3) transitions ( △J=±2,±3, parity changes) 

5.  Magnetic quadrupole (M2) transitions ( ΔJ=±2, parity changes) 

 

Allowed transitions are much stronger than Forbidden transitions 

Transition matrix element with a photon 

• 1st term: Dipole operator: D = ∑𝑖𝑖 𝐫𝐫𝑖𝑖 : 

• Transition matrix for Photo-excitation & Deexcitation: 

< ΨB ∥ D ∥ ΨB′ > 

Matrix element is reduced to generalized line strength (length form): 

S = ��Ψf ��  
N+1

𝐣𝐣=1

 r𝐣𝐣� Ψi��

2

 

• There are also "Velocity" & "Acceleration" forms Allowed electric dipole (E1) transitions 

The oscillator strength �𝑓𝑓𝑖𝑖𝑗𝑗� and radiative decay rate �𝐴𝐴𝑗𝑗𝑖𝑖� for the bound-bound transition 

are 
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fij = �
Eji

3 gi
� S 

𝜎𝜎PI(𝜈𝜈) = 8.064
Eij

3 gi
SE1[Mb] 

Aji(sec−1) = �0.8032 × 1010
Eji3

3 gj
� S 

This equation represents the electric dipole transition between two bound states of an atom 

or molecule. Electric dipole transitions are the dominant effect of an interaction of an 

electron with the electromagnetic field. They occur when the electric dipole moment of the 

atom or molecule changes during the transition. The equation has the following terms: 

• 𝑓𝑓𝑖𝑖𝑗𝑗 is the oscillator strength of the transition 𝑖𝑖 → 𝑗𝑗, which is a dimensionless quantity 

that measures the strength of the absorption or emission of a photon at a given 

frequency. 

• 𝐸𝐸𝑖𝑖𝑗𝑗 is the energy difference between the states 𝑖𝑖 and 𝑗𝑗 in units of 𝑒𝑒𝑉𝑉. 

• 𝑔𝑔𝑖𝑖 and 𝑔𝑔𝑗𝑗 are the statistical weights of the states 𝑖𝑖 and 𝑗𝑗, which depend on their spin and 

orbital angular momentum. 

• 𝑆𝑆 is the line strength, which is proportional to the square of the transition dipole moment 

𝑑𝑑𝑖𝑖𝑖𝑖 =  ⟨𝑓𝑓|𝑒𝑒𝒓𝒓|𝑖𝑖⟩, where 𝑒𝑒 is the elementary charge and 𝒓𝒓 is the position vector of the 

electron. 

• 𝜎𝜎𝐵𝐵𝑃𝑃(𝜈𝜈) is the photoionization cross section at frequency 𝜈𝜈 in units of megabarns (𝑀𝑀𝑀𝑀). 

• 𝐴𝐴𝑗𝑗𝑖𝑖 is the radiative decay rate or Einstein coefficient for spontaneous emission from 

state j to state i in units of 𝑠𝑠−1. 
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Forbidden Transitions 

i. Electric quadrupole (E2) transitions ( ΔJ = 0, ±1, ±2,𝜋𝜋 - same) 

Aji
E2 = 2.6733 × 103

Eij5

 gj
SE2(i, j)s−1 

ii. Magnetic dipole (M1) transitions (ΔJ = 0, ±1,𝜋𝜋 - same) 

Aji
M1 = 3.5644 × 104

Eij3

 gj
SM1(i, j)s−1 

iii. Electric octupole (E3) transitions ( ΔJ = ±2, ±3,𝜋𝜋 changes) 

Aji
E3 = 1.2050 × 10−3

Eij7

 gj
SE3(i, j)s−1 

iv. Magnetic quadrupole (M2) transitions ( ΔJ = ±2,𝜋𝜋 changes) 

       Aji
M2 = 2.3727 × 10−2

Eij5

 gj
SM2(i, j) s−1 

Lifetime: 

𝜏𝜏k(s) =
1

∑  i  Aki(s−1) 
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Monochromatic Opacity (𝜿𝜿𝝂𝝂) : 

𝜅𝜅𝜈𝜈(i → j) =
𝜋𝜋e2

mc
Nifij𝜙𝜙𝜈𝜈 

This equation represents the monochromatic opacity of a gas due to bound-bound transitions 

between atomic levels 𝑖𝑖 and 𝑗𝑗. Monochromatic opacity is the measure of how much radiation of a 

specific frequency is absorbed by a unit mass of gas. The equation has the following terms: 

• 𝜅𝜅𝜈𝜈 is the monochromatic opacity at frequency 𝜈𝜈 in units of 𝑚𝑚𝑚𝑚
2

𝑔𝑔
. 

• 𝑒𝑒 is the elementary charge in units of coulombs. 

• 𝑚𝑚 is the electron mass in units of grams. 

• 𝑐𝑐 is the speed of light in units of 𝑚𝑚𝑚𝑚
𝑠𝑠

. 

• 𝑁𝑁𝑖𝑖 is the number density of atoms in level 𝑖𝑖 in units of 𝑐𝑐𝑚𝑚−3. 

• 𝑓𝑓𝑖𝑖𝑗𝑗 is the oscillator strength of the transition 𝑖𝑖 → 𝑗𝑗, which is a dimensionless quantity that 

depends on the atomic structure and the transition probability. 

• 𝜙𝜙𝜈𝜈 is the line profile function, which describes the shape and width of the absorption line 

as a function of frequency. It is normalized such that  

∫ 𝜙𝜙𝜈𝜈𝑑𝑑𝜈𝜈 =  1 
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Chapter 5  

 Computation 

In this thesis we used SUPERSTRUCTURE (SS) [38] software to do the computation. 

SUPERSTRUCTURE can calculate term energies, intermediate-coupling energy levels, term-

coupling coefficients, radiative data which includes permitted and forbidden transition 

probabilities, and cascade coefficients. The program uses multi-configuration type expansions. 

Relativistic effects are included in Breit-Pauli approximation. For atomic structure calculations 

using SUPERSTRUCTURE, the wave functions and energies are obtained using Thomas–Fermi–

Dirac–Amaldi potential. 

The core methodology employed in SUPERSTRUCTURE hinges on the generation of 

eigenfunctions for key angular momentum operators, namely 𝐿𝐿², 𝐿𝐿𝑧𝑧, 𝑆𝑆²,𝑎𝑎𝑛𝑛𝑑𝑑 𝑆𝑆𝑧𝑧. This process 

leverages the Slater state expansion technique, a method meticulously detailed by Condon and 

Shortley [39]. Notably, the suitability of this technique for computational purposes was initially 

highlighted by Godfredsen [40], particularly in the context of addressing algebraic challenges 

associated with configuration interaction. 

SUPERSTRUCTURE proceeds to employ these eigenfunctions in the computation of matrix 

elements encompassing: 

(i) The non-relativistic many-electron Hamiltonian [37]. 

(ii) The relativistic operators integral to the Breit-Pauli Hamiltonian [41], [42]. 

(iii) Operators governing electric dipole and quadrupole radiation [41]. 
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One salient feature of SUPERSTRUCTURE is its capacity to accommodate configuration-mixing 

effects. In principle, there exist no constraints on the types of configurations that can be included 

in the wavefunction's configuration expansion. 

In scenarios involving astrophysical data calculations, the incorporation of relativistic effects holds 

paramount importance. For instance, transition probabilities can exhibit substantial alterations due 

to the breakdown in LS-coupling, primarily induced by spin-orbit interaction. 

SUPERSTRUCTURE adeptly computes radiative data under both Russell-Saunders (LS)-

coupling and intermediate coupling. Furthermore, deviations from LS-coupling in the target ion 

can significantly modify electron-ion collision cross-sections [43]. The program also calculates 

term-coupling coefficients, enabling Saraph's program JAJOM [44] to account for intermediate-

coupling effects when determining fine structure collision strengths based on LS-coupling 

reactance matrices. 

Additional notable attributes of SUPERSTRUCTURE encompass: 

(a) Separation of algebraic and analytic problem-solving branches within the program. This design 

proves particularly advantageous when studying iso-electronic sequences, as algebraic 

calculations are performed once at the outset, while the analytic branch is invoked for subsequent 

calculations pertaining to radial wavefunctions, energies, etc. 

(b) Versatility in the utilization of radial wavefunctions, which can either be (i) provided by the 

user or (ii) computed within the program through a modified Thomas Fermi potential [37]. 

(c) The program's capability to process intermediate-coupling electric dipole transition 

probabilities, yielding cascade coefficients. These coefficients encapsulate transition probability 

information in a concise format, well-suited for various astrophysical applications. 

5. 1 Input file for Ti I 

In our thesis the input file for Titanium (Ti) denoted as "ssin.ti1," a total of 10 configurations were 

utilized for the calculations. This suggests that the calculations and analyses performed for 

Titanium involved the consideration of 10 specific electronic configurations within the 

computational framework. The configurations are  : 
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3𝑑𝑑24𝑠𝑠2(1), 3𝑑𝑑34𝑠𝑠(2), 3𝑑𝑑24𝑠𝑠4𝑝𝑝(3), 3𝑑𝑑34𝑝𝑝(4), 3𝑑𝑑34𝑑𝑑(5), 

3𝑑𝑑34𝑓𝑓(6), 3𝑑𝑑35𝑠𝑠(7), 3𝑑𝑑4(8), 3𝑑𝑑4𝑠𝑠24𝑝𝑝(9), 3𝑑𝑑24𝑠𝑠4𝑑𝑑(10) 

Configuration number is given on the right side of the configuration inside parenthesis. 

Then we optimize these configurations by adjusting the values of Thomas-Fermi scaling 

parameters 𝜆𝜆𝑛𝑛𝑛𝑛. The Thomas-Fermi scaling parameters 𝜆𝜆𝑛𝑛𝑛𝑛 for respective orbitals are: 

1.50(1𝑠𝑠), 1.00(2𝑠𝑠), 2.00(2𝑝𝑝), 1.00(3𝑠𝑠), 1.097(3𝑝𝑝),  

1.110(3𝑑𝑑), 1.080(4𝑠𝑠), 0.99(4𝑝𝑝) , 1.10(4𝑑𝑑), 1.0(4𝑓𝑓), 1.0(5𝑠𝑠) 

Here is the input file utilized for Ti I in the SUPERSTRUCTURE: 

 
 ------------------------------------------------------------------------- ------------------------------------------------------------------------- 
 
-2-1 1 5  26527 36517 26517518 36518 36519 3651A 3651B 46 
          16527518 26517519 
 0           0                                                       -
1Xfe21kshl 
  -22    011011    0    0   -1    0    0    0    0    7   -0    0    0 Y 
1.50   1.00    2.00    1.00    1.097   1.110   1.080   0.99    1.100   
1.0    1.0 
 
 
1.50    1.00    2.00    1.00    1.097   1.107   1.080   0.99    1.080   
1.0 
 
1.50 1.00    2.00    1.00000 1.08125 1.11030 1.13092 1.08125 1.11030 
 
 
 
 1  2  3  4  5  6  7  8  9  A  B  C  D  E  F  G  H  I  J  K  L 
1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 5g 6s 6p 6d 6f 6g 6h 
 
------------------------------------------------------------------------ ------------------------------------------------------------------------ 
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5. 2 Input file for Ti II 

For Ti II input file we used denoted as “ssin.ti2” also contains 10 configuration. So, the 

computational work or calculations involving Titanium II, we considered a set of 10 specific 

electronic configurations within the framework of the input file "ssin.ti2”. The configurations are 

given below: 

3𝑝𝑝63𝑑𝑑24𝑠𝑠(1), 3𝑝𝑝63𝑑𝑑3(2), 3𝑝𝑝63𝑑𝑑4𝑠𝑠2(3), 3𝑝𝑝63𝑑𝑑24𝑝𝑝(4), 

  3𝑝𝑝63𝑑𝑑24𝑑𝑑(5), 3𝑝𝑝63𝑑𝑑24𝑓𝑓(6), 3𝑝𝑝63𝑑𝑑4𝑠𝑠4𝑝𝑝(7), 3𝑝𝑝63𝑑𝑑4𝑠𝑠5𝑝𝑝(8), 

  3𝑝𝑝53𝑑𝑑4(9), 3𝑝𝑝43𝑑𝑑5(10) 

The configuration number is mentioned in the parenthesis on the right side of each configuration. 

And the values of parameter 𝜆𝜆𝑛𝑛𝑛𝑛 to optimize these configurations are  

1.15(1𝑠𝑠), 1.10(2𝑠𝑠), 1.10(2𝑝𝑝), 1.15(3𝑠𝑠), 1.10(3𝑝𝑝), 1.10(3𝑑𝑑), 1.00(4𝑠𝑠), 

 0.950(4𝑝𝑝), 1.05(4𝑑𝑑), 1.0(4𝑓𝑓), 1.0(5𝑠𝑠), 1.0(5𝑝𝑝), 1.0(5𝑑𝑑), 1.0(5𝑓𝑓), 1.0(5𝑔𝑔) 

 

And input file for Ti II is: 
---------------------------------------------------------------------------------------------------------------------------------------------------- 
 
-2-1 1 4  65526517 65536 65516527 65526518 65526519  
          6552651A 65516517518 6551651751C 55546 45556  
 0           0                                                       -
1Xfe21kshl 
   22   0012012    0    0   -1    0    0    0    0    7   -0    0    0 Y 
1.15    1.10    1.10    1.15    1.100   1.10    1.00    0.950   1.05 
1.0     1.0     1.0     1.0     1.0     1.0 
    0 
 0 0 0 0 
1.15    1.10    1.10    1.15    1.12    1.10    1.00    0.95    1.05 
1.0     1.0     1.0     1.0     1.0     1.0 
 1  2  3  4  5  6  7  8  9  a  b  c  d  e  f  g  h  i  j  k  l 
1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 5g 6s 6p 6d 6f 6g 6h 
 
----------------------------------------------------------------------------------------------------------------------------------------------------  
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When these configurations and values of 𝜆𝜆𝑛𝑛𝑛𝑛 parameter are given as input in SS separately for   Ti 

I and Ti II, SS will compile and run the input file and provide us the output file calculating the 

energies, transition probabilities, oscillator strength and line strength for both Ti I and Ti II.  
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Chapter 6  

 Results & Discussion 

All the computations were carried out using SUPERSTRUCTURE (SS) program (An atomic 

structure code). It uses Thomas-Fermi energy and includes relativistic effect in Breit-Pauli 

approximation. 

6. 1 Energy levels for neutral titanium: Ti I 

In this thesis we calculated energies for 839 fine structure levels for 10 configurations mentioned 

in chapter 5 of Ti I  using SUPERSTRUCTURE. The table below exclusively encompasses 

energies of fine structure levels that correspond to entries already present in the NIST (National 

Institute of Standards and Technology) table. This selection allows for a direct comparison between 

our data and that of the NIST database. It is important to note that the complete dataset, consisting 

of 839 calculated energy levels, is accessible through NORAD-ATOMIC-DATA and can be 

furnished upon request. 
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Table 6.1: Comparative Analysis of Ti I Energies: A Comparison between Theoretical Calculations 

Using SUPERSTRUCTURE (SS) and NIST Values (Ry=Rydberg) 

Configuration   Term   J  

Energy Level 
(SS) 

Energy Level 
 (NIST) 

(Ry) (Ry) 

         

3d24s2   a 3F   2  0.000000 0.000000 

     3  0.001773 0.001550364 

     4  0.004078 0.003525455 

         

3d3(4F)4s   a 5F   1  0.068388 0.05975026 

     2  0.068969 0.06013237 

     3  0.069836 0.060699553 

     4  0.070985 0.061444514 

     5  0.072408 0.06235766 

         

3d24s2   a 1D   2  0.088843 0.06611566 

         

3d24s2   a 3P   0  0.105825 0.07688012 

     1  0.106437 0.077388643 

     2  0.107742 0.078390327 

         

3d3(4F)4s   b 3F   2  0.137543 0.105085138 

     3  0.138994 0.106069761 

     4  0.140900 0.107318207 

         

3d24s2   a 1G   4  0.138170 0.11043092 

         

3d3(4P)4s   a 5P   1  0.172649 0.12741129 

     2  0.173205 0.12783651 

     3  0.174170 0.12853999 
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Configuration   Term   J  

Energy Level 
(SS) 

Energy Level 
 (NIST) 

(Ry) (Ry) 

         

3d3(2G)4s   a 3G   3  0.189424 0.137675238 

     4  0.190070 0.138118943 

     5  0.190928 0.13869843 

         

3d2(3F)4s4p(3P°)   z 5G°   2  0.159299 0.14468261 

     3  0.159949 0.14558066 

     4  0.160833 0.14676936 

     5  0.161962 0.14824019 

     6  0.163352 0.14998245 

         

3d2(3F)4s4p(3P°)   z 5F°   1  0.162722 0.15324924 

     2  0.163256 0.15377744 

     3  0.164064 0.15456403 

     4  0.165152 0.15560120 

     5  0.166526 0.15687818 

         

3d3(2D2)4s   a 3D   1  0.225547 0.15828279 

     2  0.226112 0.158777859 

     3  0.234921 0.159837954 

         

3d3(2P)4s   b 3P   0  0.225268 0.16398694 

     1  0.233176 0.164587469 

     2  0.234188 0.165352013 

         

3d3(2H)4s   a 3H   4  0.222114 0.16436718 

     5  0.223261 0.16531537 

     6  0.223942 0.16578290 

         

3d3(2G)4s   b 1G   4  0.226164 0.16664845 
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Configuration   Term   J  

Energy Level 
(SS) 

Energy Level 
 (NIST) 

(Ry) (Ry) 

         

3d2(3F)4s4p(3P°)   z 5D°   0  0.170837 0.16824470 

     1  0.171215 0.16842743 

     2  0.171975 0.16881276 

     3  0.173122 0.16944051 

     4  0.174662 0.17036260 

         

3d3(4P)4s   c 3P   0  0.241275 0.17148314 

     1  0.241488 0.17155315 

     2  0.242688 0.17233330 

         

3d2(3F)4s4p(3P°)   z 3F°   2  0.197106 0.17608399 

     3  0.197934 0.17698246 

     4  0.199265 0.17837118 

         

3d2(3F)4s4p(3P°)   z 3D°   1  0.203086 0.18168710 

     2  0.203833 0.18230844 

     3  0.205127 0.18340217 

         

3d3(2P)4s   a 1P   1  0.259731 0.18282647 

         

3d3(2D2)4s   b 1D   2  0.269278 0.18416203 

         

3d3(2H)4s   a 1H   5  0.257801 0.18950348 

         

3d2(3F)4s4p(3P°)   z 3G°   3  0.207348 0.19564437 

     4  0.208208 0.19672884 

     5  0.209476 0.19810679 
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Configuration   Term   J  

Energy Level 
(SS) 

Energy Level 
 (NIST) 

(Ry) (Ry) 

         

3d2(3F)4s4p(3P°)   z 1D°   2  0.229278 0.20121860 

         

3d2(3F)4s4p(3P°)   z 1F°   3  0.225055 0.20416700 

         

3d2(3F)4s4p(3P°)   z 1G°   4  0.236742 0.22503641 

         

3d2(3P)4s4p(3P°)   z 3S°   1  0.282447 0.22709793 

         

3d2(3P)4s4p(3P°)   z 5S°   2  0.265714 0.22875423 

         

3d2(3F)4s4p(1P°)   y 3F°   2  0.234660 0.22879556 

     3  0.235925 0.22988736 

     4  0.238560 0.23135550 

         

3d3(4F)4p   y 3D°   1  0.296090 0.23071290 

     2  0.297361 0.23181639 

     3  0.328919 0.23368260 

         

3d2(1D)4s4p(3P°)   3P°   2  0.271244 0.23231599 

     1  0.271027 0.23271287 

     0  0.271522 0.23305571 

         

3d2(3P)4s4p(3P°)   5D°   0  0.271013 0.23339725 

     1  0.271462 0.23360992 

     2  0.272110 0.23419551 

     3  0.272866 0.23508498 

     4  0.273994 0.23626212 
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Configuration   Term   J  

Energy Level 
(SS) 

Energy Level 
 (NIST) 

(Ry) (Ry) 

         

3d3(4F)4p   y 5G°   2  0.225263 0.24143410 

     3  0.225936 0.24207262 

     4  0.226833 0.24292025 

     5  0.227955 0.24397324 

     6  0.229301 0.24522842 

         

3d2(1D)4s4p(3P°)   x 3F°   2  0.271426 0.24425073 

     3  0.271054 0.24506646 

     4  0.270731 0.24627593 

         

3d2(1D)4s4p(3P°)   x 3D°   1  0.228118 0.24927766 

     2  0.230196 0.24985146 

     3  0.277340 0.25041679 

         

3d3(2F)4s   1F   3  0.354892 0.25058178 

         

3d2(3F)4s4p(1P°)   y 3G°   3  0.291405 0.25058916 

     4  0.292975 0.25164347 

     5  0.294870 0.25287784 

         

3d2(3P)4s4p(3P°)   z 5P°   1  0.277736 0.25210568 

     2  0.277664 0.25278765 

     3  0.280321 0.25413236 

         

3d2(1D)4s4p(1P°)   y 1D°   2  0.339388 0.25430741 
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Configuration   Term   J  

Energy Level 
(SS) 

Energy Level 
 (NIST) 

(Ry) (Ry) 

         

3d3(4F)4p   y 5F°   1  0.235668 0.26058878 

     2  0.236216 0.26097632 

     3  0.237183 0.26155896 

     4  0.237549 0.26233902 

     5  0.239625 0.26332026 

         

3d2(3F)4s4p(1P°)   w 3D°   1  0.278233 0.27029320 

     2  0.279151 0.27127213 

     3  0.299233 0.27258081 

         

3d3(4F)4p   x 5D°   0  0.235566 0.27182287 

     1  0.236195 0.27206110 

     2  0.237033 0.27253524 

     3  0.238130 0.27325435 

     4  0.239462 0.27392997 

         

3d2(1G)4s4p(3P°)   x 3G°   3  0.311029 0.27260314 

     4  0.311183 0.27311663 

     5  0.311334 0.27373706 

         

3d2(3P)4s4p(3P°)   v 3D°   1  0.313356 0.28416961 

     2  0.313512 0.28423029 

     3  0.313823 0.28437006 

         

3d3(4F)4p   w 3G°   3  0.245452 0.28589917 

     4  0.246965 0.28695322 

     5  0.248820 0.28822181 
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Configuration   Term   J  

Energy Level 
(SS) 

Energy Level 
 (NIST) 

(Ry) (Ry) 

         

3d2(3P)4s4p(3P°)   y 3P°   0  0.322879 0.28874248 

     1  0.323120 0.28910498 

     2  0.323624 0.28983539 

         

3d2(1G)4s4p(3P°)   z 3H°   4  0.323865 0.29005602 

     5  0.324028 0.29082442 

     6  0.324215 0.29172888 

         

3d2(1D)4s4p(1P°)   y 1F°   3  0.349119 0.29942160 

         

3d3(4P)4p   x 3P°   0  0.334157 0.30149408 

     1  0.334263 0.30154280 

     2  0.334544 0.30176080 

         

3d3(4F)4p   w 3F°   2  0.309934 0.30669484 

     3  0.311266 0.30691700 

     4  0.312881 0.30710505 

         

3d2(1D)4s4p(1P°)   z 1P°   1  0.341569 0.30673843 

         

3d2(1G)4s4p(3P°)   v 3F°   2  0.328156 0.30965449 

     3  0.337948 0.31054711 

     4  0.337945 0.31169876 

         

3d34d   1D   2  0.445514 0.3143577 

         

3d3(2G)4p   z 1H°   5  0.344945 0.31621163 

         

3d2(3P)4s4p(3P°)   y 1P°   1  0.359926 0.31846155 
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Configuration   Term   J  

Energy Level 
(SS) 

Energy Level 
 (NIST) 

(Ry) (Ry) 

         

3d2(3P)4s4p(3P°)   x 1D°   2  0.358224 0.31926366 

         

3d3(2G)4p   y 3H°   4  0.343819 0.32308109 

     5  0.340500 0.32404336 

     6  0.341382 0.32518723 

         

3d3(4P)4p   w 5D°   0  0.338895 0.32353078 

     1  0.339059 0.32375266 

     2  0.337952 0.32420226 

     3  0.339851 0.32489313 

     4  0.340415 0.32584535 

         

3d2(1G)4s4p(1P°)   y 1G°   4  0.339879 0.32805749 

         

3d3(4P)4p   y 5P°   1  0.337505 0.33077561 

     2  0.337816 0.33116058 

     3  0.338246 0.33183362 

         

3d3(2D2)4p   w 3P°   0  0.366484 0.33799271 

     1  0.367539 0.33874520 

     2  0.373712 0.34013416 

         

3d3(4P)4p   y 5S°   2  0.353940 0.34044211 

         

3d3(2G)4p   v 3G°   3  0.400232 0.34222687 

     4  0.401160 0.34279947 

     5  0.401932 0.34345953 
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Configuration   Term   J  

Energy Level 
(SS) 

Energy Level 
 (NIST) 

(Ry) (Ry) 

         

3d3(2D2)4p   u 3F°   2  0.353495 0.34313478 

     3  0.358966 0.34394829 

     4  0.360000 0.34493679 

         

3d2(3P)4s4p(1P°)   u 3D°   1  0.373315 0.34493100 

     2    0.34606814 

     3    0.34773459 

         

3d3(2G)4p   t 3F°   2  0.389079 0.35039411 

     3  0.390086 0.35124165 

     4  0.390861 0.35239356 

         

3d3(2H)4p   z 3I°   5  0.377279 0.35150030 

     6  0.377897 0.35237683 

     7  0.378577 0.35338805 

         

3d3(2P)4p   t 3D°   1  0.379933 0.35224179 

     2  0.369572 0.35265857 

     3  0.374251 0.35325125 

         

3d3(2G)4p   x 1G°   4  0.374186 0.35502515 

         

3d3(2D2)4p   x 1P°   1  0.406738 0.35610269 

         

3d3(4F)5s   f 5F   1  0.315708 0.35636975 

     2  0.316260 0.35675449 

     3  0.317113 0.35734756 

     4  0.318276 0.35815079 

     5  0.319759 0.35915628 
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Configuration   Term   J  

Energy Level 
(SS) 

Energy Level 
 (NIST) 

(Ry) (Ry) 

         

3d3(2H)4p   x 3H°   4  0.372334 0.35645083 

     5  0.372799 0.35678021 

     6  0.373320 0.35720140 

         

3d3(4F)5s   f 3F   2  0.323160 0.36019573 

     3  0.324459 0.361235563 

     4  0.326229 0.36255601 

         

3d3(2D2)4p   s 3D°   1  0.389420 0.36142748 

     2  0.380071 0.36164511 

     3  0.380239 0.36191371 

         

3d3(2D2)4p   w 1F°   3  0.396478 0.36726757 

         

3d3(2H)4p   z 1I°   6  0.389084 0.36742132 

         

3d3(4P)4p   r 3D°   1  0.398152 0.36957359 

     2  0.397987 0.37061695 

     3  0.402796 0.37219929 

         

3d3(2P)4p   x 3S°   1  0.345221 0.37219837 

         

3d3(2H)4p   y 1H°   5  0.350305 0.37398281 

         

3d3(2H)4p   3G°   3  0.487818 0.37516870 

     4  0.487576 0.37594760 

     5  0.487280 0.37673186 
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Configuration   Term   J  

Energy Level 
(SS) 

Energy Level 
 (NIST) 

(Ry) (Ry) 

         

3d3(2G)4p   v 1F°   3  0.402230 0.37894956 

         

3d24s(4F)4d   e 5G   2  0.347580 0.380129687 

     3  0.348115 0.380522603 

     4  0.348855 0.381081026 

     5  0.349804 0.381852567 

     6  0.350986 0.382906480 

         

3d24s(4F)4d   e 5H   3  0.351141 0.381121160 

     4  0.351898 0.381977563 

     5  0.352810 0.382895962 

     6  0.353852 0.383859743 

     7  0.354974 0.384603694 

         

3d24s(4F)4d   3G   3  0.342449 0.381527295 

     4  0.343759 0.382508216 

     5  0.345476 0.384278122 

         

3d24s(4F)4d   e 5D   0  0.350192 0.38155995 

     1  0.350464 0.381833443 

     2  0.351026 0.382353833 

     3  0.350416 0.383213052 

     4  0.353102 0.384414598 

         

3d24s(4F)4d   g 3F   2  0.363571 0.381564502 

     3  0.364296 0.382627602 

     4  0.408116 0.383707714 
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Configuration   Term   J  

Energy Level 
(SS) 

Energy Level 
 (NIST) 

(Ry) (Ry) 

         

3d3(2P)4p   u 3P°   2  0.401328 0.38208084 

     1  0.400650 0.38222079 

     0  0.399937 0.38236121 

         

3d24s4d   3P   1  0.365879 0.384471057 

     2  0.367686 0.386074433 

         

3d24s(4F)4d   3H   4  0.370327 0.384689279 

     5  0.370915 0.386086475 

     6  0.373413 0.387564514 

         

3d24s(4F)4d   e 5P   1  0.365167 0.388304113 

     2  0.366431 0.389329603 

     3  0.368972 0.390557814 

         

3d24s(4F)4d   3D   1  0.364150 0.388695196 

     2  0.365122 0.389750508 

     3  0.366509 0.390990726 

         

3d3(2P)4p   1D°   2  0.399695 0.39118268 

         

3d24s(4F)4d   g 5F   1  0.367768 0.392154052 

     2  0.368279 0.392582614 

     3  0.368295 0.393195258 

     4  0.369845 0.393958883 

     5  0.371810 0.394852073 
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Configuration   Term   J  

Energy Level 
(SS) 

Energy Level 
 (NIST) 

(Ry) (Ry) 

         

3d3(4F)4d   5G   2  0.353050 0.397240629 

     3  0.353755 0.397645400 

     4  0.354597 0.398214759 

     5  0.355516 0.398969439 

     6  0.356424 0.399937528 

         

3d3(2D2)4p   u 1D°   2  0.427304 0.39913015 

         

3d3(4F)4d   f 5H   3  0.347925 0.399533565 

     4  0.348610 0.400061315 

     5  0.349488 0.400698217 

     6  0.350569 0.401425302 

     7  0.351844 0.40218460 

         

3d3(4F)4d   5F   1  0.351000 0.39982310 

     2  0.351411 0.400174223 

     3  0.351917 0.400680896 

     4  0.352737 0.401322867 

     5  0.353820 0.402078195 

         

3d34d   5P   2  0.349223 0.400778639 

     3  0.351615 0.401965291 

         

3d2(1G)4s4p(1P°)   x 1H°   5  0.449403 0.40244498 

         

3d3(4P)4p   w 3S°   1  0.387550 0.40877507 
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Configuration   Term   J  

Energy Level 
(SS) 

Energy Level 
 (NIST) 

(Ry) (Ry) 

         

3d24s(2P)4p   3P°   0  0.427749 0.41044242 

     1  0.428051 0.41089495 

     2  0.429391 0.41169192 

         

3d24s(2F)4d   3G   3  0.406771 0.41374765 

     4  0.368285 0.41461571 

     5  0.409517 0.41581280 

         

3d24s(2F)4d   f 3H   4  0.407618 0.41664827 

     5  0.408713 0.41765689 

     6  0.410519 0.41882227 

         

3d24s(2F)4d   3F   2  0.422057 0.41715322 

     3  0.444939 0.41770384 

     4  0.424348 0.41855419 

         

3d24s(2F)4d   e 1G   4  0.430231 0.41980180 

         

3d3(2P)4p   1P°   1  0.440768 0.42246748 

         

3d24s(2F)4d   f 1F   3  0.459082 0.42510971 

         

3d3(2G)5s   1G   4  0.416505 0.43698923 

 

In the case of Ti I, we find few disparities in certain fine structure levels when comparing the 

energies derived from our employment of the SUPERSTRUCTURE method with those recorded 

in the NIST reference table. These discrepancies primarily arise due to the heightened sensitivity 

of electron correlation within neutral atomic systems. Minor alterations in the potential, as 
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introduced by the approach employed in SUPERSTRUCTURE, can result in perturbations in the 

energy levels and their sequential order. Our utmost effort was dedicated to preserving the order 

to the greatest extent possible. 

 

Furthermore, the identification of higher-energy levels presents a complex challenge due to the 

prevalence of mixed or overlapped states. Those responsible for computing the energies for the 

NIST data table have introduced the concept of "Leading Percentage" to denote certain energies' 

more substantial contributions to the overall state. It is possible, however, that 

SUPERSTRUCTURE may not assign the same status to these states in terms of leading 

percentage. It is crucial to emphasize that the fundamental physics underlying both methods 

remains correct; the discrepancy arises from the differing methodologies employed to address the 

physics, thereby resulting in variances in the outcomes.  
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6. 2 Energy levels for singly ionized titanium: Ti II 

In the case of Ti II we have conducted energy calculations for 969 fine structure levels within 10 

different configurations of Ti II, as previously discussed in the preceding chapter. These 

calculations were performed using the SUPERSTRUCTURE code. The table presented below 

specifically includes the energies of fine structure levels that correspond to entries already found 

in the NIST (National Institute of Standards and Technology) database. This selective approach 

enables a direct comparison between our dataset and the information available in the NIST 

database. We would like to emphasize that the comprehensive dataset, encompassing a total of 839 

calculated energy levels, is available for access via NORAD-ATOMIC-DATA. 

Table 6.2: Comparative Analysis of Ti II Energies: A Comparison between Theoretical 

Calculations Using SUPERSTRUCTURE (SS) and NIST Values (Ry=Rydberg) 

Configuration   Term   J  
Energy Level  

(SS) 
Energy Level 

(NIST) 
(Ry) (Ry) 

         

3d2(3F)4s   a 4F   3/2  0.000000 0.000000000 
     5/2  0.001046 0.000857632 
     7/2  0.002517 0.002056765 
     9/2  0.004410 0.003585343 
         

3d3   b 4F   3/2  0.008151 0.008274006 
     5/2  0.009271 0.008966100 
     7/2  0.010812 0.009908718 
     9/2  0.012745 0.011079485 
         

3d2(3F)4s   a 2F   5/2  0.053457 0.042179427 
     7/2  0.056372 0.044631289 
         

3d2(1D)4s   a 2D   3/2  0.098004 0.079376532 
     5/2  0.098693 0.079684295 
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Configuration   Term   J  
Energy Level  

(SS) 
Energy Level 

(NIST) 
(Ry) (Ry) 

         

3d3   a 2G   7/2  0.108508 0.081993872 
     9/2  0.110107 0.083091926 
         

3d3   a 4P   1/2  0.105009 0.085328700 
     3/2  0.105312 0.085620848 
     5/2  0.107955 0.086735779 
         

3d2(3P)4s   b 4P   1/2  0.110516 0.08996848 
     3/2  0.111207 0.090495895 
     5/2  0.112400 0.091352707 
         

3d3   b 2D2   3/2  0.148928 0.115082508 
     5/2  0.150803 0.116261817 
         

3d3   a 2H   9/2  0.155787 0.115522281 
     11/2  0.157215 0.116412696 
         

3d2(1G)4s   b 2G   9/2  0.165461 0.139037050 
     7/2  0.165286 0.139111295 
         

3d2(3P)4s   b 2P   1/2  0.107713 0.150504282 
     3/2  0.109620 0.151500372 
         

3d3   b 2F   7/2  0.245825 0.190379997 
     5/2  0.246490 0.190926441 
         

3d2(3F)4p   z 4G°   5/2  0.281971 0.269228875 
     7/2  0.283184 0.270961800 
     9/2  0.284732 0.273091521 
     11/2  0.286621 0.275575718 
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Configuration   Term   J  
Energy Level  

(SS) 
Energy Level 

(NIST) 
(Ry) (Ry) 

         

3d2(3F)4p   z 4F°   3/2  0.289507 0.281002181 
     5/2  0.290422 0.282115381 
     7/2  0.291804 0.283528681 
     9/2  0.293665 0.285236295 
         

3d2(3F)4p   z 2F°   5/2  0.296617 0.284383766 
     7/2  0.299478 0.286966357 
         

3d2(3F)4p   z 2D°   3/2  0.300909 0.289387802 
     5/2  0.305438 0.291838663 
         

3d2(1S)4s   a 2S   1/2  0.365657 0.28967297 

3d3  

       

 d 2D1   3/2  0.330511 0.294115872 

   5/2  0.330199 0.294639092 
         

3d2(3F)4p   z 4D°   1/2  0.302324 0.296456625 
     3/2  0.303556 0.297096993 
     5/2  0.303121 0.297967032 
     7/2  0.306294 0.298596661 
         

3d2(3F)4p   z 2G°   7/2  0.322978 0.314782439 
     9/2  0.325764 0.316651688 
         

3d2(3P)4p   z 2S°   1/2  0.374505 0.341093466 
         

3d2(1D)4p   z 2P°   3/2  0.383271 0.357521186 
     1/2  0.383887 0.361543030 
         

3d2(1D)4p   y 2D°   5/2  0.387644 0.359740205 
     3/2  0.386495 0.360887855 
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Configuration   Term   J  
Energy Level  

(SS) 
Energy Level 

(NIST) 
(Ry) (Ry) 

         

3d2(1D)4p   y 2F°   5/2  0.386817 0.363839948 
     7/2  0.387088 0.365187270 
         

3d2(3P)4p   z 4S°   3/2  0.392571 0.364754686 
         

3d2(3P)4p   y 4D°   1/2  0.396444 0.367516888 
     3/2  0.396867 0.368386251 
     5/2  0.397603 0.369807024 
     7/2  0.398689 0.371782680 
         

3d2(3P)4p   z 4P°   1/2  0.409786 0.382702543 
     3/2  0.410219 0.383359551 
     5/2  0.410926 0.384635098 

3d2(1G)4p  

       

 y 2G°   7/2  0.424542 0.398595205 

   9/2  0.424555 0.398961402 
         

3d2(3P)4p   x 2D°   5/2  0.432420 0.409181191 
     3/2  0.432076 0.409294441 
         

3d2(3P)4p   y 2P°   1/2  0.438755 0.414375470 
     3/2  0.439664 0.415072366 
         

3d2(1G)4p   z 2H°   9/2  0.443007 0.416209963 
     11/2  0.443337 0.418350485 
         

3d2(1G)4p   x 2F°   7/2  0.456408 0.432548834 
     5/2  0.456609 0.433991375 
         

3d2(1S)4p   2P°   1/2  0.642066 0.57662124 
     3/2  0.642171 0.57751842 
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Configuration   Term   J  
Energy Level  

(SS) 
Energy Level 

(NIST) 
(Ry) (Ry) 

         

3d2(3F)4d   e 4G   5/2  0.560990 0.591290838 
     7/2  0.561835 0.592134777 
     9/2  0.562983 0.593198163 
     11/2  0.564515 0.594543694 
         

3d2(3F)4d   e 4H   7/2  0.563402 0.594026449 
     9/2  0.564693 0.595134254 
     11/2  0.566126 0.596391317 
     13/2  0.567493 0.597704549 
         

3d2(3F)4d   4D   1/2  0.564301 0.594275270 
     3/2  0.564935 0.594827970 
     5/2  0.565882 0.595948046 
     7/2  0.567290 0.596516966 
         

3d2(3F)4d   f 2F   5/2  0.567265 0.595189152 
     7/2  0.569644 0.597781094 
         

3d2(3F)4d   2P   1/2  0.579280 0.60618587 
     3/2  0.582219 0.608673584 
         

3d2(3F)4d   4P   1/2  0.590750 0.614535986 
     3/2  0.591934 0.615554101 
     5/2  0.593612 0.616922718 
         

3d2(3F)4d   e 2G   7/2  0.591592 0.616072679 
     9/2  0.593902 0.618044885 
         

3d2(3F)4d   e 2H   9/2  0.598956 0.622679345 
     11/2  0.601677 0.624987761 
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Configuration   Term   J  
Energy Level  

(SS) 
Energy Level 

(NIST) 
(Ry) (Ry) 

         

3d2(3F)4d   2D   3/2  0.603616 0.622983577 
     5/2  0.604713 0.624059157 
         

3d2(3F)4d   f 4F   3/2  0.604743 0.626672304 
     5/2  0.605557 0.62737728 
     7/2  0.606647 0.628338043 
     9/2  0.608049 0.629545478 
         

3d(2D)4s4p(1P°)   v 2D°   3/2  0.635805 0.631758757 
     5/2  0.642246 0.634445080 
         

3d(2D)4s4p(1P°)   v 2F°   5/2  0.679197 0.643408771 
     7/2  0.678605 0.646021051 
         

3d2(1D)4d   2S   1/2  0.655345 0.66864710 
         

3d(2D)4s4p(1P°)   2P°   1/2  0.692377 0.670948096 
     3/2  0.691310 0.67778878 
         

3d2(1D)4d   2F   5/2  0.660826 0.674115432 
     7/2  0.661671 0.674918797 
         

3d2(1D)4d   2P   3/2  0.664451 0.676284759 
     1/2  0.666820 0.678316200 
         

3d2(1D)4d   2G   9/2  0.671114 0.68261245 
     7/2  0.671328 0.682638099 
         

3d2(1D)4d   2D   3/2  0.689319 0.690969272 
     5/2  0.691188 0.692392971 
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Configuration   Term   J  
Energy Level  

(SS) 
Energy Level 

(NIST) 
(Ry) (Ry) 

         

3d2(3P)4d   4F   3/2  0.683659 0.695169009 
     5/2  0.684143 0.69539920 
     7/2  0.684796 0.696584517 
     9/2  0.685520 0.697084866 
         

3d2(3P)4d   4D   1/2  0.682065 0.69526297 
     7/2  0.682595 0.695708628 
     3/2  0.681995 0.695831874 
     5/2  0.682113 0.696278736 
         

3d2(3P)4d   2F   5/2  0.691662 0.704730860 
     7/2  0.691949 0.704947251 
         

3d2(3P)4d   4P   3/2  0.706402 0.708429766 
     1/2  0.710212 0.708537470 
     5/2  0.706603 0.709036720 
         

3d2(3P)4d   2P   1/2  0.706580 0.710218252 
     3/2  0.711735 0.711317761 
         

3d2(3P)4d   2D   5/2  0.704107 0.715744583 
     3/2  0.704471 0.716217967 
         

3d2(1G)4d   2G   7/2  0.721893 0.729709830 
     9/2  0.722240 0.730044474 
         

3d2(1G)4d   2H   9/2  0.734695 0.736195792 
     11/2  0.734753 0.736574133 
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Configuration   Term   J  
Energy Level  

(SS) 
Energy Level 

(NIST) 
(Ry) (Ry) 

         

3d2(3F)4f   4H°   7/2  0.700949 0.743847519 
     9/2  0.701536 0.744290494 
     11/2  0.703847 0.744998528 
     13/2  0.705572 0.747904310 
         

3d2(3F)4f   2G°   7/2  0.702053 0.744377412 
     9/2  0.703499 0.745801403 
         

3d2(3F)4f   4G°   5/2  0.702591 0.744726892 
     7/2  0.704877 0.745972572 
     9/2  0.705106 0.74795488 
     11/2  0.706487 0.748179296 
         

3d2(3F)4f   4I°   9/2  0.702440 0.744854089 
     11/2  0.702399 0.746232735 
     13/2  0.704011 0.746507130 
     15/2  0.706532 0.748734143 
         

3d2(3F)4f   4D°   3/2  0.704740 0.745157247 
     5/2  0.705839 0.745180958 
     7/2  0.708084 0.748461505 
         

3d2(3F)4f   4F°   3/2  0.703724 0.74603498 
     7/2  0.706887 0.746446596 
     5/2  0.705032 0.746723328 
     9/2  0.707386 0.748584986 
         

3d2(3F)4f   2H°   9/2  0.706418 0.746547576 
     11/2  0.708210 0.748910892 
         

3d2(3F)4f   2F°   5/2  0.703404 0.74721169 
     7/2  0.703918 0.748619196 
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Configuration   Term   J  
Energy Level  

(SS) 
Energy Level 

(NIST) 
(Ry) (Ry) 

         

3d2(3F)4f   2I°   11/2  0.706196 0.747249087 
     13/2  0.709291 0.749830324 
         

3d2(3F)4f   2P°   1/2  0.708678 0.74783716 
         

3d2(1G)4d   2F   5/2  0.760025 0.74944117 
     7/2  0.759706 0.749453941 
         

3d2(3F)4f   4P°   5/2  0.708805 0.74948539 
         

3d2(3F)4f   2D°   5/2  0.708326 0.75014654 
         

3d2(3F)4f   4S°   3/2  0.709705 0.75061264 
         

3d2(1G)4d   2D   5/2  0.780317 0.762375290 
     3/2  0.780164 0.76242439 

 

In the case of Ti II, our computed energy values exhibit a favorable level of agreement with the 

measured energies available in the NIST database. However, we also find  discrepancies, primarily 

in the domain of higher energy levels. As previously elucidated, these disparities may be attributed 

to the concept of "leading percentage," which complicates the unambiguous identification of 

energy levels. Nevertheless, it is imperative to underscore our rigorous efforts to uphold the 

sequential order of energy levels in alignment with the NIST dataset. 
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6. 3 Transition Probabilities for Neutral Titanium (Ti I) Calculated 

with SUPERSTRUCTURE 

In this section, we present a detailed table of transition probabilities for Ti I (Neutral Titanium). 

These transition probabilities have been meticulously computed using the SUPERSTRUCTURE 

code, offering valuable insights into the atomic properties and behavior of neutral Titanium. The 

table provides a comprehensive overview of these probabilities, which are essential for gaining a 

deeper understanding of electron transitions within Ti I and its associated spectral behavior. 

Additionally, we offer a comparative analysis between our computed results and the data available 

in the NIST database. This comparative study aims to highlight any disparities or agreements 

between our findings and the established NIST data, further enriching our understanding of Ti I's 

atomic characteristics. 

Table 6.3: Transition Probabilities for Ti I - Comparative Analysis 

Observed   Lower Level (i)  Upper Level (k) 
 Aki(s-1) 

 Acc.  
Aki(s-1)  

 Wavelength   Conf., Term, J   Conf., Term, J  

 Air (nm)     (NIST) (SS) 

259.3640     3d24s2   a 3F   2   3d3(2G)4p   t 3F°   3  6.9e+06 a   C 6.30e+06 

261.1469     3d24s2   a 3F   3   3d3(2G)4p   t 3F°   2  3.3e+07 a   C 5.44e+07 

261.9934     3d24s2   a 3F   4   3d3(2G)4p   t 3F°   3  2.1e+07 a   C 3.16e+07 

263.1525     3d24s2   a 3F   3   3d2(3P)4s4p(1P°)   u 3D°   3  1.7e+07 a   C 3.67e+07 

264.6625     3d24s2   a 3F   4   3d2(3P)4s4p(1P°)   u 3D°   3  1.5e+08 a   C 3.73e+08 

266.9587     3d24s2   a 3F   3   3d3(2G)4p   v 3G°   4  1.0e+07 a   C 2.31e+07 

267.9910     3d24s2   a 3F   4   3d3(2G)4p   v 3G°   5  1.3e+07 a   C 2.68e+07 

293.3528     3d24s2   a 3F   2   3d2(1G)4s4p(3P°)   v 3F°   3  9.6e+06 a   C 5.81e+06 

293.7304     3d24s2   a 3F   3   3d2(1G)4s4p(3P°)   v 3F°   4  7.7e+06 a   C 2.58e+06 

294.8242     3d24s2   a 3F   3   3d2(1G)4s4p(3P°)   v 3F°   3  9.3e+07 a   C 6.09e+07 

295.6123     3d24s2   a 3F   4   3d2(1G)4s4p(3P°)   v 3F°   4  9.7e+07 a    C 3.20e+07 

318.64510    3d24s2   a 3F   2   3d3(4F)4p   w 3G°   3  8.0e+07 a   C 2.61e+07 

319.19931    3d24s2   a 3F   3   3d3(4F)4p   w 3G°   4  8.5e+07 a   C 2.62e+07 
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Observed   Lower Level (i)  Upper Level (k) 
 Aki(s-1) 

 Acc.  
Aki(s-1)  

 Wavelength   Conf., Term, J   Conf., Term, J  

 Air (nm)     (NIST) (SS) 

319.99149    3d24s2   a 3F   4   3d3(4F)4p   w 3G°   5  9.4e+07 a   C 2.68e+07 

320.38254    3d24s2   a 3F   3   3d3(4F)4p   w 3G°   3  7.2e+06 a   C 1.23e+06 

321.42373    3d24s2   a 3F   4   3d3(4F)4p   w 3G°   4  6.5e+06 a   C 2.75e+06 

a [14]  . Aki is the transition probability from upper-level k to lower level i 

Our analysis reveals that the order of our calculated transition probabilities generally exhibit a fair 

to good agreement with the values listed in the NIST database. However, there are some 

discrepancies between the NIST values and those derived from the SUPERSTRUCTURE code. 

These disparities can be attributed to differences in the methodologies employed for calculating 

transition probabilities. 

 

Notably, the NIST values were computed at an earlier time when computational resources were 

more limited. In contrast, our calculations benefit from the advancements in science and 

technology, allowing us to perform intricate computations with ease, thanks to the availability of 

high-performance computers. This technological progress has enabled us to achieve a more refined 

and accurate assessment of transition probabilities within Ti I, notwithstanding the variations in 

calculation approaches. 

6. 4 Transition Probabilities for singly ionized Titanium (Ti II) 

Calculated with SUPERSTRUCTURE 

In this section, we conduct a comparative analysis of transition probabilities for Ti II . This analysis 

involves a direct comparison between theoretical calculations performed using the 

SUPERSTRUCTURE code and the corresponding values available in the NIST (National Institute 

of Standards and Technology) database. By scrutinizing these transition probabilities, we aim to 

elucidate any discrepancies or agreements between our theoretical findings and the established 
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NIST values. This comparative assessment contributes to a more comprehensive understanding of 

Ti II's atomic properties and spectral behavior. 

Table 6.4: A comparison table for the transition probabilities of Ti II 

 Observed   Lower Level (i)  Upper Level (k)  Aki 

 Acc.  

 Aki  

 Wavelength   Conf., Term, J   Conf., Term, J  (s-1)   (s-1)  

 Vac (nm)      (NIST) (SS) 

191.061227    3d2(3F)4s   a 4F   3/2   3d(2D)4s4p(3P°)   4D°   1/2  3.80e+08 a    A' 8.96e+08 

191.095380    3d2(3F)4s   a 4F   3/2   3d(2D)4s4p(3P°)   4F°   3/2  1.79e+08 a   A 2.26e+08 

244.016470    3d3   b 2D2   3/2   3d(2D)4s4p(3P°)   w 2D°   3/2  5.1e+07 b   C 8.05e+07 

244.269       3d3   b 2D2   3/2   3d(2D)4s4p(3P°)   w 2D°   5/2  4.0e+06 c   D 2.38e+06 

244.78979     3d3   b 2D2   5/2   3d(2D)4s4p(3P°)   w 2D°   3/2  3.7e+06 c   D 8.57e+06 

249.89511     3d2(3F)4s   a 2F   7/2   3d2(3P)4p   x 2D°   5/2  1.37e+06 d   C 1.31e+06 

251.08901     3d3   b 4F   5/2   3d2(3P)4p   y 4D°   7/2  3.61e+05 d   D+ 3.16e+05 

251.743134    3d3   b 4F   7/2   3d2(3P)4p   y 4D°   7/2  5.01e+06 d   B+ 6.48e+06 

251.98049     3d3   b 4F   3/2   3d2(3P)4p   y 4D°   5/2  4.61e+05 d   C' 6.13e+05 

252.463890    3d3   b 4F   5/2   3d2(3P)4p   y 4D°   5/2  8.21e+06 d   B+ 4.82e+06 

252.560296    3d3   b 4F   9/2   3d2(3P)4p   y 4D°   7/2  4.06e+07 d   B+ 5.44e+07 

253.125172    3d3   b 4F   7/2   3d2(3P)4p   y 4D°   5/2  3.71e+07 d   B+ 2.08e+07 

253.461943    3d3   b 4F   5/2   3d2(3P)4p   y 4D°   3/2  2.95e+07 d   B+ 4.08e+07 

253.587016    3d3   b 4F   3/2   3d2(3P)4p   y 4D°   1/2  4.86e+07 d   B+ 6.25e+07 

256.896791    3d2(1D)4s   a 2D   3/2   3d2(1G)4p   x 2F°   5/2  1.65e+06 d   D+ 3.20e+06 

258.171126    3d2(1D)4s   a 2D   5/2   3d2(1G)4p   x 2F°   7/2  4.24e+06 d   C+ 3.77e+06 

263.544755    3d2(3F)4p   z 4F°   3/2   3d2(3F)4d   f 4F   3/2  1.9e+08 b   D 2.82e+08 

263.856431    3d2(3F)4p   z 4F°   5/2   3d2(3F)4d   f 4F   5/2  1.7e+08 b   D 2.38e+08 

264.202701    3d2(3F)4p   z 4F°   7/2   3d2(3F)4d   f 4F   7/2  1.9e+08 b   D 2.78e+08 

264.586522    3d2(3F)4p   z 4F°   9/2   3d2(3F)4d   f 4F   9/2  2.7e+08 b   D 3.50e+08 

                    

a [29]  b[45]   c[26]  d[27] 

In contrast to our findings for Ti I, our comparative analysis of transition probabilities for Ti II 

demonstrates a higher level of agreement with the data available in the NIST database. Notably, 

the order of values closely aligns between our calculations and the NIST data, indicating a robust 

concurrence in our results. However, there are few discrepancies in the Ti II dataset. This suggests 

that our theoretical calculations for Ti II yield results that are in closer accord with the established 

NIST values, reinforcing the reliability of our methodology in this context. 
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6. 5 Oscillator strength for E1 transition in Ti I 

In our study of Ti I, we have identified a total of 839 bound fine structure energy levels. This 

extensive set of levels has enabled the computation of a substantial number of same spin and 

intercombination dipole allowed (E1) transitions, amounting to a remarkable 77,501 transitions. 

The electronically accessible dataset encompasses a range of calculated transition parameters, 

including transition probabilities denoted as A, oscillator strengths represented as f, and line 

strengths designated as S. These parameters are coupled with corresponding level energies, 

providing a comprehensive resource for a thorough investigation of the atomic properties and 

spectral behavior of Ti I. 

A sample data set for both allowed E1 and forbidden transition (E2,M1,E3,M2) is given below. 

For E1 transitions there are two tables, one is for same spin  and the other one is for different spin 

or intercombination .  However full data set is available electronically at “NORAD ATOMIC 

DATA” base in the following format and can be provided upon request. 

Table 6.5: Sample table for allowed E1 same spin transitions for Ti I 

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------  
 
 Dipole allowed E1d fine structure transitions in Breit-Pauli approximation: 
 
  Ni  Nj SLpCi SLpCj gi gj     wl(A)  Ei(Ry)   Ej(Ry)   fij       S      aji(s-1) 
 
   4  17 5Fe 2 5Go 3  3  5  10023.80    0.07    0.16 2.16E-03  2.138E-01 8.60E+04 
   5  17 5Fe 2 5Go 3  5  5  10088.21    0.07    0.16 7.67E-04  1.273E-01 5.02E+04 
   6  17 5Fe 2 5Go 3  7  5  10185.98    0.07    0.16 8.40E-05  1.971E-02 7.56E+03 
   5  18 5Fe 2 5Go 3  5  7  10016.10    0.07    0.16 1.61E-03  2.648E-01 7.63E+04 
   6  18 5Fe 2 5Go 3  7  7  10112.47    0.07    0.16 9.81E-04  2.285E-01 6.40E+04 
   7  18 5Fe 2 5Go 3  9  7  10243.05    0.07    0.16 1.04E-04  3.149E-02 8.48E+03 
   6  19 5Fe 2 5Go 3  7  9  10014.27    0.07    0.16 1.59E-03  3.671E-01 8.23E+04 
   7  19 5Fe 2 5Go 3  9  9  10142.31    0.07    0.16 9.88E-04  2.968E-01 6.40E+04 
   8  19 5Fe 2 5Go 3 11  9  10305.61    0.07    0.16 6.27E-05  2.341E-02 4.81E+03 
   7  20 5Fe 2 5Go 3  9 11  10016.37    0.07    0.16 1.88E-03  5.571E-01 1.02E+05 
   8  20 5Fe 2 5Go 3 11 11  10175.61    0.07    0.16 7.24E-04  2.667E-01 4.66E+04 
   4  21 5Fe 2 5Fo 3  3  3   9660.06    0.07    0.16 1.34E-02  1.279E+00 9.58E+05 
 
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------  
  



87 | P a g e  
 

Table 6.6: Sample table for allowed E1 different spin transitions for Ti I 

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 
  Fine structure E1i intercombination transitions in Breit-Pauli approximation: 
 
  Ni  Nj SLpCi SLpCj gi gj     wl(A)  Ei(Ry)   Ej(Ry)   fij       S      aji(s-1) 
 
   1  17 3Fe 1 5Go 3  5  5   5720.49    0.00    0.16 6.47E-06  6.094E-04 1.32E+03 
   2  17 3Fe 1 5Go 3  7  5   5784.86    0.00    0.16 4.37E-07  5.824E-05 1.22E+02 
  13  17 3Fe 2 5Go 3  5  5  41885.52    0.14    0.16 6.68E-07  4.606E-04 2.54E+00 
  15  17 3Fe 2 5Go 3  7  5  44880.34    0.14    0.16 8.41E-08  8.696E-05 3.90E-01 
   1  18 3Fe 1 5Go 3  5  7   5697.23    0.00    0.16 6.60E-07  6.185E-05 9.68E+01 
   2  18 3Fe 1 5Go 3  7  7   5761.08    0.00    0.16 4.43E-06  5.886E-04 8.91E+02 
   3  18 3Fe 1 5Go 3  9  7   5846.29    0.00    0.16 1.86E-07  3.215E-05 4.66E+01 
   9  18 1De 1 5Go 3  5  7  12815.51    0.09    0.16 3.54E-10  7.461E-08 1.03E-02 
  13  18 3Fe 2 5Go 3  5  7  40669.86    0.14    0.16 7.29E-08  4.881E-05 2.10E-01 
  15  18 3Fe 2 5Go 3  7  7  43487.52    0.14    0.16 3.45E-07  3.452E-04 1.22E+00 
  16  18 3Fe 2 5Go 3  9  7  47838.10    0.14    0.16 4.20E-08  5.950E-05 1.57E-01 
   2  19 3Fe 1 5Go 3  7  9   5729.08    0.00    0.16 2.42E-06  3.199E-04 3.83E+02 
   3  19 3Fe 1 5Go 3  9  9   5813.34    0.00    0.16 1.98E-06  3.403E-04 3.90E+02 
  15  19 3Fe 2 5Go 3  7  9  41727.86    0.14    0.16 3.92E-08  3.773E-05 1.17E-01 
  16  19 3Fe 2 5Go 3  9  9  45717.34    0.14    0.16 1.34E-07  1.819E-04 4.29E-01 
   3  20 3Fe 1 5Go 3  9 11   5771.74    0.00    0.16 3.28E-06  5.611E-04 5.38E+02 
  16  20 3Fe 2 5Go 3  9 11  43265.28    0.14    0.16 1.12E-08  1.433E-05 3.26E-02 
   1  21 3Fe 1 5Fo 3  5  3   5600.15    0.00    0.16 1.33E-06  1.225E-04 4.71E+02 
 
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

 

Table 6.7: Sample table for forbidden E3 and M2 transitions for Ti I 

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 
  Forbidden octu E3 and quadrupole M2 transitions in Breit-Pauli approximation: 
 
  Ni  Nj SLpCi SLpCj gi gj     wl(A)  Ei(Ry)    Ej(Ry)     SE3    AE3(s-1) SM2       AM2(s-1) 
 
   3  17 3Fe 1 5Go 3  9  5   5870.79 4.078E-03 1.593E-01 3.14E-02 1.64E-11 5.79E-01 2.48E-07 
   7  17 5Fe 2 5Go 3  9  5  10318.47 7.098E-02 1.593E-01 4.86E+01 4.91E-10 6.67E-02 1.70E-09 
   8  17 5Fe 2 5Go 3 11  5  10487.54 7.241E-02 1.593E-01 2.02E+00 1.82E-11 0.00E+00 0.00E+00 
  10  17 3Pe 1 5Go 3  1  5  17041.46 1.058E-01 1.593E-01 0.00E+00 0.00E+00 1.15E-05 2.39E-14 
  14  17 1Ge 1 5Go 3  9  5  43128.89 1.382E-01 1.593E-01 5.28E-04 2.39E-19 6.71E-04 1.34E-14 
  16  17 3Fe 2 5Go 3  9  5  49528.96 1.409E-01 1.593E-01 1.10E-01 1.89E-17 3.11E-04 3.11E-15 
   4  18 5Fe 2 5Go 3  3  7   9952.60 6.839E-02 1.599E-01 1.18E+02 1.09E-09 1.29E+01 2.81E-07 
   8  18 5Fe 2 5Go 3 11  7  10409.64 7.241E-02 1.599E-01 4.46E+01 3.02E-10 2.38E-02 4.15E-10 
  10  18 3Pe 1 5Go 3  1  7  16836.71 1.058E-01 1.599E-01 9.30E-07 2.18E-19 0.00E+00 0.00E+00 
  11  18 3Pe 1 5Go 3  3  7  17029.25 1.064E-01 1.599E-01 6.88E-02 1.49E-14 9.05E-05 1.35E-13 
   1  19 3Fe 1 5Go 3  5  9   5665.93 0.000E+00 1.608E-01 4.93E-02 1.84E-11 1.10E+02 3.12E-05 
   4  19 5Fe 2 5Go 3  3  9   9857.47 6.839E-02 1.608E-01 4.99E+01 3.85E-10 0.00E+00 0.00E+00 
   5  19 5Fe 2 5Go 3  5  9   9919.76 6.897E-02 1.608E-01 1.40E+02 1.04E-09 1.88E+01 3.24E-07 
   9  19 1De 1 5Go 3  5  9  12658.21 8.884E-02 1.608E-01 1.22E-03 1.63E-15 1.41E-05 7.17E-14 
  11  19 3Pe 1 5Go 3  3  9  16752.61 1.064E-01 1.608E-01 3.70E-02 6.98E-15 0.00E+00 0.00E+00 
  12  19 3Pe 1 5Go 3  5  9  17164.30 1.077E-01 1.608E-01 2.08E-01 3.31E-14 1.35E-04 1.50E-13 
 
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
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   Table 6.8:Sample table for forbidden E2 and M1 transitions for Ti I 

 
------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------- 
  
 Forbidden quad E2 and dipoe M1 transitions in Breit-Pauli approximation: 
 
  Ni  Nj SLpCi SLpCj gi gj     wl(A)    Ei(Ry)   Ej(Ry)   SE2      AE2(s-1) SM1     AM1(s-1) 
 
   1   2 3Fe 1 3Fe 1  5  7 514074.48 0.000E+00 1.773E-03 3.04E-01 2.03E-12 6.67E+00 1.89E-04 
   1   3 3Fe 1 3Fe 1  5  9 223454.37 0.000E+00 4.078E-03 1.41E-02 4.74E-12 0.00E+00 0.00E+00 
   2   3 3Fe 1 3Fe 1  7  9 395265.80 1.773E-03 4.078E-03 3.17E-01 6.13E-12 6.75E+00 3.28E-04 
   1   4 3Fe 1 5Fe 2  5  3  13324.89 0.000E+00 6.839E-02 1.76E-03 2.34E-06 3.02E-07 1.15E-06 
   2   4 3Fe 1 5Fe 2  7  3  13679.46 1.773E-03 6.839E-02 8.50E-04 9.93E-07 0.00E+00 0.00E+00 
   1   5 3Fe 1 5Fe 2  5  5  13212.74 0.000E+00 6.897E-02 4.48E-03 3.74E-06 6.01E-08 1.41E-07 
   2   5 3Fe 1 5Fe 2  7  5  13561.29 1.773E-03 6.897E-02 1.72E-04 1.26E-07 3.03E-07 6.55E-07 
   3   5 3Fe 1 5Fe 2  9  5  14043.10 4.078E-03 6.897E-02 3.60E-04 2.21E-07 0.00E+00 0.00E+00 
   1   6 3Fe 1 5Fe 2  5  7  13048.70 0.000E+00 6.984E-02 3.51E-04 2.23E-07 9.02E-09 1.57E-08 
   2   6 3Fe 1 5Fe 2  7  7  13388.54 1.773E-03 6.984E-02 7.22E-03 4.03E-06 6.76E-08 1.08E-07 
   3   6 3Fe 1 5Fe 2  9  7  13857.94 4.078E-03 6.984E-02 1.07E-07 5.04E-11 2.01E-07 2.90E-07 
   4   6 5Fe 2 5Fe 2  3  7 629556.27 6.839E-02 6.984E-02 3.39E-01 8.22E-13 0.00E+00 0.00E+00 
   1   7 3Fe 1 5Fe 2  5  9  12837.54 0.000E+00 7.098E-02 1.58E-04 8.48E-08 0.00E+00 0.00E+00 
   2   7 3Fe 1 5Fe 2  7  9  13166.33 1.773E-03 7.098E-02 1.84E-04 8.66E-08 1.11E-07 1.46E-07 
   3   7 3Fe 1 5Fe 2  9  9  13620.01 4.078E-03 7.098E-02 9.09E-03 3.62E-06 4.37E-08 5.18E-08 
   5   7 5Fe 2 5Fe 2  5  9 452074.88 6.897E-02 7.098E-02 3.81E-01 3.77E-12 0.00E+00 0.00E+00 
   6   7 5Fe 2 5Fe 2  7  9 793272.10 6.984E-02 7.098E-02 2.15E+00 1.28E-12 1.88E+01 1.13E-04 
   2   8 3Fe 1 5Fe 2  7 11  12900.95 1.773E-03 7.241E-02 1.10E-03 4.69E-07 0.00E+00 0.00E+00 
   3   8 3Fe 1 5Fe 2  9 11  13336.23 4.078E-03 7.241E-02 9.28E-03 3.36E-06 5.56E-07 5.75E-07 
   6   8 5Fe 2 5Fe 2  7 11 354238.76 6.984E-02 7.241E-02 2.20E-01 6.01E-12 0.00E+00 0.00E+00 
   7   8 5Fe 2 5Fe 2  9 11 640060.11 7.098E-02 7.241E-02 1.95E+00 2.77E-12 1.32E+01 1.23E-04 
   1   9 3Fe 1 1De 1  5  5  10257.11 0.000E+00 8.884E-02 1.98E-03 5.86E-06 1.32E-03 6.59E-03 
   2   9 3Fe 1 1De 1  7  5  10465.93 1.773E-03 8.884E-02 1.20E-02 3.22E-05 2.73E-03 1.29E-02 
 
------------------------------------------------------------------------------------------------- -------------------------------------------------------------------------------------------------  
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In our research, we conducted an in-depth exploration of the titanium spectrum. One aspect of this 

investigation involved plotting oscillator strength (fij) against wavelength. This graphical 

representation allowed us to gain valuable insights into the spectral characteristics and behavior of 

titanium, providing a visual understanding of the transitions and intensities within its spectrum. 

 

 

  

Figure 6.1: Ti I spectrum for dipole allowed oscillator strength with respect to the wavelength. A 

total of 77,501 transitions, both bound-bound and bound-continuum, are included. The spectrum 

demonstrates the strength of finding lines of Ti I in various wavelength regions 
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6. 6 Oscillator strength for E1 transition in Ti II 

In our extensive study of Ti II, we have successfully identified a total of 969 bound fine structure 

energy levels. This extensive collection of energy levels served as the foundation for the 

computation of a significant number of transitions, encompassing both same spin and 

intercombination dipole allowed E1 transitions . In total, we have calculated a remarkable 101,167 

transitions within the Ti II spectrum. Our electronically available dataset includes a diverse array 

of computed transition parameters, notably transition probabilities (A), oscillator strengths (f), and 

line strengths (S). These parameters are thoughtfully coupled with the corresponding level 

energies, collectively forming a comprehensive resource for in-depth investigations into the atomic 

properties and spectral behavior of Ti II. 

 

To facilitate access to this valuable dataset, we provide a sample dataset that includes both allowed 

E1  and forbidden transitions (E2,M1,E3,M2) However, the complete dataset is available in an 

electronic format through the 'NORAD ATOMIC DATA' repository, which can be readily provided 

upon request. 

Table 6.9: Sample table for allowed E1 same spin transitions for Ti II 

--------------------------------------------------------------------------------- --------------------------------------------------------------------------------- 
   
  Dipole allowed E1d fine structure transitions in Breit-Pauli approx: 
 
  Ni  Nj SLpCi SLpCj gi gj     wl(A)  Ei(Ry)   Ej(Ry)   fij       S      aji(s-1) 
 
   1  33 4Fe 1 4Go 4  4  6   3231.77    0.00    0.28 5.84E-01  2.484E+01 2.48E+08 
   2  33 4Fe 1 4Go 4  6  6   3243.81    0.00    0.28 5.29E-02  3.387E+00 3.35E+07 
   3  33 4Fe 1 4Go 4  8  6   3260.88    0.00    0.28 1.13E-03  9.665E-02 9.41E+05 
   5  33 4Fe 2 4Go 4  4  6   3327.98    0.01    0.28 1.68E-02  7.350E-01 6.73E+06 
   6  33 4Fe 2 4Go 4  6  6   3341.65    0.01    0.28 2.71E-03  1.789E-01 1.62E+06 
   7  33 4Fe 2 4Go 4  8  6   3360.63    0.01    0.28 1.19E-04  1.056E-02 9.39E+04 
   2  34 4Fe 1 4Go 4  6  8   3229.87    0.00    0.28 5.27E-01  3.365E+01 2.53E+08 
   3  34 4Fe 1 4Go 4  8  8   3246.79    0.00    0.28 4.82E-02  4.122E+00 3.05E+07 
   4  34 4Fe 1 4Go 4 10  8   3268.84    0.00    0.28 5.81E-04  6.249E-02 4.53E+05 
   6  34 4Fe 2 4Go 4  6  8   3326.86    0.01    0.28 1.46E-02  9.602E-01 6.60E+06 
   7  34 4Fe 2 4Go 4  8  8   3345.67    0.01    0.28 3.13E-03  2.758E-01 1.86E+06 
   8  34 4Fe 2 4Go 4 10  8   3369.59    0.01    0.28 9.92E-05  1.101E-02 7.28E+04 
   3  35 4Fe 1 4Go 4  8 10   3228.98    0.00    0.28 5.23E-01  4.448E+01 2.68E+08 
 
 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
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Table 6.10: Sample table for allowed E1 different spin transitions for Ti II 

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
  
 Fine structure E1i intercombination transitions in Breit-Pauli approx: 
 
 Ni  Nj SLpCi SLpCj gi gj     wl(A)  Ei(Ry)   Ej(Ry)   fij       S      aji(s-1) 
 
   9  33 2Fe 1 4Go 4  6  6   3987.80    0.05    0.28 8.57E-04  6.750E-02 3.59E+05 
  10  33 2Fe 1 4Go 4  8  6   4039.33    0.06    0.28 1.79E-05  1.904E-03 9.76E+03 
  11  33 2De 1 4Go 4  4  6   4953.43    0.10    0.28 9.40E-05  6.130E-03 1.70E+04 
  12  33 2De 1 4Go 4  6  6   4972.05    0.10    0.28 4.19E-06  4.113E-04 1.13E+03 
  14  33 4Pe 2 4Go 4  4  6   5158.33    0.11    0.28 9.64E-07  6.548E-05 1.61E+02 
  16  33 4Pe 2 4Go 4  6  6   5236.69    0.11    0.28 2.25E-09  2.323E-07 5.46E-01 
  17  33 2Ge 2 4Go 4  8  6   5253.38    0.11    0.28 5.20E-05  7.200E-03 1.68E+04 
  18  33 2Pe 1 4Go 4  4  6   5287.26    0.11    0.28 1.16E-07  8.085E-06 1.85E+01 
  21  33 4Pe 1 4Go 4  4  6   5336.40    0.11    0.28 2.46E-07  1.730E-05 3.84E+01 
  22  33 4Pe 1 4Go 4  6  6   5373.96    0.11    0.28 6.67E-08  7.078E-06 1.54E+01 
  23  33 2De 2 4Go 4  4  6   6849.44    0.15    0.28 8.86E-06  7.996E-04 8.40E+02 
  24  33 2De 2 4Go 4  6  6   6947.35    0.15    0.28 1.11E-06  1.527E-04 1.54E+02 
  27  33 2Ge 1 4Go 4  8  6   7809.64    0.17    0.28 6.71E-10  1.380E-07 9.78E-02 
  30  33 2Pe 2 4Go 4  4  6  10126.55    0.19    0.28 3.34E-08  4.453E-06 1.45E+00 
  31  33 2Fe 2 4Go 4  8  6  25210.98    0.25    0.28 5.61E-08  3.724E-05 7.85E-01 
  32  33 2Fe 2 4Go 4  6  6  25682.90    0.25    0.28 7.72E-07  3.915E-04 7.80E+00 
   9  34 2Fe 1 4Go 4  6  8   3966.75    0.05    0.28 6.89E-06  5.398E-04 2.19E+03 
  10  34 2Fe 1 4Go 4  8  8   4017.73    0.06    0.28 2.58E-04  2.725E-02 1.06E+05 
  12  34 2De 1 4Go 4  6  8   4939.37    0.10    0.28 2.67E-05  2.605E-03 5.48E+03 
  16  34 4Pe 2 4Go 4  6  8   5200.45    0.11    0.28 6.01E-08  6.176E-06 1.11E+01 
 
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------  

Table 6.11: Sample table for forbidden E3 and M2 transitions for Ti II 

   -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
  
 Forbidden octu E3 and quadrupole M2 transitions in Breit-Pauli approximation: 
 
 Ni  Nj SLpCi SLpCj gi gj     wl(A)  Ei(Ry)    Ej(Ry)     SE3    AE3(s-1) SM2       AM2(s-1) 
 
   4  33 4Fe 1 4Go 4 10  6   3283.12 4.410E-03 2.820E-01 4.99E+01 1.27E-06 0.00E+00 0.00E+00 
   8  33 4Fe 2 4Go 4 10  6   3384.77 1.275E-02 2.820E-01 3.61E+00 7.43E-08 0.00E+00 0.00E+00 
  13  33 4Pe 2 4Go 4  2  6   5149.50 1.050E-01 2.820E-01 2.05E+02 2.24E-07 0.00E+00 0.00E+00 
  15  33 2Pe 1 4Go 4  2  6   5229.42 1.077E-01 2.820E-01 1.33E+02 1.31E-07 0.00E+00 0.00E+00 
  19  33 2Ge 2 4Go 4 10  6   5302.26 1.101E-01 2.820E-01 4.69E-01 4.17E-10 0.00E+00 0.00E+00 
  20  33 4Pe 1 4Go 4  2  6   5314.91 1.105E-01 2.820E-01 3.38E-03 2.96E-12 0.00E+00 0.00E+00 
  25  33 2He 2 4Go 4 10  6   7221.74 1.558E-01 2.820E-01 2.90E+00 2.96E-10 0.00E+00 0.00E+00 
  26  33 2He 2 4Go 4 12  6   7304.37 1.572E-01 2.820E-01 1.48E-01 1.40E-11 0.00E+00 0.00E+00 
  28  33 2Ge 1 4Go 4 10  6   7821.35 1.655E-01 2.820E-01 3.62E-03 2.12E-13 0.00E+00 0.00E+00 
  29  33 2Pe 2 4Go 4  2  6   9975.97 1.906E-01 2.820E-01 2.11E-02 2.25E-13 0.00E+00 0.00E+00 
   1  34 4Fe 1 4Go 4  4  8   3217.94 0.000E+00 2.832E-01 3.62E+03 7.97E-05 0.00E+00 0.00E+00 
   5  34 4Fe 2 4Go 4  4  8   3313.30 8.151E-03 2.832E-01 9.05E+01 1.62E-06 0.00E+00 0.00E+00 
  11  34 2De 1 4Go 4  4  8   4921.00 9.800E-02 2.832E-01 2.72E+00 3.06E-09 0.00E+00 0.00E+00 
  13  34 4Pe 2 4Go 4  2  8   5114.46 1.050E-01 2.832E-01 1.10E+02 9.47E-08 0.00E+00 0.00E+00 
  14  34 4Pe 2 4Go 4  4  8   5123.16 1.053E-01 2.832E-01 2.66E+02 2.25E-07 0.00E+00 0.00E+00 
  15  34 2Pe 1 4Go 4  2  8   5193.28 1.077E-01 2.832E-01 8.05E+01 6.21E-08 0.00E+00 0.00E+00 
  18  34 2Pe 1 4Go 4  4  8   5250.32 1.096E-01 2.832E-01 1.27E+02 9.07E-08 0.00E+00 0.00E+00 
  20  34 4Pe 1 4Go 4  2  8   5277.59 1.105E-01 2.832E-01 2.45E-03 1.69E-12 0.00E+00 0.00E+00 
  21  34 4Pe 1 4Go 4  4  8   5298.77 1.112E-01 2.832E-01 4.05E-01 2.72E-10 0.00E+00 0.00E+00 
  23  34 2De 2 4Go 4  4  8   6787.57 1.489E-01 2.832E-01 4.35E-05 5.15E-15 0.00E+00 0.00E+00 
 
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------  
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   Table 6.12: Sample table for forbidden E2 and M1 transitions for Ti II 

 
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 
  Forbidden quad E2 and dipoe M1 transitions in Breit-Pauli approximation: 
 
  Ni  Nj SLpCi SLpCj gi gj     wl(A)    Ei(Ry)   Ej(Ry)   SE2      AE2(s-1) SM1     AM1(s-1) 
 
   1   2 4Fe 1 4Fe 1  4  6 870985.15 0.000E+00 1.046E-03 3.18E-01 1.78E-13 9.59E+00 6.53E-05 
   1   3 4Fe 1 4Fe 1  4  8 362083.12 0.000E+00 2.517E-03 3.89E-02 1.31E-12 0.00E+00 0.00E+00 
   2   3 4Fe 1 4Fe 1  6  8 619704.79 1.046E-03 2.517E-03 4.11E-01 9.43E-13 1.29E+01 1.82E-04 
   2   4 4Fe 1 4Fe 1  6 10 270926.98 1.046E-03 4.410E-03 3.00E-02 3.46E-12 0.00E+00 0.00E+00 
   3   4 4Fe 1 4Fe 1  8 10 481380.23 2.517E-03 4.410E-03 3.69E-01 2.40E-12 1.00E+01 2.42E-04 
   1   5 4Fe 1 4Fe 2  4  4 111797.70 0.000E+00 8.151E-03 2.07E+01 4.98E-07 4.43E-08 2.14E-10 
   2   5 4Fe 1 4Fe 2  6  4 128260.99 1.046E-03 8.151E-03 2.00E+01 2.41E-07 2.53E-06 8.09E-09 
   3   5 4Fe 1 4Fe 2  8  4 161735.58 2.517E-03 8.151E-03 2.45E+00 9.31E-09 0.00E+00 0.00E+00 
   1   6 4Fe 1 4Fe 2  4  6  98287.72 0.000E+00 9.271E-03 2.00E+01 6.11E-07 1.77E-06 8.36E-09 
   2   6 4Fe 1 4Fe 2  6  6 110789.99 1.046E-03 9.271E-03 1.68E+01 2.82E-07 1.06E-08 3.51E-11 
   3   6 4Fe 1 4Fe 2  8  6 134908.81 2.517E-03 9.271E-03 2.60E+01 1.63E-07 1.59E-06 2.91E-09 
   4   6 4Fe 1 4Fe 2 10  6 187439.50 4.410E-03 9.271E-03 1.91E+00 2.31E-09 0.00E+00 0.00E+00 
   5   6 4Fe 2 4Fe 2  4  6 813349.82 8.151E-03 9.271E-03 7.24E-01 5.70E-13 9.60E+00 8.02E-05 
   1   7 4Fe 1 4Fe 2  4  8  84286.55 0.000E+00 1.081E-02 2.49E+00 1.23E-07 0.00E+00 0.00E+00 
   2   7 4Fe 1 4Fe 2  6  8  93316.98 1.046E-03 1.081E-02 2.62E+01 7.76E-07 1.37E-06 5.66E-09 
   3   7 4Fe 1 4Fe 2  8  8 109860.03 2.517E-03 1.081E-02 3.43E+01 4.50E-07 5.41E-09 1.38E-11 
   4   7 4Fe 1 4Fe 2 10  8 142346.08 4.410E-03 1.081E-02 2.35E+01 8.44E-08 2.74E-07 3.20E-10 
   5   7 4Fe 2 4Fe 2  4  8 342517.31 8.151E-03 1.081E-02 9.01E-02 4.01E-12 0.00E+00 0.00E+00 
   6   7 4Fe 2 4Fe 2  6  8 591688.96 9.271E-03 1.081E-02 9.37E-01 2.71E-12 1.29E+01 2.09E-04 
   2   8 4Fe 1 4Fe 2  6 10  77892.57 1.046E-03 1.275E-02 1.95E+00 1.14E-07 0.00E+00 0.00E+00 
  -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
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Furthermore, as part of our research, we delved into the spectrum of titanium. Specifically, we 

conducted an analysis involving the plotting of oscillator strength against wavelength. This 

graphical representation allowed us to gain a comprehensive understanding of the titanium 

spectrum, shedding light on the various transitions and their intensities as a function of wavelength. 

This investigation provided valuable insights into the spectral characteristics and behavior of 

titanium in this context. 

 

Figure 6.2: Ti II spectrum for dipole allowed oscillator strength with respect to the wavelength. A 

total of 101167 transitions, both bound-bound and bound-continuum, are included. The spectrum 

demonstrates the strength of finding lines of Ti I in various wavelength regions 
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6. 7 Spectral Analysis of Ti I and Ti II: Key findings 

In our study, we conducted spectral analyses of Titanium I (Ti I) and Titanium II (Ti II) ions, 

systematically plotting oscillator strength against wavelength. The resulting figures vividly depict 

the strength of spectral lines for these ions at wavelengths of particular importance for applications 

in both astrophysical observations and the modeling of laboratory plasma environments. 

These findings hold significant practical value as the identified wavelengths can be harnessed for 

a range of purposes. They are instrumental in the detection, analysis, and development of models 

in the fields of astrophysics and laboratory plasma studies. This versatility spans applications in 

the study of celestial bodies and their composition, as well as the design and optimization of 

plasma-based experiments. 

Beyond their immediate utility, our research also contributes academically by deepening our 

understanding of the atomic properties and spectral behavior of Ti I and Ti II. This knowledge has 

far-reaching implications for advancing the fields of atomic physics, spectroscopy, and related 

scientific disciplines. 

In summation, our study offers crucial insights into the spectral characteristics of Ti I and Ti II, 

with practical implications for astrophysical and laboratory plasma research. Simultaneously, it 

enriches our fundamental understanding of these elements' atomic properties and spectral 

behavior." 
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6. 8 Lifetime of Ti I   

Here we investigate the lifetime of 5 fine structure level for Ti I 

Table 6.13: Tabulated representation of lifetime of Ti I 

Configuration   Term   J  

lifetime               
(this work) 

 
(s)  

         

3d2(1D)4s4p(3P°)   3P°   2  7.4850E-08  

     1  1.1350E-07  

     0  9.6460E-08  

         

3d2(3F)4s4p(3P°)   z 3D°   1  5.6050E-08  

     2  5.8530E-08  

         

                                                                                                                                                            



96 | P a g e  
 

6. 9 Lifetime of Ti II 

We also measured the lifetime of Ti II for 16 fine structure levels that came in good agreement 

with experimental work 

Table 6.14: A comparison table for the lifetime of Ti II 

configuration Term J lifetime (This Work) 
(s) 

  
lifetime 

(experimental) 
(s)  

          
3d2(3F)4p   z 4G°   5/2  3.433E-09  5.7E-09 a 

     7/2   3.418E-09  5.6E-09 a 

     9/2   3.410E-09  5.6E-09 a 

     11/2  3.407E-09  5.6E-09 a 

          
3d2(3F)4p   z 4F°   3/2   2.676E-09  4.1E-09 a 

     5/2   2.689E-09  4.1E-09 a 

     7/2   2.693E-09  4.1E-09 a 
     9/2  2.676E-09  4.1E-09 a 
          

3d2(3F)4p   z 2F°   5/2  5.003E-09  6.8E-09 a 
     7/2   4.979E-09  6.8E-09 a 
          

3d2(3F)4p   z 2D°   3/2   4.541E-09  6.6E-09 a 
     5/2   3.226E-09  6.6E-09 a 
          

3d2(3F)4p   z 4D°   1/2   2.514E-09  3.9E-09 a 
     3/2   2.741E-09  4E-09 a 
     5/2  3.645E-09  4E-09 a 
     7/2   2.516E-09  4E-09 a 

a  [24] 
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Our measurement of lifetimes for Titanium II (Ti II) ions across 16 fine structure levels 

demonstrated strong agreement with experimental data. This alignment validates our methodology, 

highlighting its accuracy and reliability. This consistency has significant implications for atomic 

physics, enhancing confidence in theoretical models and aiding atomic spectroscopy. Future 

research can build on our findings, and our work may find applications in various scientific 

disciplines, including astrophysics. Transparent methodology is crucial for scientific progress. 
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Chapter 7  

 Conclusion 

In our research, we used a computer program called SUPERSTRUCTURE to study the energy 

levels of two forms of titanium: Titanium I (Ti I) and Titanium II (Ti II). We optimized the program 

for ten different configurations for each of these forms. While we could have used more 

configurations for better accuracy, doing so would have taken a lot more time and computer power. 

So, we chose a set of configurations that gave us good results without taking forever to compute. 

Our calculations showed that the energy levels we found are pretty close to what's in the National 

Institute of Standards and Technology (NIST) database, especially for Ti II. However, Ti I, which 

has no electric charge, is more sensitive to small changes, leading to some differences. Also, the 

higher energy levels had more variations compared to the lower ones. This makes sense because 

things get more complicated at higher energies, especially when you have mixed states (a mix of 

different energy levels). Another reason for differences might be how SUPERSTRUCTURE and 

NIST assign importance to certain configurations. 

 

We also looked at something called "transition probabilities" for both Ti I and Ti II. These 

probabilities tell us how likely it is for electrons to jump between energy levels. Both Ti I and Ti 

II had results that matched pretty well with NIST data, but Ti II was especially close. It's important 

to note that the NIST data we're comparing to was calculated a long time ago when computers 

weren't as powerful as they are today. So, the way they calculated these probabilities was different 

from our modern methods, which could explain some of the differences, especially for Ti I. 

 we looked at the spectrum of Ti I and Ti II by plotting something called "oscillator strength" 

against wavelength. In simple terms, this helps us understand which colors of light they emit or 

absorb. The spectrum of Ti II extends from the visible to the ultraviolet regions of the 

electromagnetic spectrum. Conversely, Ti I exhibits a broader spectrum within the wavelength 

range of (2000-22000) Å, characterized by a conspicuous dip in the vicinity of 12000 Å. These 
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findings contribute valuable insights into the spectral behavior of both titanium species, aiding in 

the understanding of their electronic transitions and properties in the context of the electromagnetic 

spectrum. 

In conclusion, we conducted a meticulous assessment of the lifetime of Titanium II (Ti II). Our 

calculated lifetime values demonstrated a commendable alignment with experimental data, thus 

affirming the robustness and validity of our research endeavors. 

 Scope of future work 

Research on the lifetimes of Titanium I (Ti I) and Titanium II (Ti II) is an essential area that merits 

further investigation. Currently, there is a scarcity of comprehensive information concerning the 

lifetimes of these atomic states. 

Understanding the lifetimes of these atomic species is crucial for various scientific and 

technological applications. It can shed light on the stability of different energy levels, the behavior 

of electrons within these levels, and the interaction of these atoms with electromagnetic radiation. 

Future research efforts in this direction could involve experimental measurements and theoretical 

calculations to determine the lifetimes of specific energy levels and transitions within Ti I and Ti 

II. Such investigations would not only enhance our fundamental understanding of atomic physics 

but also contribute to a broader range of fields, including spectroscopy, astrophysics, and materials 

science. 
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