يتما لأبالح الحمرة

"STARS"

SULTANA N. NAHAR

Astronomy, Ohio State University, Columbus, Ohio, USA
- Adjunct Professor, Aligarh Muslim University, India
- Adjunct Professor, Cairo University, Egypt

"BIBHA ALL-GIRLS ASTRONOMY WORKSHOP 2021"

The SUN, Our STAR

- Sun is the source of energy for our Earth, its planet
 - It is the standard for studying other stars

SUN: 110 x Diameter of the Earth

- L: Solar planets: Planets around our sun
- R: Exoplanets: Planets around a star except the sun typically around cool red dwarfs
- The 1st exoplanet 2M120b-ESO2004, by HARPS in 2004
- Sun: 8 planets and a number of dwarf planets around it

SUN - The "unQuiet" Star (Observed by space observatory SOHO)

- Sun has a 11 years cycle of minimum to maximum ACTIVITY, when its magnetic field flips between North and South
- Eruptions with explosions ejecting large amount of particles & radiation

Solar Ejections - Radiation & Particles

• Solar storms ejects bursts of electrons, protons, & heavy ions accelerated by massive explosions inside

• Our Earth's atmosphere and magnetic field protects us from these massive bursts of particles and radiation by reflections, absorption, and captures

• For example, magnetic field capture charged particles, ozone layer blocks most ultraviolet, X-rays and Gamma rays • Most dangerous particles are ions which can

VAN ALLEN BELT FROM HALLOWEEN SOLAR STORM, AURORA

STARS: BORN, LIVE, DIE - Has a Life Cylce

• Atoms, molecules, dust traveling in space slowly accumutaltes due to gravity - form gaseous nebula

• Concentrated gas and dust collapse due to gravity. A star starts to form and then starts to shine. They usually form in groups

- It takes about a million year to from a star
- Pillars of Creation in Eagle Nebula, stellar birth place

FORMATION OF ELEMENTS VIA NUCLEAR FUSION AT CENTER generates radiation that travels out - makes the star shine

	Group Atomic Properties of the Elements												National Institute of Standards and Technology U.S. Department of Commerce					
1	1 ² S _{1/2} Hydrogen 1.008*	2		Frequently used fundamental physical constants For the most accurate values of these and other constants, visit physics, nist, gov/constants 1 second = 9 192 631 770 periods of radiation corresponding to the transition between the two hyperfine levels of the ground state of ¹³³ Cs speed of light in yacuum c c 299 729 248 m s ⁻¹ (evert)							Solids	Phys	Physical Measurement Laboratory F www.nist.gov/pml 13 14 15			Standard eference Data www.nist.gov/srd 16 17		2 ¹ S ₀ Helium 4.002602
2	13.5984 3 ² S _{1/2} Lithium 6.94* 1s ² 2s 5.3917	IIA 4 ¹ S ₀ Beryllium 9.0121831 18 ² 2s ² 9.3227		Planck const elementary c electron mass fine-structure Rydberg con	ant harge s constant stant	$ \begin{array}{c} h\\ \theta\\ m_{e}\\ m_{e}c^{2}\\ m_{p}\\ \alpha\\ R_{\infty} \end{array} $	6.626 07 1.602 177 9.109 38 0.510 999 1.672 622 1/137.035 10 973 73	x 10 ⁻³⁴ J s 7 x 10 ⁻³⁴ J s 7 x 10 ⁻³⁹ C x 10 ⁻³¹ kg 9 MeV 2 x 10 ⁻²⁷ kg 5 999 31.569 m ⁻¹	$(\hbar = h/2\pi)$		Liquids Gases Artificia Prepare	lly d	IIIA 5 ² P ^o _{1/2} B Boron 10.81* 1s ² 2s ² 2p 8.2980	6 ³ P ₀ Carbon 12.011* 1s ² 2s ² 2p ² 11.2603	VA 7 ⁴ S ^o _{3/2} N Nitrogen 14.007* 15 ² 25 ² 2p ³ 14.5341	VIA 8 ³ P ₂ O 0xygen 15.999* 15 ² 25 ² 29 ⁴ 13.6181	VIIA 9 ² P _{3/2} F Fluorine 18.99840316 1s ² 2s ² 2p ⁵ 17.4228	18 24.5874 10 ¹ S ₀ Neon 20.1797 1s ² 2s ² 2p ⁶ 21.5645
3	11 ² S _{1/2} Na Sodium 22.98976928 [Ne]3s 5.1391	12 ¹ S ₀ Magnesium 24.305* [Ne]3s ² 7.6462	3 II IB	Boltzmann co 4 IVB	onstant 5 VB	R∞c R∞hc k 6 VIB	3.289 84 13.605 69 1.380 6 x 7 VIIB	1 960 x 10 ¹⁵ H 9 eV 10 ⁻²³ J K ⁻¹ 8	9 ∨ III	10	11 IB	12 B	13 ² P ^o _{1/2} Aluminum 26.9815385 [Ne]3s ² 3p 5.9858	14 ³ P ₀ Silicon 28.085* [Ne]3s ² 3p ² 8.1517	15 ⁴ S [*] _{3/2} Phosphorus 30.97376200 [Ne]3s ² 3p ³ 10.4867	16 ³ P ₂ S Sulfur 32.06* [Ne]3s ² 3p ⁴ 10.3600	17 ² P _{3/2} Cl Chlorine 35.45* [Ne]3s ² 3p ⁵ 12.9676	18 ¹ S ₀ Argon 39.948 [Ne]3s ² 3p ⁶ 15.7596
Period 5	19 ² S _{1/2} K Potassium 39.0983 [Ar]4s 4.3407	20 ¹ S ₀ Ca Calcium 40.078 [Ar]4s ² 6.1132	21 ² D _{3/2} Sc Scandium 44.955908 [Ar]3d4s ² 6.5615	2 22 ³ F ₂ Ti Titanium 47.867 [Ar]3d ² 4s ² 6.8281	$\overset{4}{V}^{F_{3/2}}_{V_{50,9415}}$	24 ⁷ S ₃ Chromium 51.9961 [Ar]3d ⁵ 4s 6.7665	25 ⁶ S _{5/2} Manganese 54.938044 [Ar]3d ⁵ 4s ² 7.4340	26 ⁵ D ₄ Fe Iron 55.845 [Ar]3d ⁶ 4s ² 7.9025	27 ⁴ F _{9/2} Cobalt 58.933194 [Ar]3d ⁷ 4s ² 7.8810	28 ³ F ₄ Nickel 58,6934 [Ar]3d ⁸ 4s ² 7,6399	29 ² S _{1/2} Cu Copper 63.546 [Ar]3d ¹⁰ 4s 7.7264	30 ¹ S ₀ Zn ^{Zinc} 65.38 [Ar]3d ¹⁰ 4s ² 9.3942	31 ² P _{1/2} Ga Gallium 69.723 [Ar]3d ¹⁰ 4s ² 4p 5.9993	32 ³ P ₀ Germanium 72.630 [Ar]3d ¹⁰ 4s ² 4p ² 7.8994	33 ⁴ S ^o _{3/2} As Arsenic 74.921595 [Ar]3d ¹⁰ 4s ² 4p ³ 9.7886	34 ³ P ₂ Sel Selenium 78.971 [Ar]3d ¹⁰ 4s ² 4p ⁴ 9.7524	35 ² P _{3/2} Br Bromine 79.904* [Ar]3d ¹⁰ 4s ² 4p ⁵ 11.8138	36 ¹ S ₀ Krypton 83,798 [Ar]3d ¹⁰ 4s ² 4p ⁶ 13.9996
5	37 ² S _{1/2} Rb Rubidium 85.4678 [Kr]5s 4.1771	38 ¹ S ₀ Strontium 87.62 [Kr]5s ² 5.6949	39 ² D _{3/2} Y Yttrium 88.90584 [Kr]4d5s ² 6.2173	40 ³ F ₂ Zr Zirconium 91.224 [Kr]4d ² 5s ² 6.6339	41 ⁶ D _{1/2} Niobium 92_90637 [Kr]4d ⁴ 5s 6_7589	42 ⁷ S ₃ Molybdenum 95.95 [Kr]4d ⁵ 5s 7.0924	43 ⁶ S _{5/2} Tc Technetium (98) [Kr]4d ⁵ 5s ² 7.1194	44 ⁵ F ₅ Ru Ruthenium 101.07 [Kr]4d ⁷ 5s 7.3605	45 ⁴ F _{9/2} Rh 102.90550 [Kr]4d ⁸ 5s 7_4589	46 ¹ S ₀ Paladium 106.42 [Kr]4d ¹⁰ 8.3369	47 ² S _{1/2} Ag Silver 107.8682 [Kr]4d ¹⁰ 5s 7.5762	48 ¹ S ₀ Cd Cadmium 112.414 [Kr]4d ¹⁰ 5s ² 8.9938	49 ² P _{1/2} In Indium 114.818 [Kr]4d ¹⁰ 5s ² 5p 5.7864	50 ³ P ₀ Sn ^{Tin} 118.710 [Kr]4d ¹⁰ 5s ² 5p ² 7.3439	51 ⁴ S _{3/2} Sb Antimony 121.760 [Kr]4d ¹⁰ 5s ² 5p ³ 8.6084	52 ³ P ₂ Te Telurium 127.60 [Kr]4d ¹⁰ 5s ² 5p ⁴ 9.0097	53 ² P _{3/2} I lodine 126.90447 [Kr]4d ¹⁰ 5s ² 5p ⁵ 10.4513	54 ¹ S ₀ Xenon 131.293 [Kr]4d ¹⁰ 5s ² 5p ⁶ 12.1298
6	55 ² S _{1/2} Cesium 132.9054520 [Xe]6s 3.8939	56 ¹ S ₀ Barium 137.327 [Xe]6s ² 5.2117		72 ³ F ₂ Hafnium 178.49 [Xe]4f ¹⁴ 5d ² 6s ² 6.8251	73 ⁴ F _{3/2} Ta Tantalum 180.94788 [Xe]4f ¹⁴ 5d ³ 6s ² 7.5496	74 ⁵ D ₀ W Tungsten 183.84 [Xe]4f ¹⁴ 5d ⁴ 6s ² 7.8640	75 ⁶ S _{5/2} Re Rhenium 186_207 [Xe]4f ¹⁴ 5d ⁵ 6s ² 7.8335	76 ⁵ D ₄ Os ^{190.23} [Xe]4f ¹⁴ 5d ⁶ 6s ² 8.4382	77 ⁴ F _{9/2} Ir Iridium 192.217 [Xe]4f ¹⁴ 5d ⁷ 6s ² 8.9670	78 ³ D ₃ Pt Platinum 195.084 [Xe]4t ¹⁴ 5d ⁹ 6s 8.9588	79 ² S _{1/2} Au Gold 196.966569 [Xe]4f ¹⁴ 5d ¹⁰ 6s 9.2256	80 ¹ S ₀ Hg Mercury 200.592 [Xe]4f ¹⁴ 5d ¹⁰ 6s ² 10.4375	81 ² P [*] _{1/2} T1 Thallium 204.38* [Hg]6p 6.1083	82 ³ P ₀ Pb Lead 207.2 [Hg]6p ² 7.4167	83 ⁴ S _{3/2} Bi Bismuth 208.98040 [Hg]6p ³ 7.2855	84 ³ P ₂ Polonium (209) [Hg]6p ⁴ 8,414	85 ² P _{3/2} At Astatine (210) [Hg]6p ⁵ 9.31751	86 ¹ S ₀ Radon (222) [Hg]6p ⁶ 10.7485
7	87 ² S _{1/2} Francium (223) [Rn]7s 4_0727	88 ¹ S ₀ Radium (226) [Rn]7s ² 5_2784		104 ³ F ₂ R utherfordium (267) [Rn]5f ¹⁴ 6d ² 7s ² 6_01	105 ⁴ F _{3/2} Dubnium (268) [Rn]5f ¹⁴ 6d ³ 7s ² 6.8	106 Seaborgium (271) [Rn]5f ¹⁴ 6d ⁴ 7s ² 7.8	107 Bohrium (272) [Rn]5f ¹⁴ 6d ⁵ 7s ² 7.7	108 Hassium (270) [Rn]5f ¹⁴ 6d ⁶ 7s ² 7.6	109 Mt Meitnerium (276)	110 Ds Darmstadtium (281)	Roentgenium	112 Copernicium (285)	113 Uut Ununtrium (284)	114 Fl Flerovium (289)	115 Uup Ununpentium (288)	116 Lv Livermorium (293)	117 Uus Ununseptium (294)	118 Uuo Ununoctium (294)
Sj Na	Atomic Number 58 me	Ground-state Level	Lanthanides	57 ² D _{3/2} La Lanthanum 138,90547 [Xe]5d6s ² 5.5769	58 ¹ G ₄ ° Ce Cerium 140,116 [Xe]4f5d6s ² 5.5386	59 ⁴ I ^o _{9/2} Ptr Praseodymium 140.907 [Xe]4f ³ 6s ² 5.473	60 ⁵ I ₄ Neodymium 144.242 [Xe]4f ⁴ 6s ² 5.5250	61 ⁶ H ^o _{5/2} Promethium (145) [Xe]4f ⁵ 6s ² 5.582	62 ⁷ F ₀ Smm Samarium 150.36 [Xe]4f ⁶ 6s ² 5.6437	63 *S _{7/2} Eu Europium 151.964 [Xe]4f ⁷ 6s ² 5.6704	64 °D2° Gd Gadolinium 157.25 [Xe]4f ⁷ 5d6s ² 6.1498	65 ⁶ H [°] _{15/2} Tb Terbium 158.92535 [Xe]4f ⁹ 6s ² 5.8638	66 ⁵ I ₈ Dy Dysprosium 162_500 [Xe]4f ¹⁰ 6s ² 5.9391	67 ⁴ I ^o _{15/2} Ho Holmium 164.93033 [Xe]4f ¹¹ 6s ² 6.0215	68 ³ H ₆ Erbium 167.259 [Xe]4f ¹² 6s ² 6.1077	69 ² F _{7/2} Tm Thulium 168.93422 [Xe]4f ¹³ 6s ² 6.1843	70 ¹ S ₀ Ytterbium 173.054 [Xe]4t ¹⁴ 6s ² 6.2542	71 ² D _{3/2} Lutetium 174.9668 [Xe]4f ¹⁴ 5d6s ² 5.4259
Stan Ato Wei G	dard 1 mic [Xe ght [†] 5 round-state	40.116 e]4f5d6s ² 5.5386 lonization Energy (e)	Actinides	89 ² D _{3/2} Actinium (227) [Rn]6d7s ² 5.3802	90 ³ F ₂ Thorium 232.0377 [Rn]6d ² 7s ² 6.3067	91 ⁴ K _{11/2} Pa Protactinium 231.03588 [Rn]5f ² 6d7s ² 5.89	92 ⁵ L ^o ₆ U Uranium 238.02891 [Rn]5f ³ 6d7s ² 6.1941	93 ⁶ L _{11/2} Neptunium (237) [Rn]5f ⁶ 6d7s ² 6.2655	94 ⁷ F ₀ Plutonium (244) [Rn]5f ⁶ 7s ² 6_0258	95 °S _{7/2} Americium (243) [Rn]5f ⁷ 7s ² 5.9738	96 °D2° Cm Curium (247) [Rn]5f ⁷ 6d7s ² 5.9914	97 ⁶ H ^o _{15/2} Bek Berkelium (247) [Rn]5f ⁹ 7s ² 6.1978	98 ⁵ I ₈ Cf Californium (251) [Rn]5f ¹⁰ 7s ² 6.2817	99 ⁴ I [°] _{15/2} Es Einsteinium (252) [Rn]5f ¹¹ 7s ² 6.3676	100 ³ H ₆ Fm Fermium (257) [Rn]5f ¹² 7s ² 6.50	101 ² F _{7/2} Md Mendelevium (258) [Rn]5f ¹³ 7s ² 6_58	102 ¹ S ₀ Nobelium (259) [Rn]51 ¹⁴ 7s ² 6.65	103 ² P _{1/2} Ltr Lawrencium (262) [Rn]5 ¹⁴ 7s ² 7p 4.90
†Bas	ed upon ¹² C,	. () indicates	the mass n	umber of the	ongest-lived	isotope.	UPAC conv	entional aton expressed in	nic weights; s n intervals; s	tandard ator	nic weights f for an exp l ar	or these nation and va	For lues.	a descript	ion of the o	data, visit p	ohysics.nis	st.gov/data

118 Elements: Gases (pink), Solids (white), Liquids (blue) A lab generated yellow element is replaced with astrophysical observation
Elements are created through nuclear fusion. It starts with creating He from 2 H atoms. As plasma density and T increase in the stellar core, Li, C, N, O etc are created, and the process continues up to Fe

"OUR COSMIC SELVES": (NY Times, April 13, 2015)

Astronomer Prof. Carl Segan promoted: "We are made of star dusts"

• Science continues to show thatd life on Earth is intimately

Mysterious galaxy 3521 Our galaxy: MILKY WAY

The spiral galaxy NGC 3521 is located around 26 million light years away in the constellation Leo, with enormous amounts of surrounding dust and stray stars glowing far out from its disk.

Gas + stars form Galaxy, MILKY WAY, Our Galaxy!

- Milky Way: 200-400 billion stars, including the Sun
- Milky way spherical . The Sun is near the edge of it

UNIVERSE through **RADIATION**:

Most Complete 3D Map of the universe (Created: By 2MASS - 2-Micron All Sky Survey over 3 decades)

- Includes 43,000 galaxies extended over 380 million light years y
- Redshifts, or measurements of galaxy distances, were added
- Missing black band in the middle because of invisibility behind our Milky Way

LIFE CYCLES OF AVERAGE AND MASSIVE STARS

UNIVERSAL ELEMENT FORMATION

© Copyright. University of Waikato I www.sciencelearn.org.nz

FATE OF OUR SUN IN 6-7 BYR: RED GIANT

• Red Giant is a dying expanded star with H fuel gone.

• The heat and radiation will put materials out to form a red giant. The outer atmosphere is inflated and tenuous, making the radius immense. Our earth will be engulfed by the Sun.

PLANETARY NEBULA - Endpoint of a Star [PNe K 4-55 below]

• Red giant will slowly become planetary nebulae

• Condensed central star: very high T ~ 100,000 K (>> T \leq 40,000 K - typical star). Envelope: thin gas radiatively ejected & illuminated by central star radiation: red (N), blue (O). Lines of low ionization states - low ρ & low T

End of life: WHITE DWARF - Ex: Dianmond white dwarf 2014

• "Astronomers discover Earth-sized diamond-encrusted white dwarf" 2014. Its so old that it has crystallized into a Earth-sized diamond

• A white dwarf is very dense: its mass is comparable to that of the Sun, while its volume is comparable to that of Earth.

- Abour 98% stars will end up as white dwarfs
- Untimately they will be black dwarfs after loosing all energies

Creation of Heavy Elements: Supernova explosion, r-process

Supernova remnant Cassiopeia A: • Observation: Spitzer (Infrared - red), Hubble (Visible - yellow), Chandra (X-ray - green & blue)
• As a massive star collapses & expand, Heavier elements are created by r-process. New source of r-process: mergers of black holes, neutron stars - a kilonova event

NEUTRON STAR - At center of Crab Nebula

• After supernova explosion strong gravity due to stellar mass, can cause electrons to combine with protons to form neutrons.

• The Crab Nebula, the result of a bright supernova explosion At its center is a super-dense neutron star, rotating once every 33 milliseconds, shooting out rotating lighthouse-like beams from radio waves to

GRAVITATIONAL WAVES (GW) AND 3 LIGO SET-UPS

• Einstein predicted that an accelerating or decelerating mass will generate gravitational waves which will travel at the speed of light. It is similar to that of a charged particle which gives out electromagnetic waves. However, the GWs are extremely weak to detect - very large radio waves. They will expand and contact the earth if they pass.

- Russian idea of using laser interference to detect small change by the GWs in 1960s was implemented by Rainer Weiss in the LIGO set-up
- first detection in 2015 after over 20 years Nobel prize in 2017
- 3 far-apaer set-ups: Hanford in Washingotn State, livingston in Luisiana, Pisa in Italy help to dtect the direction of GWs.

First ever black hole image released, Apr 10, 2019

• The first ever image of a black hole, located in a distant galaxy, measures 40 Bkm across - 3M times the size of the Earth - and has been described as "a monster". It was composed from photographs by a network of eight "Event Horizon" telescopes across the world.

• The monster black hole in the center of our Milky Way galaxy: 4M time heavier than our Sun, tracked by the movement of 28 stars circling around it - Nobel prize in 2020

"STAR EATING BLACK HOLE", "Scientists watch a black hole shredding a star" (NASA, OSU 2019)

• Detected by TESS of NASA, AASA-GN led by OSU

• Tidal disruption event (TDE) - when a star gets too close to a black hole • Depending on a number of factors, the black hole can either absorb the star or tear it apart into a long, spaghetti-like strand

RADIATION FROM ATOMS & SPECTRUM

- Energy levels are quantized
- An electron can be excited to higher levels. While dropping down,
- it gives out a photon. Radiation contains photons of many energies
- SPECTURM: Splitting the radiation in to its colors: Rainbow, C

THE 1ST OBSERVATORY, SAMARKAND, 1420, BY MUS-LIM RULER ULUGH BEG (Iran has an older model)

• Ulugh Beg built the madrasa in 1420 in Samarkand and extended it to an observatory

• Beg himself recorded many astronomical objects.

Large Binocular Telescope in Arizona (8.4m Mirrors, NIR-optical)

L: Hubble space telescope, R: International Space station of NASA

ATMOSPHERIC OPACITY - ABSORPTION OF RADIA-TION

- Higher opacity -less radiation reaching earths surface
- Opacity determines types of telescopes earth based or space based
- Gamma, X-ray, UV are blocked while visible light passes through
- CO_2 , H_2O vapor, other gases absorb most of the infrared frequencies
- Part of radio frequencies is absorbed by H_2O and O_2 , and part passes through

James Webb Space Telescope (JWST): Infrared 0.6 - 28.5 μm

- 18 mirrors combine to create 6.5m Hubble: 2.4m diameter lens
- Mass: 6500 kg Launch: March 2021
- Expected to detect lines of kilonova events

Determination of OPACITY: RADIATIVE ATOMIC PROCESSES

Table of Contents

- 1. Introduction
- 2. Atomic structure
- 3. Atomic processes
- 4. Radiative transitions
- 5. Electron-ion collisions
- 6. Photoionization
- 7. Electron-ion recombination
- 8. Multi-wavelength emission spectra
- 9. Absorption lines and radiative transfer
- 10. Stellar properties and spectra
- 11. Stellar opacity and radiative forces
- 12. Gaseous nebulae and HII regions
- 13. Active galactic nuclei and quasars

and Arizona, Germany, Italy

Large Binocular Telescope (LBT) Largest Telescope: 8.4m Mirrors (11.8m), NIR-Optical

