Climate-smart Agriculture: Healthy Soils, Healthy Food, Healthy People

Rafiq Islam, Ph.D.

Director **Soil, Water, and Bioenergy Resources OARDC-OSU South Centers** (islam.27@osu.edu)

Global Issues - Climate and Agriculture - S12; Friday September 13, 2019, Ag Administration, The Ohio State University, Columbus, USA.

AND ENVIRONMENTAL SCIENCES

Conduct mission-based research

Basic research (academic // innovative) Applied research (collaborative / social / policy)

Provide education

Academic education Professional development (in service) Capacity building

Disseminate evidence-based knowledge, information and technology

Traditional outlets Electronic outlets

Scholarship/Fellowship Opportunities

- USDA-Borlaug short-term scholar program (12 weeks)
- USDA-Faculty exchange fellowship program (6 months)???
- Ohio Sate University President's fellowship (Two-year post-doc)
- American Councils for International Education (ACIE)
- Faculty sponsored short-term fellowship program (2-6 months)**

Fulbright Programs

Student Core Program

(Master's, Ph.D and Ph.D Dissertation Research Grant)

- Financial support up to \$35,000
- One to two academic years depending on the length of their program

Visiting Scholar Program

Designed for academic scholars to conduct a full-time research project in the States from 3 to 12 months.

Community College Initiative (CCI) Program

U.S. Department of State provides educational grants for one academic year to community college students who want to study in the States.

All Ecosystem Components Including Human Beings are Influenced by Nature's Reactive Cycles: Water, Carbon, and Nitrogen

http://climatecolab.org/plans/-/plans/contestId/1300210/planId/1307202

Potential climate change impact

Impacts on...

Forest composition

Geographic range of forest

Forest health

and productivity

Water resources

Water supply

Water quality

Competition for water

coastal areas

Erosion of beaches

Inundation of

coastal lands

additional costs to

protect coastal

communities

species Cryosphere: diminishing glaciers

GRAPHIC DESIGN : PHILIPPE REKACEWICZ

GRID (?) Arendal UNEP

Source: United States environmental protection agency (EPA).

Western-Siberian Plain

Round lakes formation as a 4th stage of circle succession of permafrost degradation (Kirpotin 2005)

Colorado: disputes between the 7 US states and Mexico it flows through. The river is so overused, that it no longer reaches the sea!. 90% abstracted before reaches Mexico

Current and future water conflicts

As water supply/quality decreases, tensions will rise as different players try to access common water supplies.

For Tigris-Euphrates, Iraq + Syria concerns that Turkey's GAP project will divert their water.

Note: although there have been rising tensions globally, many areas demonstrate effective management to diffuse the situation and create more equitable and sustainable demand-supply balance, such as the Mekong River Committee,& the Nile River Initiative

Nile hotly disputed between Ethiopia and Sudan ,who control its headwaters, and Egypt. River basins currently in dispute

River basins at risk in the future

Large International drainage basins

The Aral Sea, an inland drainage basin, once the world's 4th largest inland lake has shrunk sine the 1950s after the 2 rivers feeding it: the Amu Dayra and Syr Darya were diverted for irrigation. By 2007 the sea was 10% of original volume and split into 2 lakes. The ex soviet states are in conflict: Uzbekistan , Turkmenistan and Kazakhstan.

Brown clouds and solar dimming

Long-term climate data suggested that **Bangladesh**, Burma, Bhutan, India, Nepal, Pakistan, and Thailand will have shorter days for crop growth due to solar dimming.

Ahsan et al. (2010)

Wheat production in the US//Canada

Canada's Climate Warms to Corn as Grain Belt Shifts North

Crop growth, yield and food quality

• Corn, millet, sorghum, & sugarcane are C_4 plants (highly efficient) at current levels of CO_2 .

• Soybeans, rice, wheat, barley, oats, cotton, & alfalfa are C₃ plants (moderately efficient) at current levels of CO₂.

The C₃ plants will be more efficient at high CO₂ levels.
The C₄ plants will be affected – decrease in crop yield & food quality.

Farming in a Warmer World on Degraded Soils with a Shortage of Water

Crop forecasts show that some countries farther from the Equator could benefit from a warmer world, but others would be worse off by 2080 if global warming were to proceed unchecked. Long-range forecasts vary widely; the following is a synthesis of available forecasts by country or region.

Note: These figures assume that crops grow faster because of higher levels of carbon dioxide in the air. But some scientists say that the actual effects of global warming could be worse than shown here, because the benefits of extra carbon dioxide may not appear if crops lack proper rainfall, proper soil and clean air.

Source: "Global Warming and Agriculture: Impact Estimates by Country," by William R. Cline, Peterson Institute, 2007.

Conservation tillage and cover crops

Soil Temperature Differences

Conventional /No-till??

No-till + cover crops

Using radish to reduce SOIL COMPACTION and control soil-borne disease.

Climate-smart precision fertigation (iCAST)

Mitsui iCAST Technology: Growing corn and soybeans under *simulated desert-like conditions* with re-circulating water- and nutrient systems.

iCAST system

Results shown that 45% less water & 50% less nutrients required by iCAST than that of the drip irrigation (currently the most efficient).

Spraying Aspirin to reduce drought stress on soybeans at the Askaniyske State Experimental Farm, Kherson, Ukraine.

Improved crop varieties

Drought tolerant, efficient water and nutrient user, and salt-resistant crops.

Natural selection Breeding & genetics research

Renewable energy and specialty crops

Guayule Plantations (for latex production)

Warm-season grass

Miscanthus giganteus

Hemp (strain of *Cannabis sativa* for **Cannabidiol** (CBD) is a type of cannabinoid, a chemical found naturally in cannabis (marijuana and hemp) plants. Also, for fiber.

Recycling municipal (Biosolids) and industrial wastes (FGD-gypsum) from coal-power plants as fertilizer//amendments.

Results

Fig. 1: Conservation agriculture impacts on corn, soybean, and wheat yields

Fig. 2: Salicylic acid (aspirin) effects on soybean yield (based on 2018/19 data).

Fig. 3: Tillage and cropping diversity (with cover crops) effects on corn and soybean crude protein content (based on 2012 to 2017 data)

Tillage/cover crop management practices

Fig. 4: Tillage effects on most essential **amino acid profiling** of soybean grain (based on 2017 data)

Fig. 5: Tillage effects on **amino acid profiling** of soybean grain (based on 2017 data)

Fig. 6: Tillage and cover crops effect on **macronutrient density** of corn grain (based on 2018 data)

CFAES

Fig. 7: Tillage and cover crops effect on **micronutrient density** of corn (based on 2018 data) ₅

CFAES

Fig. 8: Tillage and salicylic acid effect on nutrient density of corn and soybeans (based on 2018 data)

Fig. 9: Tillage and cropping diversity effects on **food quality** of corn and soybean (based on 2017 data)

Tillage/cover crop management practices

Conclusions

- Climate change//ecosystems degradation <u>WILL</u> affect crops/food quality.
- Conservation agriculture supports economic crop production.
- No-till cropping diversity increased crop yields & improve food quality.
 - Protein content
 - Amino acids
 - ^ы Nutrient density
- Chemical inducing (Aspirin) improve crop's drought tolerance
 - Amino acid (proline)
 - Nutrient density

Healthy People

Healthy Food

The Miracle We Take For Granted