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Abstract: Single electron hydrogen or hydrogenic ions have analytical forms to evaluate the atomic
parameters for the inverse processes of photoionization and electron-ion recombination (H I + hν↔
H II + e) where H is hydrogen. Studies of these processes have continued until the present day
(i) as the computations are restricted to lower principle quantum number n and (ii) to improve the
accuracy. The analytical expressions have many terms and there are numerical instabilities arising
from cancellations of terms. Strategies for fast convergence of contributions were developed but
precise computations are still limited to lower n. This report gives a brief review of the earlier
precise methodologies for hydrogen, and presents numerical tables of photoionization cross sections
(σPI), and electron-ion recombination rate coefficients (αRC) obtained from recombination cross
sections (σRC) for all n values going to a very high value of 800. σPI was obtained using the precise
formalism of Burgess and Seaton, and Burgess. αRC was obtained through a finite integration that
converge recombination exactly as implemented in the unified method of recombination of Nahar
and Pradhan. Since the total electron-ion recombination includes all levels for n = 1 −∞, the total
asymptotic contribution of n = 801−∞, called the top-up, is obtained through a n−3 formula. A
FORTRAN program “hpxrrc.f” is provided to compute photoionization cross sections, recombination
cross sections and rate coefficients for any nl. The results on hydrogen atom can be used to obtain
those for any hydrogenic ion of charge z through z-scaling relations provided in the theory section.
The present results are of high precision and complete for astrophysical modelings.

Keywords: atomic data; hydrogenic ions; photoionization cross sections; electron-ion recombination
cross sections and rate coefficients

1. Introduction

Photoionization and electron-ion recombination are inverse processes which can be
described as

X+z + hν 
 X+z+1 + e (1)

where a hydrogenic ion X ion of charge +z is being ionized by a photon of energy hν.
e is the ejected photoelectron or recombining ion. As a single electron system, there is
no doubly excited autoionizing state and hence no resonances in these two processes.
These are the two most dominant radiative processes along with photoexcitations and
electron-impact excitations in astrophysical plasmas. Astrophysical modeling for spectral
analysis for abundances, ionization fractions, diagnostics for the physical and chemical
conditions, plasma opacity, etc. require electron-ion recombination rate coefficients and
photoionization cross sections, particularly if the plasma is around or near a radiative
source, such as a star where plasma is being ionized by photons. In the near-empty space,
the emission lines of hydrogen from high-lying n-levels are produced by electron-ion
recombination as an electron combines with the ion and cascades down to lower levels.
The process also increases the intensity of lines from low lying levels by populating the
levels. In dense plasmas, while photoexcitations, deexcitations through bound-bound
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transitions appear as lines, photoionization and electron-ion recombination play important
role in the shape and enhancement in the spectral background.

As the most abundant element in the universe, precise values for the atomic processes
are needed for all applications. Photoionization and electron-ion recombination of a
hydrogen atom have continued to be studied by many for almost a century, such as earlier
in the past by Kramers [1] and recently by Kotelnikov and Milstein [2], Rosmej et al. [3].
The solution for photoionization cross sections (σPI) and recombination rate coefficients
(αRC) for hydrogenic ions can be expressed exactly. Studies by several investigators, such as
Sugiura [4], Gordon [5], Gaunt [6], Menzel and Perkis [7], Bethe and Saltpeter [8], Burgess
[9], Seaton [10], Burgess and Seaton [11] worked for the exact general expression for the
total photoionization cross section σPI(n, z, hν). However, a major difficulty is faced in the
evaluation of the electric dipole matrix elements for the bound-free transitions nl − kl′,
where k is the momentum of the ejected photoelectron. The transition integral leads to
Gaunt factor which has infinite terms and cancellation of contributions of terms which
cause slow computation and numerical instabilities.

Recurrence relations were introduced for faster convergence of the infinite number
of terms in the bound-free integral (e.g., [12]). However, implementation has remained
limited. For higher accuracy with faster approaches for photoionization cross sections
and electron-ion recombination rates of hydrogenic ions, the investigation has continued.
Omidvar and Guimaraes [13] derived the formulations for optical oscillator strengths for
bound-free transitions, f (n, l, n2ε) by analytic continuation of the bound-bound oscillator
strengths. They provided tabulated optical oscillator strengths for n ≤ 50. The achievement
of high precision has remained a challenge. Computations have been limited to cover a
fairly small range of n or are introduced with some simplifying approximation.

The co-developer of the astrophysical modeling code, MAPPINGS, Ralph Sutherland
of the Australian National University wrote: “... I am having trouble with hydrogen (!),
and especially the higher Balmer (n > 10) lines as observed in HII regions in deep observa-
tions Mike (Dopita) made. They are much too bright in the observations, and even give
negative reddening solutions in contradiction to other reddening indicators. ... MAPPINGS
has the poor situation ...I cannot change collisions, or l-mixing rates, include pumping,
or indeed simply run a fully self-consistent large n− l hydrogen model. I’m hoping to
make a multi-level atom model with better collisions and opacities to resolve both high
n lines as well as nebula continuum in even far from equilibrium conditions" (private
communication, 2021).

The present work aims to present state-specific photoionization cross sections, electron-
ion recombination rate coefficient of hydrogen ion for a very large number of n going up
to 800, total recombination cross sections, and relevant codes that can be incorporated to
astrophysical modelings and extend to hydrogenic ions of any charge z.

1.1. Existing Values for Photoionization Cross Sections

Green et al. [14] calculated photoionization cross sections σPI of hydrogen and pro-
vided earlier values of σPI in tabular form. Karzas and Latter [15] provided the Gaunt
factors relevant to the ground state photoionization of hydrogen. Using them, Ditchburn
and Öpik [16] reported the first accurate photoionization cross section for the ground state
of hydrogen. They obtained σPI at ionization threshold to be 6.3 Mb. This was verified
experimentally by Palenius et al. [17] and Norwood and Ng [18].

Various codes use central field approximation to compute background feature of
σPI for complex atomic systems (e.g., [19,20]). They use distorted wave approximation
to describe the continuum electron. Such programs can provide σPI for hydrogen to a
good approximation. However, use of Gaunt factors are needed for precise values. Using
Gaunt factor and recurrence relations of Burgess [12], Seaton computed the first set of
high accuracy photoionization cross sections of nl levels, where n = 1 - 10 and l = n− 1,
of hydrogen under the Opacity Project (OP) (The Opacity Project Team [21]). OP carried
out the first systematic detailed study of photoionization of the ground and many excited
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states of the astrophysically important multi-electron atomic systems, from hydrogen to
iron. Seaton’s cross sections were not published, but are available at the OP database,
TOPbase [22]. Atomic data for the same levels with n = 1 - 10 are also available with a finer
energy mesh at the database NORAD-Atomic-Data [23,24].

1.2. Existing Values for Electron-Ion Recombination of Hydrogenic Ions

The electron-ion recombination coefficients for n-shells, which are summed over l-
levels, for hydrogen were obtained by Seaton [10], and later on for nl levels by Burgess
[12]. Using the expressions on the Kramers-Gaunt factor gI I by Seaton [10], Flower and
Seaton [25] developed the code which produced accurate radiative recombination rates for
hydrogen. Brocklehurst [26] extended the code further to compute radiative recombination
rates of hydrogenic ions for the study of level populations in gaseous nebulae. Brock-
lehurst’s work was used later by Hummer and Storey [27] for computation of radiative
recombination rates of hydrogenic ions in their study of recombination lines. Hummer [28]
reported total recombination and energy loss coefficients for hydrogenic ions which are
being used widely till today. In Ferland et al. [29] for the study of broad line regions of
active galactic nuclei, Nahar computed the level specific recombination rate coefficients of
hydrogen up to n = 10, but introduced a finite limit integral approach to obtain the precise
values for the rates. The approach was implemented for the top-up contributions of nl
levels with n = 4 - 10 and l = 3 - 9 of the unified method of electron-ion recombination of
Nahar and Pradhan [30,31] and Nahar [32] for the initial applications of the method. All
these work do not provide the level-specific recombination rate coefficients and high-n
data needed for various astrophysical applications.

Following the study of electron-ion recombination of various ions by Nahar [33],
importance of the contributions of the high-n recombination at low temperature was
realized. Nahar computed those contributions from hydrogen atom and used the data
to compute recombination of various hydrogenic ions through z-scaled relation. The
contributions were incorporated to revise values for recombination rate coefficients in
[33]. The present work extends those works and develops the code “hpxrrc.f” to compute
photoionization and electron-ion recombination for any nl level of hydrogen and study the
characteristic features.

2. Theory of Photoionization and Electron-Ion Recombination of Hydrogenic Ions

Brief descriptions of the theoretical background of the two inverse processes are given
below for the general guidance of the present work.

2.1. Photoionization of Hydrogenic Ions

A brief review of the theory is needed to understand the present approach and the
results presented. The first treatment for photoionization process was based on classical
approximation. For low electron energy, the motion of the electron in hydrogen can be
described by a classical trajectory to a good degree of accuracy. Using semi-classical
approach, Kramers [1] obtained the following simple expression for the ground state
photoionization cross sections, σPI , of hydrogen

σPI =
8π

31.5c
1

n5ω3 (2)

where ω is the photon frequency and n is the principal quantum number. The above
equation has been derived later by others, e.g., by Burke [34] and Kogan et al. [35] but
differs in format. The above equation is similar to what Burke obtained except multiplying
by a2

o . Kramers cross section at the ionization threshold of hydrogen is known to be about
7.8 ×10−18 cm2, e.g., Rosmej et al. [3]. This is not the exact value of the cross section,
6.3 ×10−18 cm2 mentioned above, but gives the correct behavior at higher energies. The
formula is often used to obtain approximated σPI at very high energies and for highly
excited states of hydrogenic and multi-electron systems e.g., [36].
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The energy of the photon, hν, ionizing a hydrogenic ion of charge z can be expressed
in terms of ionization threshold energy of hydrogen, IH as

h̄ω = hν = hRcz2
(

1
n2 + ε

)
= IH(z2/n2 + k2) (3)

where energy of the ejected electron of a hydrogenic ion of charge z is k2 = z2ε in terms
of hydrogen electron energy ε and Rydberg units (IH ≈ 13.6 eV). Using the above photon
energy, the total photoionization cross section for shell n of a hydrogenic ion is given by
[10]

σPI(n, z, hν) =
64παa2

o

3
√

3
n
z2

1
(1 + n2k2)3 gI I(k, n) (4)

where gI I is the Kramers-Gaunt factor and is of order unity for hydrogenic ions. This
expression is similar to what Kramers [1] obtained for the ground state photoionization of
hydrogen except for the gaunt factor gI I . If gI I is set exactly equal to 1, then the expression
reduces to that of Kramers [1]. For photoionization of hydrogen at the ionization threshold
of the ground state, z = 1, n = 1, k = 0. If we choose gI I = 1 and use α = 7.297×10−03 and
ao = 0.529−08 cm, the above expression gives σPI(1, 1, IH) = 7.8×10−18 cm2 which is same
as that from Kramers formula [1]. gI I can be expressed using hypergeometric functions [7],
and is difficult to evaluate exactly. The asymptotic expansion for gI I derived by Menzel
and Pekeris [7] and corrected by Burgess [9] has the form (given in [10])

gI I(n, ε) = 1 +
0.1728

[n(u + 1)]2/3 (u− 1)− 0.0496
[n(u + 1)]4/3 (u

2 +
4
3

u + 1) + ... (5)

where u = n2ε. The expression indicates the complexity in computing the infinite number
of terms of the series and the instability that may arise from cancellation of values.

Let the ion being ionized be in the quantum state specified by the principal quantum
number n and orbital quantum number l. Photoionization cross section of a hydrogenic
atom for subshell nl is given by ([11], details can also be found in [36])

σnl(k2) =
4παa2

o
3

n2

z2 ∑
l′=l±1

max(l.l′)
2l + 1

T(n, l : K, l′), (6)

where
T(n, l : K, l′) = (1 + n2K2)|g(n, l : k, l′)|2, (7)

and the bound-free integral g is

g(n, l : k, l′) =
z2

n2

∫ ∞

0
Pnl(r)rFkl′(r)dr (8)

where α = 2πe2/hc is the fine structure constant, K = k/z, l′ is the angular momentum
quantum number of the ejected electron. 4παa2

o/3 = 8.5594× 10−19 cm2. Pnl(r) and Fkl(r)
are the initial and final radial wave functions of the ejected electron, which satisfy[

d2

dr2 −
l(l + 1)

r2 +
2z
r
+

{
−z2/n2

k2

}]{
Pnl(r)
Fkl(r)

}
= 0 (9)

and are normalize such that∫ ∞

0
Pnl(r)Pn′ ldr = δnn′ , and

∫ ∞

0
Fkl(r)Fk′ ldr = πδ(k2 − k′2), (10)

Fkl(r) being normalized to asymptotic amplitude k−1/2. As mentioned earlier, the main
numerical challenge arises in calculating the exact bound-free dipole allowed transition
matrix nl → kl′ in contrast to using approximations, such as distorted wave approximation.
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To evaluate the general bound-free integral, Burgess and Seaton [11] introduced ρ→ zr
and K = k/z which can reduce the equations from direct z-dependence, and substituted
the function,

pnl(ρ) = z−1/2Pnl(r), fKl(ρ) = z1/2Fkl(r) (11)

in the Schrödinger equation and obtained[
d2

dρ2 −
l(l + 1)

ρ2 +
2
ρ
+

{
−1/n2

K2

}]{
pnl(ρ)
fKl(ρ)

}
= 0 (12)

The functions are pnl and fKl normalize such that∫ ∞

0
pnl(ρ)pn′ l(ρ)dρ = δnn′ , and

∫ ∞

0
fKl(ρ) fK′ l(ρ)dρ = πδ(K2 − K′2). (13)

Then the bound-free integral [11,12]

g(n, l : K, l′) =
1
n2

∫ ∞

0
pnl(ρ)ρ fKl′(ρ)dρ (14)

does not explicitly depend on z. The solutions pnl(ρ) and fKl(ρ) can be written as ([5,8])

pnl(ρ) =

√
(n + l)!

(n− l − 1)!
2ρ

n

l+1 e−ρ/n

n(2l + 1)! 1F1(l + 1− n; 2l + 2;
2ρ

n
) (15)

and

fKl(ρ) =

√√√√ π

2(1− e−2π/K)

l

∏
s=0

(1 + s2K2)
(2ρ)l+1

(2l + 1)!
eiKρ

1F1(l + 1− i/K; 2l + 2;−2iKρ) (16)

where 1F1 are confluent hypergeometric functions. Substitution of the functions in the
found-free transition integral leads to [5,8], given in [12])

g(n, l; K, l′ = l ± 1) =
√

π
2

(n+l)!
(n−l−1)!(1−e−2π/K) ∏l′

s=0(1 + s2K2)
(

4n
1+n2K2

)l<+1
×

exp[− 2
K arctan(nK)]

4n2(2l±1)! Y±
(17)

where
Y+ = iη

(
n−iη
n+iη

)n−l[
2F1

(
l + 1− n, l − iη; 2l + 2; −4niη

(n−iη)2

)
−(

n+iη
n−iη

)2
2F1

(
l + 1− n, l + 1− iη; 2l + 2; −4niη

(n−iη)2

)
]

(18)

and

Y− =
(

n−iη
n+iη

)n−l−1[
2F1

(
l − 1− n, l − iη; 2l; −4niη

(n−iη)2

)
−(

n+iη
n−iη

)2
2F1

(
l + 1− n, l − iη; 2l; −4niη

(n−iη)2

)
]

(19)

In the above equations, η = 1/K and 2F1 are hypergeometric functions. The expres-
sions are not suitable to compute in general because of the large number of terms occurring
in the series when n− l is large, and also for some ranges of the parameters, there is gross
cancellation between the terms of the series [12].

The following subsection gives the recurrence relations for fast computation of the
g-integral. They have been implemented in the program for the present photoionization
cross sections and can be used for any energy. However, very high energy region can still
have some numerical instability. Since the treatment provides σPI which agrees with those
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from Kramers formula, σPI at high energies can easily be obtained using Kramers formula
or Seaton’s formula without the Gaunt factor from a known value at a lower energy as

σPI(z, hν) = σ1

(ν1

ν

)3
(20)

where σ1 is the known cross section at photon energy hν1.
For very high n, beyond n = 800 as considered in the present work, the value of

σPI may not have any practical importance as they give single point or a few non-zero
values. If there is a need, program “hpxrrc.f” can be used for σPI for n beyond 800. Kramers
formula or Seaton’s formula without gI I can also be used.

The cross section for each nl level belonging to n, σpi(nl, k2), is related to the total
cross section, σPI(n, z, hν) through the summed contributions as

σPI(n, z, hν) == ∑
l

(
2l + 1

n2

)
σPI(nl, z, k2) (21)

2.1.1. Recurrence Relations for the g Bound-Free Transition Integral

The instability of the bound-free g integral can be removed through use of its recur-
rence relations that satisfy the exact matrix elements. Biedenharn et al. [37] and Alder and
Winther [38] introduced the recurrence relations of g(n, l; K, l’) connecting matrix elements
having different values of l (see [12]),

2n
√
[n2 − (l − 1)2][1 + l2K2]g(n, l − 2; K, l − 1) = [4n2 − 4l2 + l(2l − 1)(1 + n2K2)]×

g(n, l − 1; K, l)− 2n
√
[n2 − l2][1 + (l + 1)2K2]g(n, l; K, l + 1)

(22)

2n
√
[n2 − l2][1 + (l − 1)2K2]g(n, l − 1; K, l − 2) = [4n2 − 4l2 + l(2l + 1)(1 + n2K2)]×

g(n, l; K, l − 1)− 2n
√
[n2 − (l + 1)2][1 + l2K2]g(n, l + 1; K, l)

(23)

Using these relations, Burgess [12] adopted an alternate procedure to calculate the
transition integrals. He simplified the relations with approximation of the hypergeometric
functions and produced a revised set of recurrence relations satisfied by the exact transition
matrix elements and enable them to be evaluated rapidly and to a high accuracy. He defined

g(n, l; K, l′) =

√√√√ (n− 1)!
(n− l − 1)!

l′

∏
s=0

(1 + s2K2)(2n)l−nG(n, l; K, l′) (24)

where the quantities G(n, l; K, l′) satisfy the recurrence relations

G(n, l − 2; K, l − 1) = [4n2 − 4l2 + l(2l − 1)(1 + n2K2)]G(n, l − 1; K, l)−
4n2(n2 − l2)[1 + (l + 1)2K2]G(n, l; K, l − 1),

(25)

G(n, l − 1; K, l − 2) = [4n2 − 4l2 + l(2l + 1)(1 + n2K2)]G(n, l; K, l − 1)−
4n2[n2 − (l − 1)2)[1 + l2K2]G(n, l + 1; K, l),

(26)

Since repeated use of the two G relations does not involve division or the evaluation of
square roots, this scheme is very suitable for the fast computing. These relations have been
used by others, such as [25].

2.1.2. Ground State Photoionization Cross Sections of Hydrogen

The exact analytical form for the ground state photoionization of a hydrogenic ion is
available. The electron at ground state 1s can photoionize only to continuum εp. The exact
expression can be obtained using the bound state wavefunction of 1s and the radial
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wavefunction of the continuum electron with l = 1 in a Coulomb field. Using the expression
for the confluent hypergeometric function F(α, γ, x),

Fε,1(r) =
2
3

[
ε(1 + ε2)

1− exp(−2π/ε)

]1/2

r2e−iεrF(
i
ε
+ 2, 4, 2iεr) (27)

photoionization cross section of the ground state of hydrogen can be obtained as (e.g.,
[16,39,40])

σPI =
σo

Z2

(ν1

ν

)4 e4−(4/ε)tan−1ε

1− e−2π/ε
, σo =

28π2α

3e4 a2
o = 6.3× 10−18cm2 (28)

σo is the threshold cross section for hydrogen and hν1 = z2hνo ≈ 13.6z2 eV is the ioniza-
tion threshold energy. The value of σo was obtained first by Ditchburn and Öpik (1962).
Photoionization cross section of hydrogen atom in the ground state, can also given by a
simpler formula [41]

σPI(Mb) = 1.044× 10−8λ3gI I (29)

where λ is the photon wavelength in Angstrom . The relevant Gaunt factors, which depends
also on λ, for the ground state photoionization, are available from Karzas and Latter (1961).

2.2. Electron-Ion Recombination of Hydrogenic Ions

The theoretical model for recombination of hydrogenic ions used in the present
work is based on the unified method developed by Nahar and Pradhan [30–32]. In the
past significantly more emphasis was given to calculating the radiative rate coefficient of
hydrogen than photoionization. As the inverse processes, recombination cross section σRC
can be obtained from the photoionization cross section σPI through the principle of detailed
balance,

σPI
gi
p2

e
= σRC

gj

p2
hν

(30)

where gi and gj are the statistical weight factors of the atom being ionized and of the
residual ion. The photon momentum is phν = hν/c and the photoelectron momentum is
pe = mv =

√
2mε. Hence,

σRC = σPI
gi
gj

h2ν2

m2c2v2 = σPI
gi
gj

h2ν2

2mc2ε
(31)

It may be noted that σRC diverges at photoelectron energy ε approaches zero.
Most astrophysical applications need the temperature dependent quantity, the recom-

bination rate coefficient αRC(T). This is obtained from averaging σRC over Maxwellian
distribution function of electrons at temperature T,

f (v, T) =
4√
π

[ m
2kT

]3/2
v2e−

mv2
2kT (32)

Using f (v, T), ε = 1
2 mv2, and dε = mvdv,

αRC(T) =< σRCv >=
∫ ∞

0
vs.σRC f (v, T)dv =

4√
2πm

(
1

kT
)3/2

∫ ∞

0
ε e−

ε
kT σRCdε (33)

The expression, Equation (33) introduces some uncertainty at and near zero photoelectron
energy where σRC diverges. The uncertainty is removed by replacing σRC with σPI through
the principle of detailed balance as [31]
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αRC(T) =
gi
gj

2
c2kT
√

2πm3kT

∫ ∞
0 h2ν2σPI(ε)e−

ε
kT dε = 1.8526×104

T3/2
gi
gj

∫ ∞
0 (ε + I)2 e−

ε
kT σPIdε cm3s−1 (34)

where hν = I + ε and I is the ionization energy.
Although the integration for αRC(T) can be carried over a large energy range as done

in other computations, ideally the integration extends to infinity where the background
photoionization cross section continues to contribute, although by a very small amount.
To include the full contributions, the integral is transformed for finite limits. Introducing
x = exp(−ε/kT), which has limits between 0 and 1, and a slow variation at low tempera-
ture and a relatively fast variation at high T, the following fast convergent form of αR(T)
can be obtained (author’s contribution in [29], also see [31,32])

αRC = − gi
gj

2

c2
√

2πm3kT

∫ 0

1
[1− kTln(x)]2σPI(x)dx (35)

The evaluation of the integration is carried out over a number of energy regions where the
x-mesh changes depending on the variation of the integrand. The mesh is smaller for a fast
variation and larger for a slow variation. This ensures higher precision and inclusion of
full contribution from photoionization cross sections to the recombination rates.

The state specific recombination rate coefficient, αRC(nl, T) for each nl level can be
obtained using the above expression. The program of Nahar [33] has been extended in the
present work to compute state specific nl rates. They are needed for determination of level
populations and various diagnostics.

The total recombination rate coefficients αRC(T), which is the sum of all state-specific
recombination rate coefficients, is needed to obtain various plasma quantities, such as
ionization fractions. Since there are an infinite number of bound levels where recombination
can take place, αRC(T) requires contribution from infinite number of levels, that is,

αRC(T) =
∞

∑
nl

αRC(nl, T) (36)

2.2.1. Top-Up Contribution from Very High-n Recombination

It is computationally prohibitive to compute αRC(nl, T) for infinite number of terms,
particularly when contributions become significantly negligible, for the total rate αRC(T).
We can obtain αRC(nl, T) up to a very high n value until the individual contributions
become negligible for the total recombination rate. Then, the summed contribution from
the rest of the levels, from a high n to infinity, which can be called the “top-up” contribution,
can be obtained following the approximation made by Hummer [28].

The top-up contribution, from a high n to ∞, is generally negligible at high temper-
ature, but could be significant in the very low temperature where low energy electrons
are slow enough to recombine to the ions. At sufficiently large n, the recombination rate
coefficient to an n-shell varies as αRC(n) ≈ 1/n3 (e.g., [28]). Following Hummer [28],
the asymptotic top-up contribution starting at a high n, α0(n), is expressed as

α0(n) =
∞

∑
n′=n+1

αRC(n′) ≈ αRC(n)n3
∞

∑
n′=n+1

n′−3 (37)

Using Euler–Maclaurin formula

∞

∑
n′=n+1

n′−3 =
1
2

(
1

n + 1

)3
+
∫ ∞

n+1

dn′

n′3
=

1
2

(
1

n + 1

)3
+

1
2(n + 1)2 (38)
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the top-up contributions to the total αRC is given by

α0(n) = αRC(n)
(

n
n + 1

)3(
1 +

n
2

)
(39)

2.2.2. Recombination with Respect to Photoelectron Energy

Recombination cross sections for a level σRC((n, E) with respect o photoelectron energy
E shows the dielectronic satellite lines, if there are resonances. The total recombination
cross section σRC(E) (summed over σRC((n, E) of infinite number of recombining n-levels)
with respect to photoelectron energy E

σRC(E) =
∞

∑
nl

σRC(nl, E) (40)

is a useful quantity, particularly to see the total spectrum with resonances and is a mea-
surable quantity (e.g., [42]). For hydrogen, which does not resonance, the quantity can
add to the total background of a spectrum and hence be used in astrophysical modeling.
The total recombination rate coefficients αRC(ε) with respect to photoelectron energy E is
also a measurable quantity in a laboratory set-up (e.g. [43]) and hence can provide a test
for the accuracy of the recombination method as was done by [43]. αRC(E) can be obtained
using the following relation

αRC(E) = vσRC(E) = v∑
n

σRC(n, E) (41)

where v is the photoelectron velocity. Both σRC(E) and αRC(E) can be evaluated from
recombination collision strength ΩRC which is related to σRC(E) as (e.g., [36])

σRC(E) =
π

gik2 ΩRCa2
o (42)

Note the advantage of collision strength is that it does not diverge with very low energy,
but σRC(E) does.

2.3. Relation between Hydrogen and Hydrogenic Ions

With a single electron orbiting, the electronic properties of hydrogen and hydrogenic
ions are similar. Only the nuclear potential increases with higher z. The atomic parameters
for hydrogen can be transformed in to those for a hydrogenic ion through z-scaled relations
as given below.

(i) Binding and photon energies:

E(z) = E(H)× z2 (43)

(ii) Photoionization cross section at energy E(z) = z2E(H) is

σPI(z) =
σPI(H)

z2 . (44)

(iii) Recombination cross sections at photoelectron energy EPE(z), the same as that of
hydrogen,

σRC(z, E) = z2σRC(H, E) (45)

(iv) Recombination collision strengths at photoelectron energy, EPE(z), the same as
that of hydrogen,

Ω(z) = z2Ω(H) (46)

(v) Recombination rate coefficient at photoelectron energy, EPE(z), the same as that of
hydrogen,
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αRC(z, Ez) = z2α(H, EH) (47)

(vi) Temperature T(z) is equivalent to hydrogen temperature z2T(H)
(vii) Recombination rate coefficient at temperature T(z),

αRC(z, T) = zαRC(H, T/z2), (48)

It means that the temperature range for α(H, T) should be is wide enough to scale a highly
charged hydrogenic ion.

2.4. Relativistic Fine Structure Splitting of σPI and σRC from LS Coupling

The present results have been obtained in the LS coupling approximation. Hence
no relativistic fine structure effects have been taken in to account. Relativistic effects are
expected to be important at very n and at very high temperature where slight perturbation,
like that from relativistic effects, can make a change in the transition values. However, it is
possible to obtain the fine structure components of photoionizatoin as well as recombinatoin
of its LS value through an algebraic transformation procedure described by Nahar [44]
for oscillator strengths of Fe II. It is also described in [36]. These values will not have the
contributions from relativistic corrections.

To carry out the fine structure splitting of photoionization or recombination cross
sections, we can split the line strength of photoionization transition matrix in LS coupling
S(LS) in to its fine structure components S(LSJ) [33,36]. The corresponding cross sections
σPI(LSJ) can be obtained from the fine structure line strength S(LSJ) by multiplying the
energy and statistical weight factors. Then from σPI(LSJ), the corresponding recombination
cross section σRC(LSJ) and αRC(LSJ) can be obtained.

Although the algebraic transformation above will provide more accurate values, ex-
cept for the contribution of the relativistic effects, a simpler approximation of fine structure
splitting by statistical weight factors can be adopted. Typical features of σPI and σRC for
the fine structure components of an LS value show similar pattern with some differences in
resonances. For hydrogen there is no resonance. Hence to a good approximation, statistical
weight factor approach can be used. The fine structure components are estimated from
the LS value by multiplying the latter with the statistical fractions of the level, e.g., for
fine structure level k, the fraction is (2Jk + 1)/ ∑i(2Ji + 1). For very high n and high
temperature, inclusion of relativistic effects will increase the accuracy.

3. Programs for Photoionization and Electron-Ion Recombination, and the Data Files

The author has written the FORTRAN program code, “hpxrrc.f”, which can compute
quantities for both photoionization and electron-ion recombination. It computes the atomic
parameters for each individual l-level belonging to a n-shell as well as for each individual
n. It will be available online. Followings describe the quantities that “hpxrrc.f” computes
and the corresponding data files which are available.

1. Photoionization cross sections (σPI) for each individual l-level belonging to a n-shell
and for each individual n.

The author received the program “hypho.f” from M.J. Seaton (private communication,
1991) which computed the total photoionization cross sections σPI(n, E) for each shell n.
As mentioned earlier, the contents of the program indicate the references for the program
are Flower and Seaton [25] and Brocklehust [26]. The author revised the program to
compute σPI(nl, E) for individual l-levels of each n along with those for each n. Photo-
electron energy can be chosen up to a given highest energy specified by the user or up to a
default energy which is five times higher than the ionizing threshold energy.

Data file: Photoionization data file “p0100.1-800.5ry” contains σPI(nl, E) of l-levels in
sets of each n-complex, i.e., σPI(nl, E) of all l-levels of n at photoelectron energies going up
to 5 Ry.
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2. Total recombination cross sections (σRC(E)) and total electron-ion rate coefficients
αRC(E) with respect to photoelectron from already computed photoionization cross sec-
tions, such as those given in “p0100.1-800.5ry”. These can also be obtained at a desired
photoelectron energy E for which σPI will need to be computed beforehand.

Data file: “omrx.h” contains total recombination cross section (σRC(E)), total recombi-
nation collision strength (ΩRC(E)), and total recombination rate coefficients (αRC(E)) up to
photoelectron energy 5 Ry.

3. Electron-ion recombination rate coefficient, αRC(nl, T), of all individual l-levels of
any shell n. The original program written by the author for [31,32] computed αRC(n, T)
for each n-shell. It has been extended to compute αRC(nl, T) for all l-levels separately. For
this computation, σPI(nl, E) are computed during the run of the program. Hence no file
containing photoionization cross section is needed to evaluate αRC(nl, T).

Results are printed as sets of n-complex, i.e., αRC(nl, T) is printed for various for
l-levels belonging to the same n and at specified temperature range. Each n-set is ended
with αRC(n, T) of shell n, i.e., the summed values from all l-levels as n-total.

Data file: “rc.0100” contains rate coefficients αRC(n, T) for each n-shell, from 1 to 800.
Below them, the file contains the total αRC(T), i.e., the added values from n = 1 to 800,
top-up contribution from n = 801 to infinity obtained using n−3 behavior, then the summed
total αRC(T) of all contributions (n = 1–∞).

αRC(T) are given for a wide range of temperatures, T = 10−3 − 109 K, at 137 tempera-
tures in order to compute rates of hydrogenic ions of low to high charge z.

4. αRC(z, T) for any hydrogenic ion of charge z. For this, the program needs the
temperature and the z-value.

4. Results and Discussions

Results of photoionization and electron-ion recombination for hydrogenic ions are
presented for a very large n going up to n = 800. Contributions to total electron-ion recom-
bination from beyond n = 800 to infinity are obtained using n−3 behavior. Characteristic
features of the two processes are presented in two separate sections below. Although the
features are demonstrated for hydrogen atom, they are similar for hydrogenic ions. The re-
sults for hydrogen can be scaled to any hydrogenic ion using the Z-scaled relations given
in the Subsection 3 of the theory section.

4.1. Photoionization Cross Sections

Photoionization cross sections of hydrogenic ions for lower n are available from
several codes which use various approximations. The present σPI have been obtained from
the exact expressions as described in the theory section and using the recurrence relations
revised by Burgess [12]. Hence the present numbers agree with those obtained for n = 1
going up to 10 by Seaton under the Opacity Project [21]. As mentioned above that Seaton’s
data are unpublished but available at data base TOPbase at CDS [22].

Figure 1a,b from the present work demonstrate typical smooth feature of σPI of
hydrogen for the series of levels ns with n = 1–5 (left) and nd with n = 3–7 (right). σPI
of ns = 1s corresponds to the ground state photoionization. The figure illustrates that
σPI at the ionization threshold increases with n, but the background decreases faster in
the higher energy with increasing n. The trend is expected since at ionization threshold,
σPI is inversely proportional to the ionization energy. The ratio of cross sections at zero
photoelectron energy (k = 0) could be estimated as

σPI(n, l, 0) =
In1,l

In,l
σPI(n1, l, 0) (49)

where n1, l is the lowest possible n for angular momenta l. Since the background cross
section at higher energy deceases as (νo/ν)3 where νo is the photon energy at ionization
threshold, cross section decreases faster for lower ionization threshold energy Io.
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Figure 2 presents σPI of all 5 l-levels (l = 0 - 4 of shell n = 5. Although all cross sections
have the same threshold energy, the peaks at threshold for various levels are different,
but the background decays faster with larger l. The bound-free integral in photoionization
cross sections depends on the l values as g(n, l; K, l′ = l ± 1) ∼ ( 4n

1+n2K2 )
l<+1 indicating

σPI(nl, ε) variation with on the angular momentum l. However, it is not linear and hence
the general trend can not be predicted. This is demonstrated in Figure 2.

Photon Energy (Ry)

σ PI
 (M

b)

10-3

10-2

10-1

100

101

102

1s

H I (ns 2S) + hν -> H II + e

10-3

10-2

10-1

100

101

102

2s

10-3

10-2

10-1

100

101

102

3s

10-3

10-2

10-1

100

101

102

4s

0 1 2 3 4 5
10-3

10-2

10-1

100

101

102

5s

Photon Energy (Ry)

σ PI
 (M

b)

10-6
10-5
10-4
10-3
10-2
10-1
100
101
102

3d

H I (nd 2D) + hν -> H II + e

10-6
10-5
10-4
10-3
10-2
10-1
100
101
102

4d

10-6
10-5
10-4
10-3
10-2
10-1
100
101
102

5d

10-6
10-5
10-4
10-3
10-2
10-1
100
101
102

6d

0 1 2 3 4 5
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102

7d

Figure 1. Photoionization cross sections (σPI) of (L) ns and (R) nd levels of hydrogen demonstrating rising trend at threshold
and decreasing trend of the background at higher energy with increase of n.
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Figure 2. Photoionization cross sections (σPI) of the five l-values (0–4) of shell n = 5. They demonstrate
rising trend of σPI for various l-values compared to l = 0 (black curve) at the same ionization threshold.

The program “hpxrrc.f” can be used for σPI of any nl levels. However, machine
accuracy for very low numbers should be discussed. All computations were carried out
in double precision using the clusters at Ohio Supercomputer Center (OSC). Numerical
instabilities for very small values of σPI at very high n can be summarized as: (i) With
increasing energy, cross sections reach to a negligible quantity beyond which computation
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gives zero value. These cross sections may not add to any significant values. (ii) σPI at
threshold continues to dominate while it decreases faster with very high n. (iii) For a very
high n, only a few points, sometimes only the threshold value for various l-levels survive
before computer prints out zeros even with double precision accuracy. (iv) With a ver high
n, such as near n = 700 or 800, even threshold energies become sensitive to the precision
of the computer which could yield a lower value. There could be numerical instability in
the recurrence relations for these very high n-values in addition to computer numerical
tolerence issue. Seaton’s relation without the Gaunt factor or Kramers relation could be
useful for such situation of very high-n cross sections.

4.2. Electron-Ion Recombination

The present work reports recombination rates for all individual shells from n = 1 to
800. Some examples are given for demonstration of features.

An example of αRC(nl) with n = 10 and l = 0 - 9 are illustrated in Figure 3. All curves
corresponding to l = 0 - 9are drawn with different colors and/or with different type (e.g.,
solid, dashed, or dotted). The sum of all αRC(nl) provides the “n-total” curve (red, solid)
which is distinctly separated from all curves for individual l-values below it. The figure
shows that at low temperature the height of αRC(nl) curves do not follow the l-order
as expected from l-dependence of σPI at threshold but they follow the order at higher
temperature region. αRC(10s, T) of the lowest 10s level does not have the highest peak at
lower temperature, but dominates at higher temperature region. The high temperature
dominance comes from the slower decrease in σPI of 10s at higher energies compared to the
higher l-levels. Couple of small kinks, visible at logarithmic scale, can be noticed for two
l-curves (8 and 9) at very high temperature. They arise from some numerical instability of
very small σPI values.

log10T (K)

α RC
 (cm

3 sec
-1 )

3 4 5 6 7 8 9
10-22

10-21

10-20

10-19

10-18
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l=0
l=1
l=2
l=3
l=4
l=5
l=6
l=7
l=8
l=9

n-total

H I (nl,n=10,l=0-9) + hν -> H II + e

Figure 3. Level specific electron-ion recombination rate coefficients (αRC(nl)) of the 10 individual
l-levels (0 - 9)of shell n = 10, and the n-total (red curve with highest values) which is the summed
total of all 10 individual levels. They demonstrate αRC(nl) peak does not follow values of l-order at
low temperature bu follows at higher temperature.

Although αRC(nl, T) for various l-levels belonging to the same n-complex show varia-
tions in dominance at lower temperature (Figure 3), the summed total αRC(n, T) exhibit
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systematic decrease in values with increasing n. Figure 4 illustrates this behavior with
αRC(n, T) of shells n = 1 - 10.Various colors/type of curves represent different n as specified
in the figure. The topmost curve corresponds to the ground state n = 1 and the lower
ones are sequentially in order for n = 2 - 10.The right panel shows logarithmic behavior
of the αRC(n, T) values. To demonstrate the general linear trend of the αRC(n, T) values,
the left panel presents the linear plot of the same αRC(n, T) in the same temperature range
of T = 10−3 to a million degree 106. The curves show sharp rise in αRC(n, T) at lower
temperature for all n = 1 - 10with more clarity than in the log-scale.

As mentioned above, the present work provides a file which contains αRC(n, T) of
shells from n = 1 going up n = 800 of hydrogen atom. It does not include components
αRC(nl, T) for each n. However, the individual αRC(nl, T) for l-levels which can be com-
puted using the program “hpxrrc.f” as needed.
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Figure 4. Total electron-ion recombination rate coefficients (αRC(n, T)) of shells n = 1–10, which
are the summed total of all individual l-levels, Left) in linear scale to see the general trend at low
temperature and Right) in log scale for logarithmic features. The curves demonstrate αRC(n, T)
decreasing with increasing n.

Figure 5a presents the curve for the total recombination rate coefficients of hydrogen,
αRC(H, T), which include contributions of individual shells from n = 1 to 800 and the
top-up contributions from n = 801 to infinity. Table 1 presents the numerical values of
αRC(H, T). The range of temperature for αRC(H, T) is chosen wide, from 10−3 to 109 K.
This allows computation of αRC(z, T) for hydrogenic ions over a temperature range of
practical need. The temperature for an ion of nuclear charge z is equivalent to z2T(H).
Hence, obtaining αRC(z, T) of a hydrogenic ion of charge z, such as hydrogen-like neon
with z = 10, at temperature 1000 K will need αRC(H) at 10 K. As in illustration of calculating
αRC(z, T) of a hydrogenic ion, Figure 5b presents αRC(FeXXVI, T) of Fe XXVI obtained
from αRC(H, T) using z-scaling.

The total recombination cross sections, σRC(E), and recombination rate coefficients
αRC(E) of hydrogen with respect to the photoelectron energy E are presented in Figure 6.
The energy unit is chosen to be in eV because of use of eV unit for the photoelectron
in laboratory measurements. Both σRC(E) and αRC(E) include contributions of n = 1–∞.
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Except for the sharp rise in the very low photoelectron energy, the features show smooth
decrease with energy.
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Except for the sharp rise in the very low photoelectron energy, the features show smooth
decrease with energy.
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Figure 5. (a) Total electron-ion recombination rate coefficients αRC(H, T), summed contributions from
n = 1 to infinity over a wide temperature range. These values are used to obtain (b) αRC(FeXXVI, T)
of Fe XXVI using the Z-scale formula.
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Figure 6. The total recombination cross sections, σRC(E), and recombination rate coefficients αRC(E)
of hydrogen with respect to the photoelectron energy E.
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Figure 5. (a) Total electron-ion recombination rate coefficients αRC(H, T), summed contributions from
n = 1 to infinity over a wide temperature range. These values are used to obtain (b) αRC(FeXXVI, T)
of Fe XXVI using the Z-scale formula.

Photoelectron Energy (eV)

0 10 20 30 40

10-5

.0001

.001

.01

.1

1

10

σ RC
 (M

b)

Total Recombination: H II + hν -> H I
a) Recombination cross sections

0 10 20 30 40

.01

.1

1

10

α RC
 (1

0-12
cm

3 /s)

b) Recombination Rate Coefficients

Figure 6. The total recombination cross sections, σRC(E), and recombination rate coefficients αRC(E)
of hydrogen with respect to the photoelectron energy E.
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Table 1. Total recombination rate coefficients of hydrogen, αRC(H, T), at a wide range of temperatures.

log10T αRC(H, T) log10T αRC(H, T) log10T αRC(H, T)

−3.00 4.779×10−09 0.73 4.974×10−11 4.60 1.479×10−13

−2.67 3.254×10−09 0.75 4.842×10−11 4.70 1.232×10−13

−2.33 2.214×10−09 0.77 4.714×10−11 4.80 1.022×10−13

−2.00 1.504×10−09 0.79 4.588×10−11 4.90 8.447×10−14

−1.67 1.020×10−09 0.81 4.466×10−11 5.00 6.949×10−14

−1.33 6.877×10−10 0.83 4.347×10−11 5.10 5.691×10−14

−1.00 4.606×10−10 0.85 4.231×10−11 5.20 4.637×10−14

−0.67 3.057×10−10 0.87 4.118×10−11 5.30 3.755×10−14

−0.33 2.009×10−10 0.89 4.008×10−11 5.40 3.027×10−14

0.00 1.308×10−10 0.91 3.901×10−11 5.50 2.424×10−14

0.01 1.291×10−10 1.00 3.452×10−11 5.60 1.930×10−14

0.03 1.258×10−10 1.10 3.012×10−11 5.70 1.528×10−14

0.05 1.226×10−10 1.20 2.627×10−11 5.80 1.202×10−14

0.07 1.194×10−10 1.30 2.290×10−11 5.90 9.396×10−15

0.09 1.163×10−10 1.40 1.995×10−11 6.00 7.303×10−15

0.11 1.133×10−10 1.50 1.737×10−11 6.10 5.643×10−15

0.13 1.104×10−10 1.60 1.511×10−11 6.20 4.333×10−15

0.15 1.075×10−10 1.70 1.314×10−11 6.30 3.311×10−15

0.17 1.048×10−10 1.80 1.142×10−11 6.40 2.516×10−15

0.19 1.020×10−10 1.90 9.922×10−12 6.50 1.902×10−15

0.21 9.939×10−11 2.00 8.613×10−12 6.60 1.431×10−15

0.23 9.680×10−11 2.10 7.471×10−12 6.70 1.071×10−15

0.25 9.429×10−11 2.20 6.476×10−12 6.80 7.989×10−16

0.27 9.183×10−11 2.30 5.609×10−12 6.90 5.932×10−16

0.29 8.944×10−11 2.40 4.855×10−12 7.00 4.389×10−16

0.31 8.711×10−11 2.50 4.199×10−12 7.10 3.232×10−16

0.33 8.484×10−11 2.60 3.628×10−12 7.20 2.374×10−16

0.35 8.262×10−11 2.70 3.132×10−12 7.30 1.739×10−16

0.37 8.046×10−11 2.80 2.702×10−12 7.40 1.270×10−16

0.39 7.835×10−11 2.90 2.328×10−12 7.50 9.251×10−17

0.41 7.630×10−11 3.00 2.004×10−12 7.60 6.718×10−17

0.43 7.430×10−11 3.10 1.723×10−12 7.70 4.866×10−17

0.45 7.235×10−11 3.20 1.480×10−12 7.80 3.518×10−17

0.47 7.045×10−11 3.30 1.269×10−12 7.90 2.538×10−17

0.49 6.860×10−11 3.40 1.087×10−12 8.00 1.828×10−17

0.51 6.680×10−11 3.50 9.304×10−13 8.10 1.315×10−17

0.53 6.504×10−11 3.60 7.949×10−13 8.20 9.440×10−18

0.55 6.332×10−11 3.70 6.781×10−13 8.30 6.769×10−18

0.57 6.165×10−11 3.80 5.774×10−13 8.40 4.848×10−18

0.59 6.003×10−11 3.90 4.909×10−13 8.50 3.468×10−18

0.61 5.844×10−11 4.00 4.165×10−13 8.60 2.478×10−18

0.61 5.844×10−11 4.00 4.165×10−13 8.60 2.478×10−18

0.63 5.690×10−11 4.10 3.527×10−13 8.70 1.769×10−18

0.65 5.539×10−11 4.20 2.980×10−13 8.80 1.262×10−18

0.67 5.392×10−11 4.30 2.511×10−13 8.90 8.997×10−19

0.69 5.249×10−11 4.40 2.111×10−13 9.00 6.409×10−19

0.71 5.110×10−11 4.50 1.770×10−13

The present work employs a finite limit integral approach that limits between 0
and 1 replacing the direct dependency on the photoelectron energy going out to infinity.
This reduces the uncertainty arising from the limit of energy set for computation of the
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recombination rate coefficients Hence present results are expected to be most accurate
compared to the existing values. The accuracy of the recombination atomic data also
depends on the values of photoionization cross sections. As explained in the theory section
that the analytical form of σPI(H) has numerical instability which is compensated by the
recurrence relations. For very high n. the recurrence relations may have some uncertainties
since the cross sections decreases sharply. This may have contributed some uncertaintis in
the rates. As explained above that the accuracy of the values also depends on the precision
and numerical tolerance of the computer being used. With the best estimation of the factors,
that lower-n levels, where values are more stable and accurate, contribute more than the
highern levels, use of precise theory and numerically stable recurrence relations, and finite
limit integration for recombination, the current results are expected to have an accuracy
within 5% for most temperature range.

5. Conclusions

The present report can be summarized as

1. Study of the two inverse processes of photoionization and electron-ion recombination
are presented with a brief review of theory that treat them precisely and more accu-
rately compared to all existing atomic structure codes that use other approximation,
mainly distorted wave approximation.

2. Detailed features of both the processes are illustrated. Although hydrogen and hy-
drogenic ions do not have any resonant features, accurate characteristic variation with
energy and temperature are crucial for precise astrophysical spectroscopy and modeling.

3. The present work provides atomic data files containing σPI(E) for all l-levels of n from
1 to 800, and αRC(T) of all values of n from 1 to 800. It also provides total αRC(H, T)
with temperature, and total αRC(H, E), and total σRC(E) with photoelectron energy.
This is the first time that all these data with very high n have been made available
for applications.

4. Use of precise theory, numerical methods, high precision computers, as explained
at the end of the sections of photoionization, and electron-ion recombination, can
predict the accuracy of the present results is within 5% for most energy and tempera-
ture ranges.

5. The work provides the FORTRAN program “hpxrrc.f” which can generate all these
values. It also computes l-level specific αRC(nl, T). The program “hpxrrc.f” can also
compute αRC(H, T) for any hydrogenic ion of charge Z using the data of hydrogen.

6. Importance of relativistic effects and how to obtain fine structure components for
photoionization and electron-ion from their values in the present LS coupling approxi-
mation have been discussed.

7. All atomic data and the program will be available online at database, NORAD-Atomic-
Data ([24], http://norad.astronomy.ohio-state.edu (accessed on 1 September 2007)).
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