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Abstract
We investigate relativistic and correlation effects in electron impact excitation of
singly ionized oxygen using the Breit–Pauli R-matrix method. The intermediate
coupling close-coupling calculations are carried out using a 16-level target
representation dominated by the electronic configurations 1s22s22p3, 1s22s2p4,
1s22s22p23s. Resonance structures are delineated in detail to ascertain the effect
on averaged collision strengths. Convergence of the partial wave summation
is ensured for non-dipole transitions in the R-matrix calculations. The present
results differ significantly from the similar Breit–Pauli R-matrix calculations
by McLaughlin and Bell (1998 J. Phys. B: At. Mol. Opt. Phys. 31 4317–29),
but are essentially in agreement with the LS coupling results of Pradhan (1976a
J. Phys. B: At. Mol. Opt. Phys. 9 433–43, 1976b Mon. Not. R. Astron.
Soc. 177 31–8). A comprehensive study of the detailed energy behaviour of
all forbidden transitions among the five levels of the ground configuration, i.e.
2s2p3

(
4So

3/2, 2Do
5/2,3/2, 2Po

3/2,1/2

)
shows that the finestructure collision strengths

do not significantly depart from the values obtained from a purely LS −→ LSJ

transformation, and relativistic effects are therefore small. We find that the
Maxwellian-averaged effective collision strengths for the ten transitions also
differ from the previous work, most likely due to more extensive delineation of
resonances in the present work. However, the differences are largely systematic
and therefore the OII line intensity ratios are not significantly affected. We also
obtain an excellent agreement between the present-calculated cross sections
for the 4So − 2Do transition and the experimental merged beam measurements.

1. Introduction

Because of its cosmic abundance and atomic properties all ions of oxygen are of importance
in various astrophysical sources. Singly ionized oxygen is a prominent constituent of
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gaseous nebulae as a primary diagnostic of electron density (e.g. Seaton and Osterbrock 1957,
Osterbrock 1989, Dopita and Sutherland 2003). The pair of lines due to forbidden transitions
within the ground configuration of 1s22s22p3 of OII (denoted as [OII]) are 4So

3/2 −→ 2Do
5/2,3/2

that lie towards the blue end of the optical spectrum at wavelengths 3729 Å and 3726 Å.
But despite considerable efforts devoted to high-precision atomic calculations for oxygen
ions, many of the atomic parameters are known with insufficient accuracy. Since the ground
configuration metastable levels are low-lying in energy, they can be readily excited by electron
impact at ambient temperatures T ≈ 104 K prevalent in most gaseous regions ionized by hot
stars, such as the central stars of planetary nebulae or diffuse nebulae such as the Orion created
by ionization of a giant molecular cloud by hot young O-stars. Because of their importance,
and to resolve outstanding discrepancies in collision strengths for these two ions from the
previous-distorted wave calculations, among the first calculations to be carried out with the
then new close-coupling codes were for [OII] transitions (Pradhan 1976a, 1976b) (hereafter
P76a,b). Due to computational constraints those CC calculations were in LS coupling and
limited to the first five terms 2s22p3(4So, 2Do, 2Po), 2s2p4(4P, 2D). Nevertheless, an algebraic
transformation of reactance matrices yielded finestructure collision strengths which, in turn,
gave line intensity ratios in good agreement with observations (Wang et al 2004). In addition
the forbidden line [OII] ratios gave electron densities consistent with [SII] lines, which lie at
the red end of the optical spectrum and originate in the similar atomic structure of SII with a
3p3 open-shell ground configuration.

The main point concerns the low-density limit, where every excitation from the ground
state 4So

3/2 to the 2Do
5/2,3/2 levels is followed by radiative decay; collisional mixing between the

excited 2Do
J levels can be neglected, since the population of the excited levels is extremely low

and the mixing rate, proportional to the product of ion density in excited levels and electron
density, is negligible. Under such conditions, the low-density line intensity ratio reads

lim
Ne→0

I (3729)

I (3726)
= q

(
4So

3/2 − 2Do
5/2

)
q
(

4So
3/2 − 2Do

3/2

) , (1)

where the excitation rate coefficient qij is

qij (T ) = 8.63 × 10−6 cm3 s−1 exp(−Eij/kT )

gi

√
T/K

ϒij (T ) (2)

with gi being the statistical weight of the initial level and ϒij being the Maxwellian-averaged
collision strength

ϒij (T ) =
∫ ∞

Ej

�ij (E) exp(−E/kT ) d(E/kT ). (3)

A purely algebraic transformation from the LS coupling to a pair-coupling representation
may be employed to obtain finestructure LSJ collision strengths, which should be accurate
provided the relativistic effects are negligible. The transformation coefficients are particularly
simple when the initial LS term has L or S = 0, and

�(SLJ − S ′L′J ′)
�(SL − S ′L′)

= (2J ′ + 1)

(2S ′ + 1)(2L′ + 1)
. (4)

This procedure was employed by P76a,b using the IMPACT close-coupling codes (Eissner
and Seaton 1972, 1974, Crees et al 1978). It is then clear that in the low-density limit

lim
Ne→0

I
(

4So
3/2 − 2Do

5/2

)
I
(

4So
3/2 − 2Do

3/2

) = 1.5. (5)
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But the above analysis is predicated on the assumption that LS coupling is valid and there is
no deviation due to relativistic effects.

On the other hand, relativistic effects involving the Einstein coefficients A for forbidden
spontaneous radiative transitions are crucial in determining the high-density limit, where the
OII line intensity ratio is given by the ratio of the transition probabilities

lim
Ne→∞

I
(

4So
3/2 − 2Do

5/2

)
I
(

4So
3/2 − 2Do

3/2

) = 6

4

A
(

2Do
5/2 − 4So

3/2

)
A

(
2Do

3/2 − 4So
3/2

) = 0.35. (6)

The transition probabilities A for these predominantly magnetic dipole (M1) transitions were
computed accurately by Eissner and Zeippen (1981) and Zeippen (1982). Eissner and Zeippen,
in fact, obtained the high-density limit of this ratio by not only using configuration-mixing-type
expansions, but also including relativistic terms of order α2Z2 and α2Z to the first-order M1
operator, based on the previous work by Drake (1971). Thus both the low- and the high-density
theoretical limits are fixed by statistics and the atomic structure alone. Bell and Hibbert (1990)
also demonstrated that departures from LS coupling occur for several transition probabilities.

Following Bell and Hibbert’s (1990) calculations, McLaughlin and Bell (1998, MB89)
embarked on a much larger calculation than P76a,b to investigate relativistic effects in the
collision strengths using the Breit–Pauli R-matrix (hereafter BPRM) method. It came as a
tremendous surprise that the finestructure collision strengths differed substantially from those
of P76a,b, apparently due to departures from LS coupling, a more extensive close-coupling
expansion, and better resolution of resonances. Keenan et al (1999) used the MB98 results to
calculate, in particular, the [OII] I (3729)/I (3726) line intensity ratio, which was ≈2.0, about
30% higher than the non-relativistic LS coupling low-density limit of 1.5. Subsequently,
however, several observational studies of gaseous nebulae found that the MB98 results are not
consistent with observations (Copetti and Writzl 2002, Wang et al 2004), and that the earlier
P76a,b results were to be preferred.

In this paper we therefore undertake new calculations, also using the BPRM method,
and a different target expansion, to ascertain the relevant [OII] collision strengths with high
accuracy and the source of the discrepancy with the MB98 results.

2. Formulation

Close-coupling (CC) calculations using the R-matrix method (Burke et al 1971, Seaton 1987)
have been described in many previous publications. As the emphasis of this work is to
investigate relativistic and correlation effects together, we briefly outline the BPRM approach
as employed herein.

The OII target wavefunctions are calculated using superstructure (Eissner and Seaton
1974), which employs a scaled Thomas–Fermi–Dirac–Amaldi potential (Eissner and
Nussbaumer 1969) to compute a set of one-electron orbitals; the scaling parameters optimize
the unweighted sum over non-relativistic terms’ energies arising from a set of spectroscopic
configurations. With such radial functions, the Breit–Pauli Hamiltonian (Berrington et al
1995) (including two-body magnetic terms) yields the level energies Ei . For a target so
specified electron collision processes are addressed in a partial wave expansion with radial
functions satisfying the Breit–Pauli Hamiltonian

H BP
N+1 = HN+1 + H mass

N+1 + H Dar
N+1 + H so

N+1, (7)

obtaining close-coupling (CC) solutions with the Breit–Pauli R-matrix (BPRM) code (Scott
and Taylor 1982). In this equation HN+1 is the non-relativistic Hamiltonian along with the
one-body mass–velocity term, the Darwin term and the spin-orbit term. The two-body terms
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in the BP Hamiltonian (discussed in the following section) are not considered, and therefore
the current form of the BPRM method amounts to reducing the Dirac equation to Pauli form
and dropping two-body electron–electron contributions of the BP order. The spin-orbit term
breaks the LS symmetry, leading to finestructure levels Jπ of the total angular momentum
quantum number J at parity π ; mass and Darwin terms are retained and provide additional
energy scaling due to relativistic effects.

The partial wave expansion for the (e+ion) (N + 1)-electron system is described by
wavefunctions �(E) of a total spin and the angular symmetry SLπ or Jπ and represented as
products of the target ion states and partial waves:

�(E) = A
∑

i

χiθi +
∑

j

cj�j , (8)

where χi is the target wavefunction of a specific term SiLiπi or level Jiπi , and θi is the
wavefunction of the colliding electron (N +1) in a channel labelled SιLι(Jι)πιkι
ι(SLπ)(Jπ);
the quantity kι is the channel wave number, hence Xι = (kιa0)

2 Ry asymptotically the
associated kinetic energy (<0 if channel closed). Symbols �j mark correlation wavefunctions
made up of (N +1) bound electrons to (a) compensate for the orthogonality conditions imposed
on continuum with bound orbitals for computational convenience, (b) represent additional
short-range correlations that are often of crucial importance in scattering and radiative CC
calculations. They are sometimes referred to as ‘bound channels’, as opposed to the continuum
or ‘free’ channels in the sum over the target states χi . In relativistic BPRM calculations’ sets
of the collisional symmetry, SLπ are coupled to obtain (e + ion) states with total Jπ , followed
by diagonalization of the (N + 1)-electron Hamiltonian. Details of diagonalizing H at the
R-matrix boundary are given in the published work (e.g. Berrington et al 1995); so is its
outward propagation.

It is important to satisfy a number of criteria in CC calculations: (A) accuracy of target
eigenfunctions, (B) completeness of partial wave expansions, (C) enough target levels in the
free-channel (open or closed) first term in (8), (D) consistency between the first free-channel
term and the second bound-channel correlation terms. Furthermore, there are other criteria
that need to be met, such as adequate resolution of resonances particularly in the near-threshold
region, and correct high-energy behaviour particularly for dipole transitions. The accuracy
of the CC calculations should therefore not be judged only by the number of target levels
included, but by all of the above.

The measurable quantity is the (excitation) cross section σij , which is related to the
collision strength by

σij (Xi) = π
�ij (X1)

gik
2
i

≡ �ij (X1)

gi(kia0)2
πa2

0, (9)

where gi is the statistical weight (2Ji + 1) and Xi = (kia0)
2 Ry the large distance kinetic

energy of an electron associated with the initial state i (n.b. save finite mass correction 1 Ry ≈
13.6 eV is the non-relativistic ionization energy of neutral hydrogen, πa2

0 is the hydrogenic
ground state area, Ei + Xi is invariant at specified collision energies X1).

3. Computations

In our close-coupling approach to electron impact excitation, we retain the lowest 16 target
levels of OII, i.e. eight terms arising from the three spectroscopic configurations 2s22p3,
2s2p4 and 2s22p23s (dropping the 1s2 closed shell from the notation), and we allow for term
mixing among the entire complex of nine configurations. In their reference calculation of
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Table 1. Levels and energies of the OII target—1-magn: without magnetic interactions between
valence shell electrons, 2-magn: calculation including all finestructure terms of the Breit–Pauli
order.

Ecalc/Ry
level ESTO/Ry Ecalc/Ry Eobs/Ry
index designation McL&B 2-magn 1-magn 2-magn Wenåker

1 2s22p3 4So
3/2 0 0 0 0 0

2 2Do
5/2 0.247 89 0.282 38 0.273 70 0.273 60 0.244 32

3 2Do
3/2 0.247 91 0.282 58 0.273 66 0.273 81 0.244 50

4 2Po
3/2 0.374 13 0.382 11 0.369 76 0.369 73 0.368 77

5 2Po
1/2 0.374 10 0.382 19 0.369 72 0.369 78 0.368 79

6 2s2p4 4P5/2 1.123 51 1.103 92 1.091 28 1.091 22 1.092 04
7 4P3/2 1.124 80 1.105 48 1.092 69 1.092 76 1.093 53
8 4P1/2 1.124 56 1.106 28 1.093 53 1.093 56 1.094 28
9 2D5/2 1.546 67 1.619 46 1.610 37 1.610 30

[1.610 10] 1.512 60
10 2D3/2 1.546 60 1.619 49 1.610 23 1.610 29

[1.610 19] 1.512 67
11 2s22p2(3P)3s 4P1/2 1.677 62 1.728 83 1.775 25 1.775 39 1.687 99
12 4P3/2 1.678 59 1.729 71 1.776 09 1.776 18 1.688 95
13 4P5/2 1.680 21 1.731 04 1.777 51 1.777 40 1.690 39
14 2P1/2 1.725 95 1.808 67 1.816 43 1.816 55 1.721 28
15 2P3/2 1.727 78 1.810 25 1.818 11 1.818 05 1.722 92
16 2s2p4 2S1/2 1.836 18 1.874 20 1.871 61 1.871 61 1.783 44
17 2s22p2(3P)3p 2So

1/2 – [1.940 78] 1.858 46

18 4Do
1/2 – [1.963 40] 1.883 87

19 4Do
3/2 – [1.963 82] 1.884 37

20 4Do
5/2 – [1.964 51] 1.885 21

21 4Do
7/2 – [1.965 45] 1.886 34

22 2s22p2(1D)3s 2D5/2 1.901 72 [1.971 58] 1.886 06
23 2D3/2 1.901 73 [1.971 59] 1.886 07
.
.
.

.

.

. –
.
.
.

.

.

.

32 2s2p4 2P3/2 2.081 27 [2.085 29] 1.937 30
33 2P1/2 2.082 83 [2.086 80] 1.938 83
34 2s22p2(1D)3p 2Fo

5/2 – [2.162 94] 2.084 28

35 2Fo
7/2 – [2.163 10] 2.084 50

36 2Do
5/2 – [2.200 67] 2.095 43

37 2Do
3/2 – [2.200 95] 2.095 63

38 2s22p2(1S)3s 2S1/2 2.171 57 [2.237 92] 2.101 47

Note—apart from the three spectroscopic configurations the following six correlation configurations are involved:
2s22p23p, 2s22p23d, 2p5, 2s2p33s, 2s2p33p and 2s2p33d.

1998, McLaughlin and Bell (McL&B) add the remaining five levels that arise from 2s2p4 and
2s22p23s. They are embedded in states associated with ‘correlation’ configurations in table 1—
observed values are extracted from Wenåker (1990) up to 2s22p2(1S)3s 2S. It looks like a
straight adaptation from the 11-term target employed by Bell et al (1989) for photoionizing OII

in LS coupling to intermediate coupling. We require a target with an energetically contiguous
set of levels. As we focus on the ‘forbidden’ transitions between the five levels of the ground
configuration, resonances converging on levels beyond ≈1.8 Ry contribute only marginally to
the Maxwellian-damped rate coefficients at temperatures of interest; for example, at T ≈ 104 K
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Table 2. Properties of the OII target radial orbital functions.

r̄/a0
rinfl/a0 P(RA)

nl λ rcut/a0 Superstructure BPRM last (at 17a0)

1s 1.350 3.657 0.199 11 0.199 81 2.5 × 10−1 <0.129 × 10−29

2s 1.250 3.379 1.050 78 1.050 78 1.3 −0.866 × 10−12

2p 1.120 3.101 1.122 67 1.122 67 1.4 +0.106 × 10−08

3s 1.070 3.379 3.790 28 3.790 29 4.9 +0.148 × 10−03

3p 1.050 4.027 4.428 21 4.428 19 5.8 −0.932 × 10−03

3d 1.100 4.397 5.076 10 5.075 63 6.9 +0.503 × 10−02

the exponential damping factor in equation (3) is ∼exp(−16) at E = 1 Ry. This is borne out
by the present results described in the following section, which basically agree with the much
older P76a,b calculations done on a smaller scale.

Table 2 summarizes the properties of the statistical model radial functions Pnl(r) employed
for the target expansion in superstructure, leading to level energies shown in the two Ecalc

columns in table 1. Column Ecalc shows rather unsatisfactory results from optimizing the
unweighted energy sum over the first eight terms of table 1, when the scaling factors λnl become
1.483 37, 1.212 67, 1.167 64, and (because otherwise the flat functional would not converge)
for 3s, 3p and 3d 1.488 64 in the order of table 2, with associated mean radii of 0.198 29,
1.066 04, 1.079 21, 3.225 48, 3.566 71 and 4.595 29 Bohr radii a0. Other functionals derived
from the nine configurations are even less satisfactory. We therefore resort to some hybrid
optimization. Starting with a smaller value λ1s = 1.350 mitigates against overvariation in
varying λl independently for different n (and the subsequent Schmidt orthogonalization), while
there are no additional high-n correlation configurations; we mention that λs = 1.2248 results
from a calculation that scales each set of one orbitals with the same variational parameter.

Rather convincing is the finestructure splitting with our choice of orbitals. The behaviour
of the first two doublets is obvious enough: ordinary spin-orbit effects vanish for half closed
shells such as 2p3, and if they seem to be splitting, so 2Do by a slender wrongly ordered
0.04 m Ry, it is due to the spin-orbit term coupling among the three odd parity J = 3/2 levels,
while 2Do

5/2 and 2Po
1/2 remain in place; two-body magnetic interaction inside 2Do suffices to put

things right in accord with observation as seen in the last two columns. The first even parity
doublet 2D reveals a more intricate interplay, not merely because finestructure splitting now
involves ordinary spin-orbit coupling reduced by two-body effects (which would still yield the
inverted doublet order): the term coupling with lower levels revert this trend in an expansion
that is truncated at level 16, and it needs coupling with even parity J = 3/2 and 5/2 from
higher 2s22p23s terms for correct finestructure splitting: see bracketed entries.

Equally satisfactory for such a modest—and for the collisional application readily
manageable—configuration expansion is the term separation. On including all terms up to
configuration 2s22p23d, the first 35-computed levels appear in the observed order. While most
of the target energies are in a reasonable agreement with observation, we employ experimental
values in the diagonal elements of the (N +1)-electron Hamiltonian to ensure correct resonance
positions relative to the target thresholds.

Wavefunctions Pnl(r) are supplied to the collision code not up to RA, the R-matrix box
radius, but truncated at rcut, a radius beyond which BPRM can continue tabulating analytically
as a QDT expansion along section 2.1-SS of Berrington et al (1995). If BPRM seems to
reproduce fewer digits for the mean radius r̄ of the 3d orbital, look for the answer in the
last column of table 2: an orbital merely used for correlation purposes need not extend to



Electron impact excitation of forbidden transitions of OII 1869

Table 3. Term-coupling coefficients of the OII levels with J = 3/2 in the ground configuration
2s22p3 (the four odd parity correlation configurations show up in the last three digits, hence the
off-diagonal differences—relative signs from superstructure); 1-magn and 2-magn as in table 1.

J = 3/2 term-coupling coefficient

level component s-o angular factor 1-magn 2-magn

4So 4So 0.0 0.999 990 0.999 990
2Do 0.0 +0.000 032 +0.000 157
2Po 1.000 000 −0.004 569 −0.004 365

2Do 4So 0.0 −0.000 122 −0.000 239
2Do 0.0 0.999 806 0.999 823
2Po 1.118 034 −0.019 681 −0.018 829

2Po 4So 1.000 000 +0.004 568 +0.004 361
2Do 1.118 034 +0.019 681 +0.018 830
2Po 0.0 0.999 796 0.999 813

RA = 21.52, the value automatically set if all radial functions must decay below relative
magnitude 0.002, when differences reduce to 1 in the last digit for the valence and correlation
orbitals. While all our orbitals are spectroscopic in character (also in mere correlation
configurations), Bell and Hibbert (1990) chose contracted Slater-type orbitals 3̄p and 3̄d
whose mean radii r̄ are thus markedly smaller: 2.0724a0 and 1.2874a0 respectively.

Unlike superstructure, the atomic structure code CIV3 (Hibbert 1975) allows for the
selective term expansion according to coupling schemes. Perhaps the good 2Do−4So separation
of 0.2479 Ry by Bell et al owes something to their choice, looking less favourable for 2Do

with 0.3740 Ry and deteriorating to 0.382 97 Ry when we follow their state descriptions. By
and large our target energies look superior when their expansions are not truncated. Applied
to BPRM the selection procedure requires subtle choices in equation (8). How McLaughlin
and Bell made these selections is not clear from their outline.

The smallness of the term-coupling coefficients is significant, negating the claim that
relativistic effects might play a crucial role in the line intensity ratios; see table 3. It should be
recalled that the second-order ordinary spin-orbit effects swamp those from two-body magnetic
coupling in species of high ionization—as the basis of numerous Breit–Pauli calculations
without two-body magnetic finestructure terms. In the current work it is their smallness,
having made sure that level inversions have no adverse side effects when matching the target
energies in STGH of BPRM to observation. Table 3 is also interesting in that the collision
strengths to 2Do and 2Po are of the same order of magnitude so that the flux redistribution is
well described by the TCCs alone.

In addition to the 16-target functions χi , the CC expansion (8) of OII involves bound (e +
OII) correlation functions �j comprising all possible combinations of OI configurations formed
by one- and two-electron excitations from 2s through 3d orbitals. It is conveniently tested with
bound-state boundary conditions: we obtain eigen energies for the three OI ground term levels
2s22p4(3P2,1,0) within 0.3% of the experimental values. We plan to further describe these
calculations for the bound–bound and bound–free transitions of OI in a separate publication.

The BPRM intermediate coupling calculations for the 16 levels are carried out with partial
waves 
 � 15 involving total Jπ symmetries with 0 � J � 12, both even and odd parities.
The partial wave summation ensures convergence for the forbidden transitions among all
levels of the ground configuration. We had NRANG2 = 15 R-matrix basis functions in the inner
region, with a boundary RA at 17 Bohr radii. The target orbital last point of inflection—see
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Figure 1. Collision strengths for the excitation of the 2Do
5/2,3/2 levels from the ground state 4So

3/2,

responsible for the formation of astrophysical important lines at 3729 Å and 3726 Å (top and
middle panels, respectively). Note that the ratio of the collision strengths themselves at all energies
is 1.5 throughout, showing absence of relativistic mixing and thereby determining the low-density
limit to be the same. The collision strength 2Do

5/2 − 2Do
3/2 for collisional redistribution due to

electron impact between the two excited levels is shown in the bottom panel; the inset shows an
expanded view of the near-threshold resonances. Whereas resonances do not play a major role in
the excitation from the ground level, they are more significant for collisional mixing.

rinfl in table 2—is a key guide to these choices, as the partial wave first point of inflection is
analytically known as a function of k and 
.

4. Results and discussion

We describe several sets of results that demonstrate the salient features of the collision strengths
and parameters for applications. In addition we compare with the measured cross sections for
the 4So − 2Do transitions.

4.1. Collision strengths

Figure 1 shows the collision strengths �
(4

So
3/2 − 2Do

5/2,3/2

)
from the ground level to the

two finestructure 2Do levels, and the collision strength �
(2

Do
5/2 − 2Do

3/2

)
responsible for

collisional mixing between them. The first thing to note is that the ratio of the former collision
strengths is 6:4 throughout the energy range under consideration, including the resonant and the
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Figure 2. Collision strengths for the excitation of 4So
3/2 −→ 2 Po

3/2,1/2. These also divide
according to the ratio of statistical weights.

non-resonant regions. Therefore, no deviation from the LS coupling values is seen. Secondly,
resonances are not a major contributor to collisional excitation from the ground level. However,
the collision strength �

(2
Do

5/2 − 2Do
3/2

)
does have a significant contribution from resonances,

particularly in the important near-threshold region. Interestingly, these figures are the first
clear representation of these OII collision strengths. In an earlier work (P76a,b), the collision
strengths were not plotted and were tabulated only at a few near-threshold values. In the
more extensive MB98 paper, the collision strengths are plotted to 30 Ry; this results in the
near-threshold region E � 1 Ry as far too compressed to discern any resonance structures in
detail. Therefore, it is not possible to directly compare the present collision strengths with
MB98. The designation of the first set of Rydberg resonances in figure 1 is (2Po)n
. These
are the most important resonances in the forbidden transitions at T ≈ 104 K. The higher ones
begin with (4P)n
; exact identification depends on the closely spaced finestructure sub-levels.
Similarly, one may obtain approximate designations relative to the target thresholds given in
table 1.

Figure 2 gives the collision strengths for excitation from the ground to the 2Po
3/2,1/2 levels.

Again we find no evidence of redistribution of collision strength due to relativistic mixing,
and the finestructure values divide according to statistical weights.

This is further borne by figure 3, which shows the four finestructure transitions within
the 2Do

J − 2Po
J ′ multiplet. The algebraic finestructure to LS collision strength ratios

�(SLJ − S ′L′J ′)/�(SL − S ′L′) correspond to the non-relativistic ones given in table II

of P76a (there is a minor deviation at some resonance energies owing to resolution).
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Figure 3. Collision strengths for the array of four transitions 2Do
5/2,3/2 − 2 Po

3/2,1/2. The ratios of
the finestructure to LS-term collision strengths are approximately as given in the non-relativistic
LS coupling results of P76a,b.

Altogether these ten transitions are the ones responsible for the formation of the forbidden
[OII] lines.

4.2. Maxwellian-averaged effective collision strengths

The Maxwellian-averaged or effective collision strengths ϒij (T ) reveal the precise magnitude
of differences with earlier works by P76a,b and MB98. Figure 4 shows ϒ(T ) for the
4So

3/2 − 2Do
5/2,3/2 transitions. The present results are slightly yet significantly higher than

P76 for both transitions, though within 10%. This is caused by including considerably more
resonance structure. More importantly, the ratio of the two collision strengths is the same as
in the earlier work.

However, the differences with MB98 are more pronounced, and especially for the
4So − 2Do

3/2 transition the MB98 values are nearly 30% lower. It is this difference that largely
accounts for the line intensity ratio I (3729)/I (3726) in figure 4 Keenan et al (1999) to be
higher by the same amount using the MB98 collision strengths. K99 quote ϒ

(
4So − 2Do

3/2

) =
0.422 from MB98, compared to 0.584 from P76a and 0.585 from Pradhan et al (2006)
based on the present work. The two publications also differ significantly for other forbidden
transitions from this investigation (figures 5 and 6). Whereas the differences with P76a,b are
understandable in terms of the limited nature of the previous calculations, the differences with
MB98 are inexplicable. Normally we should not deviate by more than about 10%, since both
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Figure 4. Maxwellian-averaged collision strengths ϒ(T ) corresponding to figure 1 (solid line),
compared to the earlier calculations in P76a,b (dashed line) and MB98 (dotted line). The
temperature dependence is much less pronounced than MB98, and the ratio is roughly constant
at 1.5.
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Figure 5. Maxwellian-averaged collision strengths corresponding to figure 2, with labels as in
figure 4.

are R-matrix calculations with similar eigenfunction expansions. Moreover, relativistic effects
are included using the same set of BPRM codes.

Because we delineate resonances better than P76a,b, which had limited resolution,
the collisional mixing transitions 2Do

5/2 − 2Do
3/2 and 2Po

3/2 − 2Po
1/2 shown in figure 7 differ

significantly; so they do from MB98.
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Figure 6. Maxwellian-averaged collision strengths for the four transitions in figure 3, with labels
as in figure 4.

4.2.1. Comparison with experiment. The experimental group at the Jet Propulsion Laboratory
has carried out absolute measurements of the cross sections for excitation of the 4So − 2Do

transition using the merged beam method (Zuo et al 1995). In figure 8 we compare the
present-calculated cross sections with those in figure 8 of (Zuo et al 1995). Figure 8(a) shows
the comparison with the detailed cross sections, and figure 8(b) shows the calculated cross
sections convolved over the 250 meV experimental beam width. Though the experimental
error bars for some points are as large as 50%, it is noteworthy that the present theoretical
results pass through nearly all measured values. In particular, the convolved cross section in
figure 8 shows that the first point above threshold is within the error bars of the first-measured
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Figure 7. Maxwellian-averaged collision strengths for the collision mixing transitions between
the finestructure levels 2Do

5/2,3/2 and 2Po
3/2,1/2; labels as in figure 4.
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Figure 8. Comparison of the calculated electron impact excitation cross sections σ(4So −→ 2Do)

with the experimental measurements of Zuo et al (1995). Panel (a) shows the experimental values
directly compared with the detailed cross sections, whereas panel (b) compares with the calculated
cross sections convolved with the 250 meV experimental beam distribution.

value. The important near-threshold cross sections as well as the subsequent fall-off with
energy above E(2Po) = 0.37 Ry are in a very good agreement with the behaviour seen
experimentally. However, differences in details remain for a few points; in particular at
0.55 Ry there seems to be an unexplained rise in the experimental value: we expect the cross
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section to be monotonically decreasing up to the first resonance due to higher thresholds
at 0.75 Ry.

4.3. Line ratios

In a recent paper (Pradhan et al 2006) we have discussed the astrophysical implications of the
results presented in this detailed report. Although the precise source of the discrepancy with
MB98 is not clear, the present effective collision strengths have largely reconfirmed the earlier
results of P76a,b. The I (3729)/I (3726) line intensity ratio given by Pradhan et al (2006)
satisfies the low- and high-density limits exactly: equations (5) and (6), respectively.

Pradhan et al (2006) also give the Maxwellian-averaged effective collision strengths ϒ(T )

for the ten transitions discussed herein, for the calculation of the forbidden [OII] line intensity
ratios at a few temperatures, using the A-coefficients by Zeippen (1982).

5. Conclusions

The principal features of the present work are as follows.

• The collision strengths for the forbidden transitions in OII are not affected by relativistic
effects. New BPRM calculations for electron impact excitation of the lowest ten forbidden
transitions in OII have shown that the outstanding discrepancy between the observed line
intensity ratios of [OII], and those calculated using the earlier results of McLaughlin and
Bell (1998) are not due to relativistic effects, which are negligibly small.

• Further work is in progress on developing a more comprehensive target for OII to compute
collision strengths for the allowed transitions.
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