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Abstract
A general formulation is employed to study and quantitatively ascertain the effect of plasma
broadening of intrinsic autoionizing (AI) resonances in photoionization cross sections. In
particular, R-matrix data for iron ions described in the previous paper in the RMOP series
(RMOP-II, hereafter RMOP2) are used to demonstrate underlying physical mechanisms due to
electron collisions, ion microfields (Stark), thermal Doppler effects, core excitations, and
free–free transitions. Breit–Pauli R-matrix cross sections for a large number of bound levels of
Fe ions are considered, 454 levels of Fe XVII, 1184 levels of Fe XVIII and 508 levels of
Fe XIX. Following a description of theoretical and computational methods, a sample of results
is presented to show significant broadening and shifting of AI resonances due to extrinsic
plasma broadening as a function of temperature and density. The redistribution of AI resonance
strengths broadly preserves their integrated strengths as well as the naturally intrinsic
asymmetric shapes of resonance complexes which are broadened, smeared and flattened,
eventually dissolving into the bound-free continua.

Keywords: autoionizing resonances, plasma broadening effects, astrophysics and plasma physics

1. Introduction

Resonances arise in most atomic interactions. They are espe-
cially important in processes such as (e + ion) scattering
and photoionization. At the same time, plasma perturbations
markedly affect atomic spectra susceptible to varying temper-
ature, density, and other factors. Whereas a vast body of lit-
erature exists on line broadening in laboratory and astrophys-
ical plasma environments [1–6], there is relatively little work
on systematic theoretical treatment of autoionizing reson-
ances that are more readily susceptible to plasma interactions
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[7, 8], though results have been obtained for K-shell spec-
tra (viz. [9]) observed astrophysically [10]. Stark broaden-
ing and other broadening mechanisms for plasmas have been
reviewed from the perspective of individual lines and spectra
[11, 12], and in non-local thermodynamic equilibrium [13].
However, opacity calculations require a statistical treatment
such as is implemented in the Opacity Project (hereafter OP
[6, 14–16]).

Resonances are ubiquitous in cross sections, measured and
calculated in a variety of ways with ever-increasing precision
and resolution. State-of-the-art experimental devices such as
synchrotron based ion storage rings and narrowband photon
sources can now resolve resonances in many atomic sys-
tems. Coupled-channel (CC) calculations, mainly using the
R-Matrix method, have been carried out for nearly all ele-
ments and ions up to at least iron under the OP [6, 17] and,
more extensively, the Iron Project (hereafter IP [18]). A prime
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feature of these calculations is the presence of resonances
throughout all the energy ranges of interest. However, reson-
ances are of different types, and exhibit varying shapes, sizes
and heights. Their overall resonance strengths may also be
computed in analogy with line oscillator strengths for mod-
eling of radiative processes [19].

However, the question remains: how are resonance pro-
files affected by plasma perturbations? To be more precise,
how would the intrinsic autoionization shape be modified by
extrinsic particle interactions in a given environment? The
complexity of the problem becomes evident when one con-
siders that autoionization profiles are inherently asymmetric,
described by the Fano formula for isolated resonances in terms
of an asymmetry parameter and energy [20]. However, any
singular expression is insufficient to treat an infinite overlap-
ping series of autoionizing (AI) resonances which, in fact,
range from extremely narrow Rydberg resonances approach-
ing series limits, to large photoexcitation-of-core resonances
that span hundreds of eV in energy and considerably alter
the background continuum below the core excitation threshold
[19, 21]. Previous work and the conventional approach to
plasma modeling of resonances and collisional-radiative mod-
els generally follow the ‘isolated resonance approximation,’
which treats autoionizing resonances as discrete bound levels
and entail the calculation of the oscillator strength at a single
energy, followed by a perturbative plasma broadening treat-
ment based on independently calculated autoionization and
radiative rates (viz. the Cowan code [22]). Although a physical
explanation is lacking, arbitrarily increasing line broadening
factors of all lines by a factor of up to ∼100 in atomic struc-
ture calculations is found to recover the missing solar opacity
quantitatively [23].

Ideally, what is needed is a theoretical method that can be
translated into a computational algorithm taking into account
the variety of resonance shapes and their positions relative
to the excited ion core level. Electron–ion interactions in a
plasma lead to dominant forms of broadening: Doppler, Stark
and electron impact. The Doppler width is approximated by
a Gaussian that is more narrowly peaked around the line cen-
ter and falls off faster than the other Lorentzian profiles due
to Stark and electron impact. The Stark effect due to ions
is particularly important for hydrogenic systems when it is
linear due to l-degeneracy; a static approximation is some-
times employed since ions move much slower than electrons
[1, 24]. In contrast, the electron impact broadening profile
is Lorentzian with a much wider effect on the line wings,
and as the electron density and the temperature of the plasma
increase, electron collisions become the dominant source of
broadening. This would be especially the case for weakly
bound electrons in doubly-excited autoionizing states, which
would be more perturbed than the bound electrons considered
in line broadening theories.

In this paper we present a computational methodology that
aims to incorporate electron impact broadening in a gener-
ally applicable manner suitable for laboratory and astrophys-
ical plasma sources. Without a loss of generality and based on
large-scale CC R-matrix calculations [21, 25], we consider the
photoionization of a complex atomic system from neon-like

to fluorine-like iron, Fe xvii −→ Fe xviii, in this study as an
exemplar of its applicability to atomic processes in plasmas.

2. Theoretical formulation

We first sketch out a theoretical outline for the channel coup-
ling that gives rise to resonances, and then the resonance
broadening is modeled after line broadening due to electron
impact.

2.1. Resonances and channel coupling

Autoionizing resonances manifest themselves via inter-
channel coupling in the CC framework. In the CC approxim-
ation, the atomic system is represented as the ‘target’ or the
‘core’ ion of N-electrons interacting with the (N+ 1)th elec-
tron. The (N+ 1)th electron may be bound in the electron–
ion system, or in the electron–ion continuum depending on
its energy being negative or positive. The total wavefunc-
tion, ΨE, of the (N+ 1)-electron system in a symmetry Jπ is
an expansion over the eigenfunctions of the target ion, χi in
specific state SiLi(Ji)πi, coupled with the (N+ 1)th electron
function, θi:

ΨE (e+ ion) = A
∑
i

χi (ion)θi+
∑
j

cjΦj, (1)

where the
∑

i is over the ground and excited states of the tar-
get or the core ion. The (N+ 1)th electron with energy k2i cor-
responds to a channel labeled SiLi(Ji)πik2i ℓi(SL(J)π). The Φjs
are bound channel functions of the (N+ 1)-electron system
that account for short range correlation not considered in the
first term and the orthogonality between the continuum and the
bound electron orbitals of the target.

Depending upon the total energy E of the (e+ ion) system,
and the channel energy k2i > 0 or k2i < 0, a channel may be
open or closed relative to an ion level Ei. Inter-channel inter-
actions between open and closed channel wavefunctions res-
ult in resonances below the excitation threshold at Ei. If E< 0
for all channels, then the (e + ion) system is in a pure bound
state; otherwisewe have a free state with an electron in the con-
tinuum and some channels open and some closed. Therefore,
the CC wavefunction expansion equation (1) may be used to
obtain either (e+ ion) collision strengths or bound–bound and
bound–free radiative parameters such as oscillator strengths
and photoionization cross sections.

With reference to figure 1, we have the position of a given
resonance ωr corresponding to an excitation threshold Ei in
terms of its effective quantum number ν i as

ωr = ωg+Ei −
(z+ 1)2

ν2
i

. (2)

That yields

νi (ωr) =

[
(z+ 1)2

ωg+Ei −ωr]

]1/2
. (3)
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Figure 1. Left: Schematic diagram of a coupled channel calculation for photoionization of bound states (solid lines) of an ion Xz+ → Xz+1

— AI resonances (dashed lines) correspond to Rydberg series converging on to excited levels of the residual ion with E=−(z+ 1)2/ν2.
Right: ion thresholds of convergence Ei, Ei+1, Ei+2, Ei+3 . . . and a Lorentzian profile with lower and upper energy limits (Eℓ,Eu) spanning
narrow high-n resonances below Ei and broader ones above.

Typically, there are many excited levels Ei included in CC
calculations which may number in the hundreds. Infinite series
of resonances Ei νnℓ arise and converge on to each level Ei.
There can be considerable overlap between weakly bound nar-
row high-ν Rydberg resonances converging on, to and imme-
diately below a given threshold, and deeply bound strong
and wide resonances with low ν-values belonging to higher
levels. A computational algorithmmust successively convolve
groups of resonances identified with respect to all ion core
levels.

Let σ̃(ω ′) be the computed cross section and σ(ω) the con-
volved cross Section such that

σ (ω) =

ˆ
σ̃ (ω ′)ϕ(ω,ω ′)dω ′, (4)

where the profile factor is

ϕ(ω,ω ′) =
γ (ω)/π

(ω−ω ′)
2
+ γ (ω)

2 . (5)

2.2. Resonance broadening mechanisms

A general theoretical approximation for the scattering of a
free electron with an electron in doubly-excited quasi-bound
states is necessarily computationally intensive since it needs
to be incorporated within a CC framework and superimposed
on ab initio calculations of cross sections. Primary broaden-
ing mechanisms such as electron collisions, Stark broadening
due to ion microfields, and Doppler broadening due to thermal
motions need to be considered a priori. We develop a theor-
etical treatment that accounts for these physical effects inde-
pendently within a computational viable procedure.

The parameters in the formulation are derived in ana-
logy with line broadening but modified significantly to apply

to AI resonances. In the present formulation, we associate
the energy to the effective quantum number relative to each
threshold ω ′ → νi to write the total width as:

γi (ω,ν,T,Ne) = γc (i,ν,νc)+ γs (νi,ν
∗
s )

+ γd (A,ω)+ γf ( f− f;νi,ν
′
i ) , (6)

pertaining to collisional γc, Stark γs, Doppler γd, and free–
free transition γf widths, with additional parameters as defined
below. Without a loss of generality we assume a Lorentzian
profile factor that describes collisional-ion broadening which
dominates in HED plasmas. We assume this approximation
to be valid since collisional profile wings extend much wider
as x−2, compared to the shorter range exp(−x2) for thermal
Doppler, and x−5/2 for Stark broadening (viz. [14]). In prin-
ciple, the limits of integration in equations (4)–(6) are ∓∞,
which are replaced in practical calculations by∓γi/

√
δ, where

δ is chosen to ensure the full Lorentzian profile energy range
and for accurate normalization. Convolution by evaluation of
equations (3)–(6) is carried out for each energy ω throughout
the tabulated mesh of energies used to delineate all AI reson-
ance structures, for each cross section, and for each core ion
threshold.

2.2.1. Electron impact broadening At sufficiently high
densities collisional broadening is dominant and mathematic-
ally represented by a Lorentzian function (equation (5)) that
correctly approximates the slowly varying behavior in the
line wings. We develop a numerical procedure for convolving
cross sections including resonances over a Lorentzian damp-
ing width. Given energy dependent cross sections tabulated at
a sufficiently fine mesh, we first switch the energy variable to
the effective quantum number ν = z/

√
(E), where E= h̄ω. In

3
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photoionization, we take ω to be the photon frequency; hence-
forth we shall also employ ω as the energy variable assuming
atomic units h̄ = 1. The ν is more appropriate since for a res-
onance it is defined relative to the excited core ion level, as
illustrated in figure 1.

We consider the photoionization of an ion of elementXwith
charge z in an initial state by a photon of energy h̄ω into the
ground or excited level of a residual ion of charge (z+ 1)

h̄ω+Xz+ −→ e+Xz+1. (7)

It is assumed that unperturbed photoionization cross
sections σ̃PI(h̄ω) are theoretically computed with sufficient
resolution in energy to delineate autoionization profiles.
According to the impact approximation [6] we may then rep-
resent the damping profile with a Lorentzian expression

ϕω(E) =
γ/π

[(E+ x−Eo)2 +(γ2]
. (8)

By analogy with electron impact damping of bound–bound
line transitions, we define Eo as the resonance center, γ as the
width and x the energy shift (later we shall assume that |E−
Eo|>> x). We may further express

Neγ = γ+ ix, (9)

where Ne is the electron density and γ is the damping con-
stant which may be written in terms of the electron distribution
f(ϵ,T) at a given temperature T as

γ (T) =
ˆ ∞

0
vQD (ϵ) f(ϵ,T)dϵ. (10)

Given QD as the electron impact cross section and a
Maxwellian distribution, we may obtain the thermally aver-
aged damping rate coefficient

ΥD (T) =
ˆ ∞

0
ΩD (ϵ)exp(−ϵ/kT)d(ϵ/kT) , (11)

where Ω(ϵ) is the collision strength. Then

γ (T) = 2
h̄2

m

( π

mkT

)1/2
ΥD. (12)

In equations (8)–(12) the ΥD is a complex quantity.
However, for small δω = (ω−ωo) in the one-perturber
approximation ([6] and references therein), we have γ = Neγ
and ϕω = (γ/2π)/(ω−ωo)

2.
Now we establish a correspondence between γ(ω) and the

electron impact rate coefficient Υ according to the relation

γ (ω) = 2
( π

kT

)1/2
a3oNeΥ(ν) , (13)

where Υ(ν) is computed at the resonance energy correspond-
ing to ν = z/

√
(E), with E in Rydbergand atomic units ao =

h̄= 1. We now approximate

Υ(ν)≈ G(z)< r2ν >= G(z)
5ν4

2(z+ 1)2
. (14)

Table 1. Gaunt factor for electron impact collisional broadening:
dependence on temperature T(K), ion charge z and effective
quantum number ν of excited levels (equation (16)) T= 2× 106 K,
z= 16.

ν G(T,z,ν)

3.0 1.75
4.0 2.52
5.0 3.12
6.0 3.60
7.0 4.02
8.0 4.37
9.0 4.69
10.0 4.97

G(z) is an effective Gaunt factor for electron impact excita-
tion of positive ions, empirically determined for line broaden-
ing work in th OP [6] to be

G(z) = 6.3− 5.9
(z+ 1)

. (15)

The behavior of G(z) with ion charge z and temperature T
has been further studied for electron impact broadening, and
we adopt an improved expression [8, 14, 26]

G(T,z,νi) =
√
3/π [1/2+ ln(νi kT/z)] . (16)

For example, in table 1we compare the two expressions and
find that they differ significantly for ν < 10, but G(T,z,ν)→
G(z) as ν → 10, and exceedmarginally for ν > 10when Breit–
Pauli R-matrix (BPRM) resonance structure calculations are
truncated.

Here, ωg is the ionization energy of the ground state of the
photoionizing ion Xz+. Then, from equation (18) we obtain the
temperature-density dependent width at each energy

γi (ωr;Ne,T) = 5
( π

kT

)1/2
a3oNeG(z)

ν4
i (ωr)

(z+ 1)2
. (17)

Evaluating the constants with T(K) and Ne cm(−3), we
obtain

γi (ωr;Ne,T) = 5.2184× 10−22

(
Ne
T1/2

)(
G(z)

(z+ 1)2

)
ν4
i (ωr) .

(18)

With the transformation of the unbroadened cross section
using equation (18),

σ̃ (ω)−→ σ (ω;T,Ne) , (19)

we obtain the temperature-density-energy dependent
functional representing the photoionization cross section
broadened by electron impact. This greatly expands the scope
of the calculations since equation (19) implies that the con-
volution must be carried out at each energy in the tabulated
energy mesh (transposed as E(ω)→ ν) of unbroadened func-
tion σ̃(ω), with another tabulation for the Lorentzian profile
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equation (8), and for each temperature and electron density.
In the next section we describe the procedure developed for
such numerical calculations.

Given N core ion levels corresponding to resonance
structures,

σ (ω) =
N∑
i

[ˆ
σ̃ (ω ′)

[
γi (ω)/π

x2 + γ
(ω)
i

]
dω ′

]
. (20)

With x≡ ω ′ −ω, the summation is over all excited
thresholds Ei included in the N-level CC or RM wavefunction
expansion, and corresponding to total damping width γi due
to all broadening processes. The profile ϕ(ω ′,ω) is centered
at each continuum energy ω, convolved over the variable ω ′

and relative to each excited core ion threshold i .
We employ the following expressions for computations:

γc (i,ν) = 5
( π

kT

)1/2
a3oNeG(T,z,νi)

(
ν4
i /z

2
)
, (21)

where T, Ne , z, and A are the temperature, electron dens-
ity, ion charge and atomic weight, respectively, and ν i is the
effective quantum number relative to each core ion threshold i:
ω ≡ E= Ei− ν2

i /z
2 is a continuous variable. A factor (nx/ng)4

is introduced for γc to allow for doubly excited AI levels with
excited core levels nx relative to the ground configuration ng
(e.g. for Fe xviii nx = 3,4 relative to the ground configuration
ng = 2).

2.2.2. Stark broadening A treatment of the Stark effect for
complex systems entails two approaches, one where both elec-
tron and ion perturbations are combined (viz. [8, 27]), or
separately (viz. [6, 14]) employed herein. Excited Rydberg
levels are nearly hydrogenic and ion perturbations are the
main broadening effect, though collisional broadening com-
petes significantly with increasing density as well as ν4

i
(equation (14)). For bound levels in a plasma microfield of
strength F, the Stark sub-levels of a level n span a range given
by the highest component (n,kmax) with energy (viz. [6, 14])

E(n,kmax) =− z2

n2
+

3
z
n(n− 1)F (22)

and the lowest component of sub-level ((n+ 1),kmin) with
energy

E(n+ 1,kmin) =− z2

(n+ 1)2
− 3
z
n(n+ 1)F. (23)

In deriving occupation probabilities in the Mihalas–
Hummer–Däppen equation-of-state (MHD-EOS) [16] used in
the OP work [6], a critical field strength Fc is calculated when
Stark broadening renders these two components equal, and
Stark ionization dissolves level n into the continuum. The total
Stark width of a given n-complex is ≈ (3F/z)n2. Assuming
the dominant ion perturbers to be protons with a density
equal to electrons, Ne = Np, and replacing n by the effective
quantum number ν i relative to each excited threshold of an ion

with charge z, we take F= [(4/3)πa3oNe)]
2/3, as employed in

MHD-EOS for Stark broadening in equation (6)

γs (νi,ν
∗
s ) =

[
(4/3)πa3oNe

]2/3
ν2
i . (24)

In addition, by employing equation (6) a Stark ionization
parameter ν∗s = 1.2× 103N−2/15

e z3/5 is introduced such that
AI resonances may be considered fully dissolved into the con-
tinuum for νi > ν∗s , analogous to but distinct from the Inglis–
Teller series limit [28] or the Stark ionization of bound (not
AI) energy levels, as considered in the MHD-EOS [16].

All calculations are carried out with and without ν∗s as
shown later in table 2 and illustrated in the figures 3–5 presen-
ted herein (red and blue curves, respectively). The results are
practically indistinguishable with and without the Stark ion-
ization cutoff and the effect on the redistribution of differen-
tial oscillator strength or opacity. However, ν∗s is a parameter
that should prove to be useful in further extension of plasma
effects, including Debye screening, as discussed later.

2.2.3. Thermal Doppler broadening The Doppler width is:

γd (A,T,ω) = 4.2858× 10−7
√
(T/A), (25)

where ω is not the usual line center but taken to be each AI
resonance energy.

2.2.4. Free–free transition broadening The last term γf in
equation (6) accounts for free–free transitions among autoion-
izing levels with νi,ν

′
i such that

Xi + e(Ei,νi)−→ X ′
i + e ′ (E ′

i ,ν
′
i ) . (26)

The large number of free–free transition probabilities for
+ve energy AI levels Ei,E ′

i > 0 may be computed using RM
or atomic structure codes (viz. [29, 30]). Free–free transitions
are not considered in the results in figures 2 and 3 but included
in the results discussed in table 1, although they are found to
be practically negligible.

3. Computational algorithm

In order to elicit and illustrate important physical features of
the formulation, we sketch a few salient features of the math-
ematical algorithm developed to implement the procedure
(numerical details and the computer programwill be presented
elsewhere).

We have re-defined the Lorentzian profile equation (5) as
in equation (8), using damping rate coefficient equations (10)–
(13) and Maxwellian electron distribution, dependent on elec-
tron density and temperature as in equations (17) and (18).
A numerical evaluation scheme based on this formulation
requires several practical considerations to be incorporated
into the computational algorithm and computer program.

5
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3.1. Profile limits

The limits of integration in equation (4) are determined by
the extent of the Lorentzian factor in equation (8). It needs
to be ensured that the profile extends into the resonance wings
and/or approaches the background continuum without a loss
of accuracy. Measuring the energy spread relative to the res-
onance center ω = ωr, we note that, according to equation (13)
ω = ωg+Ei, with respect to the ionization potential and the
target excitation energy Ei above the ground state of the resid-
ual ion. Then, the profile maximum is (equation (8))

ϕmax (ω = ωr) =
1

πγ (ω)
. (27)

We introduce an accuracy parameter δ and choose the pro-
file limits ±ωo such that

ϕ (ω = ωo) = δϕmax =
δ

πγ (ω)
. (28)

Then,

δ

πγ (ω)
=

γ (ω)/π

(ω−ωo)
2
+ γ2 (ω)

(29)

or,

(ω−ωo)
2
= γ2 (ω)

(
1
δ
− 1

)
. (30)

For small δ,

(ω−ωo)
2 ≈ γ2 (ω)

δ
. (31)

Therefore, |ω−ω| limits the convolution profile such that

ω−ωo =± γ

δ1/2
. (32)

Whereas equation (4) using equation (5) has an analytical
solution in terms of tan−1(x/γ)/γ evaluated at limiting values
of x→∓γ/

√
δ, its evaluation for practical applications entails

piece-wise integration across multiple energy ranges spanning
many excited thresholds and different boundary conditions.
For example, the total width γ is very large at high densities
and the Lorentzian profile may be incomplete above the ion-
ization threshold and therefore not properly normalized. We
obtain the necessary redward left-wing correction for partial
renormalization as

lim
a→−γ/2

√
δ

ˆ +γ/
√
δ

a
ϕ(ω,ω ′)dω ′ =

1
4
−

tan−1
(

a
γ/2

√
δ

)
π

 ,
(33)

where a is the lower energy range up to the ionization
threshold, reaching the maximum value −γ/2

√
δ. The para-

meter δ is generally chosen to be 10−2 so that the total profile
ranges over 10γ.

3.2. Convolution quadrature

The complexity of the problem arises from the following main
factors: (i) the wide variety of narrow and broad resonances,
(ii) overlapping infinite Rydberg series belonging to a large
number of excitation thresholds of the target ion, and (iii)
Lorentzian profiles that vary at each energy on a mesh that
is independent of the tabulated energy mesh for the original
cross section. The schematics are described in figure 2.

Numerically, we need to evaluate the integrand in
equation (20) using equation (9), i.e.

σ (ω) =
∑
i

[ˆ
σ̃ (ω ′)

[
γi (ω)/π

(ω−ω ′)
2
+ γ

(ω)
i

]
dω ′

]
. (34)

Here, the summation is over all excitation thresholds Ei
included in the CC wavefunction expansion (equation (1))
and corresponding damping widths γi. The profile ϕ(ω ′,ω)
is centered at ω; we define x≡ ω ′ −ω (note the change of the
order of variables which is immaterial), then

σ (ω) =
∑
i

[
γi
π

ˆ +
γi√
δ

− γi√
δ

σ̃ (x)

x2 + γ2
i

dx

]
. (35)

This equation requires discrete summation over all target
ion thresholds, and piecewise integration over the normal-
ized profile at each energy. First, we consider the endpoints
with lower energy limit xℓ ≡−(ωo−ω) =−γi/

√
δ, and upper

limit xu ≡+(ωo−ω) = +γi/
√
δ. Let the tabulated energy

mesh be ω1,ω2, . . . ..ωN. Then x1 = ω1 −ω, x2 = ω2 −ω, … ,
xN = ωN−ω. Assuming the lower limit xℓ to lie between
x1 < xℓ < x2; and the upper limit xu between xN−1 < xu < xN,
we have

σ (ω) =
∑
i

[
γi
π

ˆ x2

xℓ

σ̃ (x)

x2 + γ2
i

dx+
ˆ x4

x3

(. . .)dx+ . . .

]
(36)

+ . . . .+

[ˆ xN

xN−1

(. . . ..)dx

]
. (37)

3.3. Interpolation and evaluation

Each of the raw originally tabulated unbroadened cross
sections σ̃(ω ′) needs to be interpolated on to the resonance
profile mesh. A linear interpolation is sufficient for preci-
sion since the CC calculations are usually carried out at a
fine mesh to resolve most autoionizing resonances up to
νi ⩽= νmax = 10 below each target threshold Ei. Suppose
the transposed energy mesh ω on to the resonance profile is
represented by linearly interpolated segments aj+ bjx with
aj,bj coefficients such that, xℓ =−γ/

√
(δ)< x< x2 −→

σ1(ω) = a1 + b1x, b1 = [σ̃(ω2)− σ̃(ω1)]/(ω2 −ω1) ; x2 < x<
x3 −→ σ2(ω) = a2 + b2x, b2 = [σ̃(ω3)− σ̃(ω2)]/(ω3 −ω2);
…………. x(N) < x< xu =+γ/

√
(δ)−→ σN(ω) = aN+ bNx,

bN = [σ̃(ωN)− σ̃(ωN−1]/(ωN−ωN−1). Then, for all
thresholds i,

σ (ω) =
∑
i

γi
π
[σ1 (ω)+σ2 (ω)+ . . . . . . . . . .+σN (ω)] . (38)
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Figure 2. Left: Tabulated cross sections at energies (hbar = 1) ω1, . . . ..ωN spanning a resonance centered at ωo, and Lorentzian profile with
lower and upper limits ωℓ = ωo− γ/sqrt(δ),ωu = ωo+ γ/sqrt(δ). Point-by-point normalized profile convolution ensures a complete
quadrature. Right: incomplete profile centered at ω = Ek with lower energy redward cut-off at ionization threshold on the left and partial
renormalization as in equation (31).

It is understood that the interpolation and summation is car-
ried out with respect to profiles corresponding to all target ion
thresholds at Ei. Having determined coefficients aj,bj we need
to evaluate expressions for each segment as

σj (ω) =
γi
π

ˆ i

xj

xj+1 (aj+ bjx)
x2 + γ2

dx. (39)

Evaluating separately,

σj (ω) = aj

[
tan−1 (x/γi)

γi

∣∣xj+1
xj

]
+
bj
2

[
ln
(
x2 + γ2

i

)∣∣xj+1

xj

]
.

(40)

For clarity we have avoided the use of double scripts (i, j),
one with respect to thresholdsEi and the other for interpolation
between respective resonance profile segments. But in prin-
ciple we may represent the final values of the cross sections
convolved over all resonances at the transposed energy mesh
ω ′ → ω as

σ (ω) =
∑
i,j

σij (ω) , (41)

subsuming all target ion levels (figure 1 and equation (1))
and interpolation into the computational algorithm. Finally, we
compute broadened cross sections at the same energy mesh as
the unbroadened cross sections σ̃(ω ′) so that there is one-to-
one correspondence ω ′ → ω. However, we note that the inter-
mediate energy mesh of the Lorentzian profile is independ-
ent and interpolated in accordance with the damping width
equations (11) and (12) at each energy.

3.4. Computer program

A general program for convolving AI resonances has been
written and will be reported elsewhere. Here we note a few
of the main features. The primary loops in the program are

over electron temperature Te, density Ne, and target thresholds
Ei. The input is the unbroadened CC cross sections tabulated
at a sufficiently fine mesh to resolve resonances so that convo-
lution, interpolation and integration do not result in a loss of
accuracy. The accuracy parameter δ is chosen to be in the range
10−2–10−6; more importantly, it is ensured that the convolved
cross sections have converged, physically implying that the
resonance wings have merged into the continuum. The CPU
time required depends mainly on the density which determines
the total width γ; for example, in the reported calculations for
Fe xvii at T = 2× 106 K it is a few minutes for Ne = 1021 cc
and ∼3 h for Ne = 1024cc.

The program is suitable as a module within a post-
processing program for CC cross sections with AI reson-
ances for photoionization, electron–ion collisions and recom-
bination, intended for practical application in a specified
temperature-density range.

4. Results and discussion

The complexity and magnitude of RMOP computations have
been studied using photoionization data for a large number
of bound levels of the three Fe ions described in RMOP2
[31–35]. Since AI plasma broadening must be carried out at
each temperature-density pair, the resulting cross sections con-
stitute a huge amount of data required for opacity calculations
in HED plasma sources. In this section we discuss a small
sample of results for those Fe ions to illustrate some physical
features.

4.1. Fe XVII : temperature-density dependence

Due to its closed shell ground configuration and many excited
n-complexes of configurations, Ne-like Fe xvii is of con-
siderable importance in astrophysical and laboratory plas-
mas, as described in a number of previous works ([36]
and references therein). The Fe xvii BPRM calculations

7
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Figure 3. Plasma broadened photoionization cross sections for h̄ω + Fe xvii → e + Fe xviii of the bound level 2s22p5[2Po3/2]4d(
1F o

3)

(left, ionization energy 17.626 Ry), level 2s22p5[2Po3/2]3p(
3D2) (right, ionization energy 37.707 Ry) along two isotherms T= 1× 106 K

(left) and T= 2× 106 K (right), and electron densities as shown in each panel: black — unbroadened, red—broadened, blue—broadened
with Stark ionization cut-off ν∗

s (table 1). Rydberg series of AI resonance complexes with νi ⩽ 10 belonging to 217 excited Fe xviii levels
Ei broaden and shift with increasing density, also resulting in continuum raising and threshold lowering.

are carried out with 218 fine structure levels dominated
by n= 2,3,4 levels of the core ion Fe xviii . The com-
puted Fe xvii bound levels (E< 0) are dominated by config-
urations 1s22s22p6(1S0),1s22sp2pqnℓ, [SLJ] (p,q= 0–2, n⩽
10, ℓ⩽ 9, J⩽ 12). The core Fe xvii levels included in the
CC calculation for the (e + Fe xviii) → Fe xvii system
are:1s22s22p5(2Po1/2,3/2),1s

22s22pq,nℓ, [SiLiJi] (p= 4,5, n⩽
4, ℓ⩽ 3). The Rydberg series of AI resonances correspond
to (SiLiJi) nℓ, n⩽ 10, ℓ⩽ 9, with effective quantum num-
ber defined as a continuous variable νi = z/

√
(Ei−E) (E>

0), throughout the energy range up to the highest 218th
Fe xviii core level; the n= 2,3,4 core levels range from
E = 0–90.7 Ry [21, 36]. The Fe xvii BPRM calculations
were carried out resolving the bound-free cross sections
at ∼40 000 energies for 454 bound levels with AI reson-
ance structures (in total 587 bound levels are considered,
but the higher lying levels are included to ensure conver-
gence and completeness as discussed in paper P4, and do
not significantly contribute to opacity calculations). Given
217 excited core levels of Fe xviii , convolution is car-
ried out at each energy or approximately 109 times for each
(T,Ne) pair.

Figure 3(left) displays detailed results for plasma
broadened and unbroadened photoionization cross section
of one particular excited level 2s22p5[2Po3/2]3p(

3D2) (left,
ionization energy 37.707 Ry) of Fe xvii along isotherm
T= 106 K at three representative densities (note the ∼10
orders of magnitude variation in resonance heights along
the Y-axis). The main features evident in the figure are as
follows. (i) AI resonances begin to show significant broad-

ening and smearing of a multitude of overlapping Rydberg
series at Ne = 1021c.c. The narrower high-n l resonances dis-
solve into the continua but the stronger low-n l resonances
retain their asymmetric shapes with attenuated heights and
widths. (ii) As the density increases by one to two orders of
magnitude, to Ne = 1022–23cc, resonance structures not only
broaden but their strengths shift and are redistributed over
a wide range determined by the total width γ(ω,νi,T,Ne) at
each energy h̄ω (equation (6)). (iii) Stark ionization cutoff
(table 1) results in step-wise structures that represent the aver-
age due to complete dissolution into continua. (iv) The total
AI resonance strengths are conserved, and integrated values
generally do not deviate by more than 1%–2%. For example,
the three cases in figure 3(left): unbroadened structure (black)
and broadened without (red) and with Stark cutoff (blue), the
integrated numerical values are 59.11, 59.96, 59.94, respect-
ively. This is also an important accuracy check for numerical
integration and the computational algorithm as well as the
choice of the parameter δ that determines the energy range
of the Lorentzian profile at each T and Ne; in the present
calculations it varies from δ = 0.01–0.05 for Ne = 1021–24cc.

Figure 3(right) shows similar results to figure 3 (left) for
another excited Fe xvii level 2s22p5[2Po3/2]4d(

1F o
3) (ioniza-

tion energy 17.626 Ry), along a higher temperature 2× 106 K
isotherm at different intermediate densities. Both figures 2
and 3 show a redward shift of low-n resonances and dis-
solution of high-n resonances. In addition, the background
continuum is increased owing to the redistribution of reson-
ance strengths, which merge into one across high lying and
overlapping thresholds.
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Figure 4. Plasma broadened photoionization cross sections on Log and linear scales, σPI(MB) (top panels) and LogσPI(MB) (bottom
panels) for h̄ω + Fe xviii → e + Fe xix of the bound level 2s2p5 2Po1/2 (left, ionization energy 98.903 Ry), and level 2s22p4(1De

2)3p
2F o

5/2

(right, ionization energy 39.1204 Ry): black — unbroadened, red—broadened, blue—broadened with Stark ionization cut-off ν∗
s (table 1).

Rydberg series of AI resonance complexes with νi ⩽ 10 belonging to 276 excited Fe xix levels.

4.2. Fe XVIII : scaling and delineation of resonances

Next, we employ plasma broadened cross sections for Fe xviii
to highlight the scale, shape, scope, width andmagnitude of AI
resonances.

The scale of unbroadened AI features is evident upon a
comparison on log and linear scales as in figure 4 (black
curves), considered for two excited Fe xviii levels. The top
and bottom panels on left and right exhibit LogσPI(MB) and
σPI(MB), respectively. Whereas the log-scale of the top pan-
els appropriately displays the full extent of AI resonances, it
appears with equal weight for both positive values that rise up
to 106 MB, and for negative values down to 10−6 MB that are
not significant contributors, as shown in the bottom panels on a
much smaller linear scale going from zero only up to 2.5 MB.

Attenuation of AI features due to plasma effects is shown
in the red and blue curves at two different T −D pairs; cross
sections on the left are at a lower temperature and more than
three times lower electron density than the ones on the right.
Consequently, the AI features on the right in figure 4 are
much more broadened than the ones on the left. Two other
noticeable features are the closing of ‘opacity windows’ in
the unbroadened cross sections, and the shift of AI resonances
leading to temperature-density dependent redistribution of dif-
ferential oscillator strengths and opacity with energy.

4.3. Conservation of differential oscillator strength

It is important to ensure the numerical accuracy of AI
plasma broadening in temperature-density-energy space.
Theoretically and computationally, that implies an investiga-
tion of integrated differential oscillator strengths proportional

to σPI for all levels of a given ion for the three forms computed:
(i) unbroadened (black curves), (ii) with all plasma broaden-
ing effects included as in equation (6) (red curves), and (iii) as
in (ii) but with Stark ionization cutoff that leads to sharp step-
wise structures below each ionization threshold (blue curves).
We have quoted these values for one level of Fe xvii above in
figure 3.

In figure 5 we present σPI for the ground state of Fe xix
2s2p4 3P3 (ionization energy 104.956 Ry), as well as an excited
state 2s2p4(2S)3s 1Se (ionization energy 24.186 Ry). For these
two cross sections of Fe xix we find integrated values over the
entire energy range shown to be 21.74, 22.98 and 22.90 for
the unbroadened, broadened, and broadened with Stark ioniz-
ation cutoff, for the ground state, and 12.48, 13.57 and 13.56,
respectively, for the excited state (units are in MB-Ry though
only the relative values are indicators of accuracy). The numer-
ical agreement between the three sets of values is well within
∼10% indicating the conservation of oscillator strength, des-
pite some uncertainty in integration over extensive narrow and
broad resonance structures that vary by nearly 20 orders of
magnitude in height for σPI(2s2p4(2S)3s 1Se), and widely dis-
parate width distribution among Rydberg vs. Seaton PEC res-
onances described in RMOP2.

Generally, the agreement between the three sets of calcu-
lations for each level of each ion at each temperature-density
is also an accuracy check of the plasma broadening treatment
presented. Since there are hundreds of levels for each ion con-
sidered, there is more than 10% difference in integrated cross
sections for highly excited levels at very high densities where
the total AI width (equation (6)) is very large. However, the
highly excited levels are cut-off by the MHD-EOS and not
considered in opacity calculations.
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Figure 5. Plasma broadened photoionization cross sections on Log and linear scales, σPI(MB) (top panels) and LogσPI(MB) (bottom
panels) for h̄ω + Fe xix → e + Fe xx of the ground state 2s2p4 3Pe (left), and 2s2p4(2S)3s 1Se (right): black — unbroadened,
red—broadened, blue—broadened with Stark ionization cut-off ν∗

s (table 1). AI resonances in the unbroadened σPI on the right range over
20 orders of magnitude.

4.4. Plasma opacity parameters

Table 2 gives plasma parameters corresponding to figure 3.
Their physical significance is demonstrated by a representat-
ive sample tabulated at temperatures T(K) and Ne. The max-
imum width γ10 corresponding to νi = 10 in equations (3)
and (6) is set by the CC-BPRM calculations which delineate
unbroadened AI resonance profiles up to ν ⩽ 10, and employ
an averaging procedure up to each threshold 10< ν <∞
using quantum defect theory (viz. [6, 19, 37] and references
therein). γc(10) and γs(10) are the maximum collisional and
Stark width components. The Doppler width γd is much smal-
ler, 1.18× 10−3 and 1.67× 10−3 Ry at 106 K and 2× 106 K,
respectively, validating its inclusion in equation (6) in HED
plasma sources but possibly not when γd is comparable to γc
or γs. The ν∗s and νD are effective quantum numbers corres-
ponding to the Stark ionization cutoff and the Debye radius,

respectively. We obtain νD =
[
2
5π z

2λ2
D

]1/4
, where the Debye

length λD = (kT/8πNe)1/2. It is seen in table 2 that νD > ν∗s at
the T, Ne considered, justifying the neglect of plasma screen-
ing effects herein, but which may need to be accounted for at
even higher densities.

The aggregate effect of AI broadening for large-scale
applications is demonstrated in table 2 by the ratio R of the
Rosseland Mean Opacity (defined and discussed in RMOP1
equations (1)–(4)), at different temperatures and densities,
using broadened/unbroadened cross sections for 454 Fe xvii
levels with AI resonances (other higher bound levels have
negligible resonances) [36, 38]. For any atom or ion, R is
highly dependent on T and Ne; for Fe xvii R yields up to
58% enhancement due to plasma broadening with increasing
Ne along the 2× 106 K isotherm, but decreasing to 6% along

Table 2. Plasma parameters along isotherms in figures 2 and 3; νD

corresponds to Debye radius; R is the ratio of Fe xvii Rosseland
Mean Opacity with and without broadening [38]; γ10 is the
maximum AI resonance width at ν= 10.

γ10(Ry)
T(K) Ne(cc) ν= 10 γc(10) γs(10) ν∗

s νD R

2× 106 1021 3.42(−1) 8.55(−2) 2.57(−1) 10.4 28.1 1.35
2× 106 1022 2.05(0) 8.55(−1) 1.19(0) 7.7 15.8 1.43
2× 106 1023 1.41(1) 8.55(0) 5.53(0) 5.6 8.9 1.55
2× 106 1024 1.11(2) 8.55(1) 2.57(1) 4.1 5.0 1.58
106 3.1× 1021.5 8.17(−1) 2.71(−1) 5.46(−1) 9.0 17.8 1.47
106 3.1× 1022.5 5.25(0) 2.71(0) 2.53(0) 6.6 10.0 1.13
106 3.1× 1023.5 3.89(0) 2.71(1) 1.18(0) 4.8 5.6 1.06

the 106 K isotherm. Approximately 70 000 free–free trans-
itions among +ve energy levels are included in the calcula-
tion of R, but their contribution has no significant broaden-
ing effect since they entail very high-lying levels with neg-
ligible level populations. However, different plasma environ-
ments with intense radiation fields, or a different equation-
of-state than [16] employed here, may lead to more discern-
ible effects due to free–free transitions. AI broadening in a
plasma environment affects each level cross section differ-
ently, and hence its contribution to opacity and rate equations
for atomic processes in general. A critical (T,Ne ) range
can therefore be numerically ascertained where redistribu-
tion and shifts of atomic resonance strengths would be sig-
nificant and cross sections should be modified. The over-
all opacity enhancement depends not only on AI resonance
broadening at a given temperature-density but also on the
equation-of-state [39].
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Figure 6. Effect of including individual broadening mechanisms on photoionization cross sections in figure 3 for isotherm T= 2× 106 K,
Ne = 1022/cc (Left) and Ne = 1023/cc (Right): unbroadened (black), total broadened (red), C—Collisional (cyan), D—Doppler Thermal
(magenta), S—Stark (green).

4.5. Relative broadening effects

Following table 1 we can examine the individual effects
of including different broadening mechanisms separately in
the combined total (equation (6)). Figure 6 shows the cross
sections including the three dominant mechanisms. Referring
to figure 3 for photoionization of Fe xviii and table 1, the con-
tributions are shown to be due to equation (21) for collisional
(cyan), equation (25) for thermal (magenta), and equation (24)
for Stark (green) effects, respectively. Results are given in
figure 6 for T= 2× 106 K at two electron densities 1021/cc
(left) and 1023/cc (right). From table 1 we see the relat-
ive widths due to collisional and Stark broadening; thermal
(Doppler) broadening is much smaller and manifests itself
only for very narrow resonances and high-lying thresholds. At
lower density (left) many of the unbroadened resonance struc-
tures (black) are discernible although significantly dissolved,
and the collisional width is less than the Stark width, which is
larger (table 1) and closer to the total broadened cross sections
(red). At higher density (right) the effects of collisional and
Stark are reversed; the former is more prominent though quite
comparable to the latter. More detailed studies on a number
of cross sections for different ions would be needed to ascer-
tain precisely the broadening effects in each case. However,
from the limited results presented herein a conservative estim-
ate is that the lower density limit for broadening mechanisms
to manifest themselves is Ne > 1020/cc. Table 1 also indicates
probable high density limit atNe > 1024/cc based on two reas-
ons: (i) the total combined AI broadening widths become very
large and comparable to the entire energy range of the reson-
ance structures included in the computations of cross sections,
and (ii) the Debye lengths are comparable to or shorter than
bound electronic orbital radii, and atomic configurations are no
longer a viable description which would require dense plasma
effects to be considered non-perturbatively.

5. Conclusion

The main conclusions are: (I) The method described herein
is generally applicable to AI resonances in atomic processes
in HED plasmas. (II) The cross sections become energy-
temperature-density dependent in a critical range leading
to broadening, shifting, and dissolving into continua. (III)
Among the approximations necessary to generalize the form-
alism is the assumption that thermal Doppler widths are small
compared to collisional and Stark widths as herein, but given
the intrinsic asymmetries of AI resonances it may not lead
to significant inaccuracies (although this needs to be veri-
fied in future works). (IV) The treatment of Stark broadening
and ionization cutoff is ad hoc, albeit based on the equation-
of-state formulation [16] and consistent with previous works
[6]. (V) Since it is negligibly small, the free–free contribu-
tion is included post-facto in the computation of the ratio R
in table 2 and not in the cross sections and results shown in
figures 2 and 3, but may be important in special HED environ-
ments with intense radiation and should then be incorporated
in the main calculations of total AI width (equation (6)). (VI)
The predicted redward shift of AI resonances as the plasma
density increases should be experimentally verifiable. (VII)
The redistribution of AI resonance strengths should particu-
larly manifest itself in rate coefficients for (e+ ion) excitation
and recombination in plasma models and simulations and for
photoabsorption in opacity calculations, using temperature-
dependent Maxwellian, Planck, or other particle distribution
functions. (VIII) The treatment of individual contributions to
AI broadening may be improved, and the theoretical formula-
tion outlined here is predicated on the assumption that external
plasma effects are perturbations subsumed by and overly-
ing the intrinsic autoionization effect. (IX) The computational
formalism is designed to be amenable to practical applications
and the computational algorithm and general-purpose program
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AUTOBRO are optimized for large-scale computations of AI
broadened cross sections for atomic processes in HED plasma
and astrophysical models.
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