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" Al like iron ion, Fe XIV, is seen in astronomical objects: the sun, Seyfert galaxies.
" Radiative transitions in Fe XIV cause spectral lines and stellar opacities.
" The largest set of energy levels and parameters for radiative transitions is reported.
" Present results from relativistic Breit-Pauli R-matrix method are of high accuracy.
" These should determine more precise stellar abundances, diagnostics, pulsations etc.
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a b s t r a c t

Results are reported for Fe XIV energy levels and transitions obtained from the ab initio relativistic Breit–
Pauli R-matrix (BPRM) method. BPRM method developed under the Iron Project is capable of calculating
very large number of fine structure energy levels and corresponding transitions. However, unlike in the
atomic structure calculations, where levels are identified spectroscopically based on the leading percent-
age contributions of configurations, BPRM is incapable of such identification of the levels and hence the
transitions. The main reason for it is that the percentage contributions can not be determined exactly
from the large number of channels in the R-matrix space. The present report describes an identification
method that uses considerations of quantum defects of channels, contributions of channel from outer
regions, Hund’s rule, and angular momenta algebra for addition and completeness of fine structure com-
ponents. The present calculations are carried out using a close coupling wave function expansion that
included 26 core excitations from configurations 2s22p63s2, 2s22p63s3p;2s22p63p2;2s22p63s3d, and
2s22p63p3d. A total of 1002 fine structure levels with n 6 10, l 69, and 0.5 6 J 6 9.5 with even and odd
parities and the corresponding 130,520 electric dipole allowed (E1) fine structure transitions, a most
complete set for astrophysical modelings of spectral analysis and opacities, is presented. Large number
of new energy levels are found and identified. The energies agree very well, mostly in less than 1% with
the highest being 1.9%, with the 68 observed fine structure levels. While the high lying levels may have
some uncertainty, an overall accuracy of energy levels should be within 10%. BPRM transitions have been
benchmarked with the existing most accurate calculated transition probabilities with very good agree-
ment for most cases. Based on the accuracy of the method and comparisons, most of the transitions
can be rated with A (6 10%) to C (6 30%).

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Fe XIV, the aluminum like iron ion, exists in many astronom-
ical objects, such as, in the sun (e.g. Edlen, 1942), in Seyfert gal-
axies (e.g. Ferguson et al., 1997). The ion is most known for its
green emission line at 5303 Å due to the forbidden transition
3s23p2Po

1=2—3s23p2Po
3=2 in the ground configuration. The line, first

identified in the optical coronal spectrum by Edlen (1942), is used
as a diagnostic line (e.g. Brickhouse et al., 1995; Brosius et al.,
1998). This and few other low-lying forbidden lines due to tran-
sitions, particularly among the levels of 3s3p2ð4PJÞ and of
3s3p3dð4Fo

J Þ, have been under considerable study both experi-
mentally (e.g. Trabert et al., 1988; Beiersdorfer et al., 2003;
Trabert, 2010; Brenner et al., 2007) and theoretically (e.g. Santana
et al., 2009; Hao et al., 2010). Other spectral lines of Fe XIV have
been seen in the soft X-ray and extreme-ultraviolet (EUV) in the
solar corona (e.g. Acton et al., 1985; Thomas and Neuport, 1994;
Brosius et al., 1998; Brown et al., 2008) and studied theoretically
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by investigators, such as, using MCDF method by Gupta and
Msezane (2001); Fischer et al. (2006)), for n = 3–4 allowed transi-
tions by Wei et al. (2008), for levels up 4d by Tayal (2008); Jian-
Zhong et al. (2012), and Thomas–Fermi approximation by Storey
et al. (2000); Liang et al. (2010), and ab initio multireference Mol-
ler–Plesset perturbation theory by Santana et al. (2009). A rela-
tively large list of publications for these lines are available at
the National Institute for Standards and Technology (NIST) web-
site. The evaluated compilation of Fe XIV transitions by NIST in-
cludes about 70 energy levels from Sugar and Corliss, (1985),
Shirai et al. (2000), and 151 transitions from Shirai et al. (2000),
Fawsett et al. (1972), Huang (1986), and Garstang (1962); Redfors
and Litzen (1989) also measured number of energy levels of Fe
XIV.

In contrast to most of the earlier atomic structure calculations,
the present theoretical study on Fe XIV transitions employs the ab
initio Breit–Pauli R-matrix (BPRM) method in the close coupling
(CC) approximation (Hummer et al., 1993; Scott and Burke, 1980;
Scott and Taylor, 1982; Berrington et al., 1995) for the first time
for this ion. Hence the results benchmark the BPRM method with
earlier experimental as well as other accurate theoretical approxi-
mations. In addition, using the computational capability of the CC
approximation with the R-matrix method, a large number of fine
structure transitions for n going up to 10 have been considered.
Such large scale computation is needed for astrophysical models
such as producing synthetic spectra, calculations of plasma opaci-
ties etc. (e.g. Seaton et al., 1994) which require more complete set
of transitions. For example, we still do not have accurate iron abun-
dance in the sun due to lack of accurate opacity (e.g. Bailey et al.,
2009). One major difficulty of BPRM method is to carry out the
spectroscopy of levels and transitions. Identification of the levels
and transitions is important for various diagnostic applications.
This report will discuss the identifications along with new results
of the levels and electric dipole allowed transitions in iron ion, Fe
XIV.

2. Theory

Breit–Pauli R-matrix method (Hummer et al., 1993, Scott and
Burke, 1980, Scott and Taylor, 1982, Berrington et al., 1995) is
the relativistic extension of the R-matrix method used under the
Opacity Project (The Opacity Project Team, 1995, 1996). The rela-
tivistic effects are considered through Breit–Pauli approximation.
The wave functions are represented in close-coupling approxima-
tion which allows consideration of large number of core excita-
tions. In the CC approximation the atomic system is represented
as the ‘target’ or the ’core’ ion of N-electrons interacting with the
(N + 1)th electron. In the electron–ion system, the (N + 1)th elec-
tron may be bound or in the continuum depending on its energy.
The total wave function, WE, of the (N + 1)-electron system in a
symmetry Jp is expressed as an expansion over the eigenfunctions
of the target ion, vi in specific level SiLiðJiÞpi, coupled with the
(N + 1)th electron function, hi:

WEðeþ ionÞ ¼ A
X

i

viðionÞhi þ
X

j

cjUj; ð1Þ

where the first sum is over the ground and excited states of the tar-
get or the core ion. A is the anti-symmetrization operator. The
(N + 1)th electron with kinetic energy k2

i corresponds to a channel
labeled SiLiðJiÞpik

2
i ‘iðSLðJÞpÞ. The Ujs in the second term are bound

channel functions of the (N + 1)-electron system that account for
short range correlation not considered in the first term and the
orthogonality between the continuum and the bound electron orbi-
tals of the target. The core orbitals of (N + 1) electrons system are
the same as those of N-electron system.

The relativistic Hamiltonian in the BPRM method is given by

HBP
Nþ1 ¼

XNþ1

i¼1

�r2
i �

2Z
ri
þ
XNþ1

j>i

2
rij

( )
þ Hmass

Nþ1 þ HDar
Nþ1 þ Hso

Nþ1: ð2Þ

where the last three terms are relativistic corrections, respectively:

mass correction term; Hmass
Nþ1 ¼ �

a2

4

X
i
p4

i ;

Darwin term; HDar
Nþ1 ¼

Za2

4

X
i
r2ð1

ri
Þ;

spin—orbit interaction term; Hso
Nþ1 ¼ Za2

X
i

li:si

r3
i

:

ð3Þ

The spin–orbit interaction Hso
Nþ1 splits LS energy into fine structure

levels. Total Briet–Pauli Hamiltonian has more terms, but they are
relatively weaker two-body interactions terms (e.g. Pradhan and
Nahar, 2011). Only part of those contributions is included in the
BPRM calculations.Substitution of WEðeþ ionÞ in the Schrodinger
equation

HNþ1WE ¼ EWE ð4Þ

introduces a set of coupled equations that are solved using the R-
matrix method (e.g. Pradhan and Nahar, 2011). In the R-matrix
method, the space is divided in two regions, the inner and the outer
regions, of a sphere of radius ra with the ion at the center. The R-
matrix boundary, ra, is chosen to be large enough for electron–elec-
tron interaction potential to be zero outside it. The wave function
beyond the R-matrix boundary r > ra is then Coulombic due to per-
turbation from the long-range multipole potentials. In the inner re-
gion, the partial radial wave function Fi of the interacting electron is
expanded in terms of a basis set, called the R-matrix basis,
Fi ¼

P
akuk, which satisfies

d2

dr2 �
lðlþ 1Þ

r2 þ VðrÞ þ �lk

" #
ulk þ

X
n

knlkPnlðrÞ ¼ 0: ð5Þ

and are made continuous at the boundary by matching with the
Coulomb functions outside the boundary. The solution is a contin-
uum wave function WF for an electron with positive energies (E >

0), or a bound state WB at a negative total energy (E 60).
The transition matrix element for radiative transition to an ex-

cited state is given by

hWBkDkWB0 i; ð6Þ

where D ¼
P

iri is the dipole operator and the sum is over the num-
ber of electrons; WB and WB0 are the initial and final bound wave
functions. The transition matrix element can be reduced to general-
ized line strength as

S ¼ jhWjkDkWiij2 ¼ wf j
XNþ1

j¼1

rj j wi

* +�����
�����
2

; ð7Þ

where Wi and Wf are the initial and final state wave functions. The
line strengths are energy independent quantities. The oscillator
strength (fij) and radiative decay rate or Einstein’s A-coefficient for
an E1 transition are given by

fij ¼
Eji

3gi
SðijÞ; Ajiða:u:Þ ¼

1
2
a3gi=gjE

2
jifij: ð8Þ

Eji is the energy difference between the initial and final states, a is
the fine structure constant, and gi; gj are the statistical weight fac-
tors of the initial and final states, respectively.The lifetime of a level
can be computed as

sk ¼
1
Ak
; ð9Þ
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where Ak ¼¼
P

iAki is the total radiative transition probability in
atomic unit for level k. In time unit,

giAkiðs�1Þ ¼ 2:6774� 109 s�1ðEi � EkÞ3SðikÞ ð10Þ

3. Computation

The close coupling wave function expansion, Eq. (1), of Fe XIV
included 26 levels of the core ion Fe XV. This means that the BPRM
calculations will find the possible bound levels of Fe XIV where the
core ion can be in the ground level or in one of the 25 possible ex-
cited levels. The core levels belong to configurations
3s2;3s3p;3p2;3s3d and 3p3d with filled inner shells 1s22s22p6.
These levels are given in Table 1.

The wave functions of the target or core orbitals are obtained
from atomic structure calculations using the later version (Nahar
et al., 2003) of code SUPERSTRUCTURE (SS) (Eissner et al. (1974)).
SS employs Thomas-Fermi–Dirac–Amaldi approximation. Eighteen
configurations of core Fe XV, given in Table 1, were optimized
along with the Thomas–Fermi scaling parameters (knl) for the orbi-
tals. These configurations and values of knl are given in the Table 1.
The calculated energies Ec (Table 1) are very close to the observed
values compiled at NIST website, the largest difference being with-
in 5% for the level 3p2ð1S0Þ. Some improvement in accuracy (N + 1)-
electron energies can be achieved by replacing the calculated core
level energies with observed energies during diagonalization of the
(N + 1)-electron Hamiltonian. No optimization of wave functions is
carried out, that is, the same calculated orbitals functions are used.

The second sum in the wave function expansion, the bound-
channel expansion, in Eq. (1) includes 63 configurations of the
(N + 1)-electron system as specified by a range of minimum and

maximum occupancies (listed within parentheses after the orbi-
tals) as: 2pð5—6Þ;3sð0—2Þ;3pð0—3Þ;3dð0—2Þ;4sð0—2Þ;4pð0—2Þ;
4dð0—1Þ;4f ð0—1Þ;5sð0—1Þ;5pð0—1Þ;5dð0—1Þ. All SLJp symmetries
of the electron–ion system formed from the target states coupled
with an interacting electron with continuum partial waves
06 l 612 are considered.

Steps of computations for transition parameters of other atomic
systems using BPRM codes (Berrington et al., 1995) can be found in
earlier papers (e.g. Nahar et al., 2003). STG1 of the BPRM codes car-
ries out computation of radiative integrals while STG2 computes
the coefficients of angular algebra of the Hamiltonian. Stage RE-
CUPD carries out the intermediate coupling calculations for the
fine structure components and STGH forms the Hamiltonian ma-
trix and dipole transition matrices. The energy eigenvalues are
computed by STGB and the levels are searched by scanning
through the poles in the Hamiltonian using a very fine quantum
defect mesh, Dq going as small as 0.00025. The energy levels are
identified spectroscopically using code PRCBPID (Nahar and Prad-
han, 2000; Nahar, 2000) as explained in the next section. STGBB
calculates the oscillator strengths. The R-matrix results for ener-
gies and oscillator strengths are processed using codes PBPRAD
(Nahar, 2003)

4. Spectroscopic designation of energy levels

The spectroscopy for identification of energy levels and transi-
tions in BPRM method is different from the atomic structure struc-
ture calculations. In the multi-configuration interaction, a state
usually has contributions from a number of states of same symme-
try but from various configurations. For example, the 2Po state of Fe
XIV can have contributions from 3s23pð2PoÞ;3p3ð2PoÞ;3s3p3dð2PoÞ;
3s24pð2PoÞ etc. The lowest energy state 2Po will have the maximum
(usually 100%) contribution from the ground state, 3s23pð2PoÞ ,
while the first excited 2Po state will have maximum contribution
from 3p3ð2PoÞ, second excited 2Po state will have from 3s24pð2PoÞ,
and so on. These percentage contributions from various configura-
tions or the mixing coefficients are determined while the Hamilto-
nian matrix is optimized. Atomic structure calculation designates
the energy state by the spectroscopic state which has the highest
or the leading percentage contribution.

In contrast to atomic structure, close coupling approximation
treats the electron–ion system as channels of interaction such that
the solution of the multi-configuration Hartree–Fock equation is a
continuum wave function WF for an electron with positive energies
(E > 0) or a bound state WB at a negative total energy (E 60). Each
energy level will have contributions from a number of channels
and the dominating channels determine the spectroscopic designa-
tion of it. However, determination of channel contributions in the
R-matrix method is more involved since each channel has contri-
butions from inner and outer regions of the R-matrix sphere. As ex-
plained earlier that in the inner region, an orbital radial wave
function is expanded by the R-matrix basis set and extended out-
ward up to the R-matrix boundary where it is matched with the
outer region wave function. The BPRM method provides percent-
age contributions of channels from outer region. Hence these con-
tributions may not reflect the highest contributing channels.
However, a level designation often corresponds to one of the first
two/three channels with highest percentage contributions. The
theoretical spectroscopy for identification of the levels from these
channels are built in the program PRCBPID (Nahar and Pradhan,
2000; Nahar, 2000) as summarized below. The method is based
on quantum defect analysis, channel contributions, rules of angular
momenta algebra, correspondence between LS and fine structure
components, and Hund’s rule as a guidance. A set of spectroscopi-
cally identified levels are given in Table 2.

Table 1
Energy levels, calculated (Ec) and observed (E) (NIST), of the core ion Fe XV included in
the eigenfunction expansion of Fe XIV. The core was optimized with a set of 18
configurations with closed K-shell: 2s22p63s2(1), 2s22p63s3p(2), 2s22p63p2(3), 2s22p6

3s3d(4), 2s22p63p3d(5), 2s22p63s4s(6), 2s22p63s4p(7), 2s22p63s4d(8), 2s22p63s4f (9),
2s22p63s5s(10), 2s22p63s5p(11), 2s22p63s5d(12), 2s22p63p4s(13), 2s22p63p4p(14),
2s22p63p4d(15), 2s22p63p4f (16), 2s22p53s23p(17), 2s22p53s23d(18).

i Configuration Term 2J E(Ry) Ec(Ry)

1 2p63s2 1S 0 0.0 0.0
2 3s3p 3Po 0 2.1315 2.1834
3 3s3p 3Po 2 2.1839 2.2353
4 3s3p 3Po 4 2.3129 2.3578
5 3s3p 1Po 2 3.2068 3.3002
6 3p2 3P 0 5.0532 5.1726
7 3p2 1D 4 5.0995 5.1747
8 3p2 3P 2 5.1447 5.2541
9 3p2 3P 4 5.3007 5.3969
10 3p2 1S 0 6.0110 6.3052
11 3s3d 3D 2 6.1854 6.2770
12 3s3d 3D 4 6.1947 6.2931
13 3s3d 3D 6 6.2095 6.3178
14 3s3d 1D 4 6.9447 7.1840
15 3p3d 3Fo 4 8.4588 8.5441
16 3p3d 3Fo 6 8.5488 8.6369
17 3p3d 1Do 4 8.6435 8.7422
18 3p3d 3Fo 8 8.6539 8.7421
19 3p3d 3Do 2 8.9566 9.0891
20 3p3d 3Po 4 8.9624 9.0995
21 3p3d 3Do 6 9.0658 9.2072
22 3p3d 3Po 0 9.0752 9.1896
23 3p3d 3Po 2 9.0784 9.1982
24 3p3d 3Do 4 9.0819 9.2109
25 3p3d 1Fo 6 9.6824 9.8995
26 3p3d 1Po 2 9.7951 10.043

knl = 1.38(1s), 1.25(2s), 1.15(2p), 1.15(3s), 1.1(3p), 1.0(3d),
1:0ð4sÞ;1:0ð4pÞ;1:0ð4dÞ;1:0ð4f Þ;1:0ð5sÞ;1:0ð5pÞ:1:0ð5f Þ

10 S.N. Nahar / New Astronomy 21 (2013) 8–16
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A channel is described as ðCtÞ2Stþ1Lpt
tjt

nl where Ct is the target
(core) configuration, 2Stþ1Lpt

tjt
is the target state and l is the orbital

angular momentum of the valence electron. The principle quantum
number n is to be determined. The BPRM method calculates sets of
energies belonging to various symmetries Jp. The symmetry pro-
vides the total angular momentum J and parity p of the levels.
Hence, each level of the Jp set has contributions from all possible
channels with all possible states that form total angular momen-
tum J which is the sum of angular momenta of the target level
and of the valence electron. The program PRCBPID Nahar, 2000
picks the first two most contributing channels to the level as a start
and determines the total number of possible spectroscopic desig-
nations 2Sþ1Lp

J for the final state for each channel (e.g. as given in
the last column of energy levels of Table 2). For these, following
Hund’s rule as a guide for the energy positions of the levels, two
assumptions are made. In the first assumption the lower levels
are given higher spin-multiplicity 2St þ 2 and the higher ones low-
er spin-multiplicity 2St . (We note that there is no multiplicity 2St

with a singlet core state). The second assumption is, again follow-
ing Hund’s rule, that levels with higher total orbital angular
momentum L with the same 2Sþ 1 lie lower than those with lower
L. However, in case of existing accurate identifications, such as
those of NIST, BPRM levels are matched with their identification
for consistency.

The principle quantum number of the valence electron, n, is
determined next from the quantum defect (l), its orbital angular
momentum (l), and principle quantum number nt of the outer elec-
tron of the target or the core state. BPRM method provides table of
effective quantum numbers (mnl ¼ nl � ll) of the valence electron
for each contributing channel. ml of various channels can be studied
along the energy levels to identify a Rydberg series. For a Rydberg
series of levels with a particular angular momentum (l) of the va-
lence electron, the quantum defect ll remains about the same,
especially for higher levels while the effective quantum number
mnl increases approximately by unity with higher levels. ll follows
the order ls > lp > ld > lf and so on. For high l;ll is almost zero.
For example, the first energy set in Table 2 indicates that lp is
about 0.35. The value of ll becomes more consistent with higher
energy levels. Hence analyzing mnl of the channels, a Rydberg series
and its ll can be recognized. For such an identified Rydberg series
of levels with same Jp, the lowest level with orbital angular
momentum l is assigned with the principle quantum number n

of the next unoccupied orbital of the core. Hence, for the first p-
electron of the set of Table 2 it is n ¼ nt ¼ 3 since this is first unoc-
cupied orbital. Then n of higher levels of the series are assigned
with increasing numbers differing by unity. Similarly ll of other
series are determined. Once ll of various s; p; d etc. found, they
are used as guidance for determination of the nl of other levels
with different core states and configuration, especially for a series
with a single level.

Equivalent electron states can not be identified in the above
manner since their quantum defects are not well defined in BPRM
calculations. These states are worked out separately from possible
equivalent electron configurations of (N + 1) electrons system.
These configurations are formed by adding one electron in the out-
er orbital of the target configurations. For example, for Fe XIV,
addition of an electron gives the possible equivalent configurations
are 3s3p2;3p3;3s3d2, and 3p3d2. Using angular algebra, all possible
LS states and their fine structure components are obtained sepa-
rately by hand. These levels are then searched in the calculated en-
ergy levels with same J;p. They often lie in the low energy region.
As mentioned above, they do not have well defined quantum de-
fects l or effective quantum number m, and do not fit any Rydberg
state. For these levels the effective quantum number m can be esti-
mated by using the formula

m ¼ z=
ffiffiffi
E
p

:

The total higher or lower spin and angular momenta for these levels
are assigned following the similar criteria mentioned above for non-
equivalent electron states. An example set of levels for an equiva-
lent state 3s3p2ð4PÞ is given in second set of Table 2.

After the initial assignments, all calculated levels from all Jp are
sorted out to group them into sets of fine structure components for
the LS terms. Each set is sorted with same configuration (ðCtÞnl),
same core state (StLtpt), same total spin multiplicity 2Sþ 1 and
parity p but has all possible corresponding L and J values. The pos-
sible L values are listed at the top of the energy set and the corre-
sponding J values are listed within parentheses next to the L value
as shown in Table 2. Each set of levels is checked for complete
number of fine structure levels 2Sþ1Lo

J defined as Nlv in Table 2.
The program PRCBPID writes the message on completeness if the
calculated levels NlvðcÞ matches the expected number of levels
Nlv, otherwise specifies the J values of the missing levels. Missing
levels are often found as extra or duplicate levels belonging to
some other sets. They indicate mixing of various configurations
contributing to the levels. Identification of these levels are then ad-
justed from the contributing channels and following above criteria.
Thus a unique correspondence is made between the fine structure
levels and their LS terms such that exact number of fine structure
levels are accounted for each LS term.

The last energy set of configuration 3p2ð1DÞ3d in Table 2 is ex-
pected to have 9 levels. The top line specifies the set of 2Le where
for the particular configuration and doublet spin multiplicity, the
L values are S; P;D; F and G, and the corresponding J-values are as
given within parentheses next to the L values. These J-values add
to a total number of 9 levels, that is, 1 level from state 2Se, 2 from
2Pe, 2 from 2De, 2 from 2Fe, and 2 from 2Ge. The number of calcu-
lated levels for the set is also found to be 9 and hence the calcu-
lated set is complete as indicated at the bottom line. In this set,
it is also seen that there is a single L value for some levels, but more
than one possible L-values for some other energy levels (last col-
umn). A level with more than one possible L-values can have a pre-
ferred L-value for a unique correspondence to a term, such as the
level with higher angular momentum may lie lower. Following
the criteria explained above, the first level with two possible L-val-
ues, D and F; F can be chosen since it is higher than D. Hence, the
first and the third levels can form the term 2Fe The second level

Table 2
Sample set of fine structure energy levels of Fe XIV, grouped as components of LS
terms.

CtðStLtptÞ Jt nl 2J E (Ry) m SLp

Nlv = 2, 2Lo:P (3 1)/2
2p63s2 (1Se) 0 3p 1 �2.88230E+01 2.64 2Po
2p63s2 (1Se) 0 3p 3 �2.86520E+01 2.62 2Po
Nlv (c) = 2: set complete

Eqv electron/unidentified levels, parity: e
3s3p2 1 �2.68030E+01 2.70 4Pe
3s3p2 3 �2.67330E+01 2.71 4Pe
3s3p2 5 �2.66410E+01 2.71 4Pe
Nlv (c) = 3: set complete

Nlv = 9, 2Le: Sð1Þ=2Pð31Þ=2Dð53Þ=2Fð75Þ=2Gð97Þ=2
3p2 (1De) 2 3d 5 �1.96549E+01 2.84 2DFe
3p2 (1De) 2 3d 7 �1.95955E+01 2.83 2FGe
3p2 (1De) 2 3d 7 �1.94588E+01 2.85 2FGe
3p2 (1De) 2 3d 9 �1.94215E+01 2.84 2Ge
3p2 (1De) 2 3d 3 �1.94120E+01 2.83 2De
3p2 (1De) 2 3d 5 �1.93740E+01 2.85 2De
3p2 (1De) 2 3d 1 �1.88526E+01 2.85 2SPe
3p2 (1De) 2 3d 1 �1.87559E+01 2.86 2SPe
3p2 (1De) 2 3d 3 �1.87283E+01 2.88 2PDe
Nlv (c) = 9: set complete

S.N. Nahar / New Astronomy 21 (2013) 8–16 11



Author's personal copy

can be 2Ge
7=2 to combine with the fourth for 2Ge. The seventh and

ninth can form 2Pe while the eighth level is 2Se.

Identification procedure is repeated with different contributing
channels for missing levels as well as for removing duplicate iden-
tities until all levels have been identified uniquely. All assigned
spectroscopic levels, equivalent and single valence electron, are
compared with the available energies and transitions, for consis-
tency. These identifications of levels are then used to define those
of fine structure transitions.

BPRM identification of levels are needed mainly for guidance
in diagnostics and other applications. However, spectroscopy of
level identification is one of the most laborious tasks. It also in-
volves some judgment. While low lying or weakly interacting lev-
els can be more definitely identified, others may contain some
uncertainty from mixed configuration interaction whose domi-
nance is the main determining factor for identification. As noted
earlier for the R-matrix method, the mixing coefficients are less
defined because of two contributions, from the inner and the out-
er regions. Atomic structure calculations do not have the space
divided and levels are defined with dominant configuration.
Hence some differences from different approximations in identifi-
cations arising due to differences in the most contributing config-
uration do not necessarily indicate an error, rather indicate of
other possible designations with different leading percentage
contributions.

5. Results and discussion

The results of Fe XIV and the discussions are divided into four
following subsections, fine structure energy levels, oscillator
strengths for E1 transitions, lifetimes, and estimation of accuracy.

5.1. Fine structure energy levels

The present BPRM calculation has obtained a total of 1002 fine
structure levels with n610, l 69, and 0.56 J 69.5 with even and
odd parities. While NIST compilation lists only 68 observed levels,
other calculations have found more energy levels. However, the
present calculation has found the largest number of new levels.
These levels have been identified spectroscopically as
Ctð2Stþ1Lpt

t Jt
Þnl2Sþ1Lp

J using the numerical procedure explained in
the above section. Table 2 presents a sample set of identified ener-
gies grouped together as components LSJ of LS terms. The consis-
tency of energy values EðRyÞ of each set of the same
configuration and Jp indicate consistency in their identification.
The format of Table 2 is similar to that of the NIST and is useful
for spectroscopic diagnostics.

The ion has a relatively larger number of equivalent electron
states from the configurations 3s3p2;3p3;3s3d2, and 3p3d2. While
3s3p2 give four states, 4P, 2P, 2D, 2S, and 3p3 gives three states
4Po, 2Do, 2Go, the other two give more states due to 1S, 1D, 1G, 3P,
3F states of 3d2 configuration. Hence 3s3d2 gives 2G, 4F, 2F, 2D, 4P,
2P, and 2S, and 3p3d2 gives 2Ho, 2Go, 2Ho, 4Go, 4Fo, 4Do, 2Go, 2Fo, 2Do,
2Fo, 2Do, 2Po, 4Do, 4Po, 4Go, 2Do, 2Po, 2So, 2So. The configuration
3p3d2 often does not form bound states in other elements. How-
ever, the strong attractive nuclear potential of highly charged Fe
XIV causes the orbitals pulled into these bound levels.

BPRM energies of Fe XIV are compared in Table 3 with the avail-
able 68 measured energies (Sugar and Corliss, 1985; Shirai et al.,
2000 and those of Redfors and Litzen, 1989). They are ordered in
energy from the ground to higher excited LS terms. The negative
sign for the energies has been omitted for convenience. The BPRM
energies agree very well, mostly in less than 1% and the highest
being 1.9% for 3s3d2ð3FÞ levels, with the measured fine structure
levels. The number next to the J-value in Table 3 is the relative po-
sition of the level in the calculated set of levels of the Jp symmetry.

Table 3
Comparison of calculated absolute energies, Ec , of Fe-XIV with the measured values Eo

(NIST and Refors and Litzen 1989). The negative sign for the energies is omitted for
convenience. iJ indicates position of the calculated level for symmetry J. An asterisk
indicates incomplete set of observed energies for the LS multiplet.

Conf Term J : iJ Eo(Ry) Ec(Ry)

3s23p 2Po 0.5: 1 28.8230 28.8316
3s23p 2Po 1.5: 1 28.6520 28.6656
3s3p2 4Pe 2.5: 1 26.6410 26.5415
3s3p2 4Pe 1.5: 1 26.7330 26.6205
3s3p2 4Pe 0.5: 1 26.8030 26.6813
3s3p2 2De 2.5: 2 26.0760 25.9949
3s3p2 2De 1.5: 2 26.0960 26.0121
3s3p2 2Se 0.5: 2 25.5000 25.3640
3s3p2 2Pe 1.5: 3 25.2100 25.0888
3s3p2 2Pe 0.5: 3 25.2830 25.1570
3s23d 2De 2.5: 3 24.4930 24.4416
3s23d 2De 1.5: 4 24.5110 24.4594
3p3 2Do 2.5: 1 23.5360 23.4455
3p3 2Do 1.5: 2 23.5710 23.4726
3p3 4So 1.5: 3 23.4820 23.3460
3p3 2Po 1.5: 5 22.9420 22.8222
3p3 2Po 0.5: 2 22.9700 22.8444
3s3pð3PoÞ3d 4Fo 4:5�: 1 22.8070 22.7052
3s3pð3PoÞ3d 4Fo 3:5�: 1 22.8820 22.7732
3s3pð3PoÞ3d 4Fo 2:5�: 2 22.9370 22.8230
3s3pð3PoÞ3d 4Po 2.5: 3 22.5330 22.3805
3s3pð3PoÞ3d 4Po 1.5: 6 22.4060 22.3609
3s3pð3PoÞ3d 4Po 0.5: 4 22.4100 22.3473
3s3pð3PoÞ3d 4Do 3.5: 2 22.4380 22.2672
3s3pð3PoÞ3d 4Do 2.5: 4 22.4070 22.2668
3s3pð3PoÞ3d 4Do 1.5: 7 22.5110 22.2711
3s3pð3PoÞ3d 4Do 0.5: 3 22.4980 22.2781
3s3pð3PoÞ3d 2Do 2.5: 5 22.2820 22.1398
3s3pð3PoÞ3d 2Do 1.5: 8 22.2880 22.1455
3s3pð3PoÞ3d 2Fo 3.5: 3 21.8990 21.7521
3s3pð3PoÞ3d 2Fo 2.5: 6 22.0350 21.8734
3s3pð3PoÞ3d 2Po 1:5�: 9 21.4680 21.2572
3s3pð1PoÞ3d 2Fo 3.5: 4 21.3730 21.1774
3s3pð1PoÞ3d 2Fo 2.5: 7 21.3460 21.1551
3s3pð1PoÞ3d 2Po 1.5:11 21.1350 20.9391
3s3pð1PoÞ3d 2Po 0.5: 5 21.1730 20.9779
3s3pð1PoÞ3d 2Do 2.5: 8 21.1280 20.9261
3s3pð1PoÞ3d 2Do 1.5:10 21.1620 20.9544
3p2ð3PÞ3d 4Fe 4:5�: 1 19.8570 19.7588
3p2ð3PÞ3d 4Fe 3:5�: 1 19.9180 19.9293
3p2ð3PÞ3d 4Fe 2:5�: 4 19.9750 19.9904
3p2ð3PÞ3d 4De 3.5: 2 19.6820 19.8193
3p2ð3PÞ3d 4De 2.5: 5 19.7450 19.8744
3p2ð3PÞ3d 4De 1.5: 6 19.7490 19.7625
3p2ð1DÞ3d 2De 2.5: 7 19.3740 19.2462
3p2ð1DÞ3d 2De 1.5: 7 19.4120 19.6604
3p2ð3PÞ3d 4Pe 2.5: 8 19.3000 19.1466
3p2ð3PÞ3d 4Pe 1.5: 8 19.3040 19.2144
3p2ð3PÞ3d 4Pe 0.5: 5 19.3080 19.5906
3p2ð1SÞ3d 2De 2:5�: 9 18.8330 18.6442
3p2ð3PÞ3d 2Fe 3.5: 5 18.7540 18.5942
3p2ð3PÞ3d 2Fe 2.5:10 18.8000 18.6312
3s3d2ð3FÞ 4Fe 3:5�: 6 18.6590 18.3515
3p2ð3PÞ3d 2De 2:5�:12 18.3260 18.0539
3s3d2ð3GÞ 2Ge 4.5: 4 17.8870 17.6259
3s3d2ð3GÞ 2Ge 3.5: 7 17.8900 17.6284
3s3d2ð3FÞ 2Fe 3.5: 8 17.4770 17.1460
3s3d2ð3FÞ 2Fe 2.5:15 17.4890 17.1601
3s24s 2Se 0.5:12 15.7470 15.8272
3s24p 2Po 1.5:20 14.4800 14.7102
3s24p 2Po 0.5:12 14.5270 14.7686
3s3pð3PoÞ4s 4Po 2:5�:20 13.5560 13.4596
3s3pð3PoÞ4s 4Po 1:5�:23 13.6700 13.9034
3s24d 2De 2.5:16 13.3570 13.3252
3s24d 2De 1.5:17 13.3680 13.3363
3s24f 2Fo 3.5:14 12.5260 12.5028
3s24f 2Fo 2.5:21 12.5240 12.5060
3s3pð3PoÞ4f 4Ge 5:5�: 1 10.2880 10.2105
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5.2. Oscillator strengths for E1 transitions

From the 1002 fine structure energy levels of Fe XIV with
0.56 J 69.5 a total of 130,520 electric dipole (E1) transitions is ob-
tained. The E1 transitions correspond to both the same spin multi-
plicity (dipole allowed) as well as different spin multiplicity
(intercombination) transitions. These can be identified spectro-
scopically through those of the fine structure levels. The file con-
taining all the transitions is available electronically.

The R-matrix codes calculates oscillator strengths (f) both in
length and in velocity forms. However, only the length form f-val-
ues are treated to be more accurate and are used. The integral for a
f-value varies as 1=r in length form and as 1=r2 for velocity form.
Hence it depends on the contributions from over a much larger ra-
dial distance in length form than that of the velocity form. Except
for hydrogen and helium like ions for which wave function can be
almost exact, f in two forms usually do not agree well. The other
exception is with central-field approximation, which does not have
any angular dependence and can not account for correlation effect
properly, can give similar f-values in both forms. With proper
treatment of angular dependence and configuration interactions
of multi-electron systems, the difference becomes more promi-
nent. The wave function in the R-matrix method, which has inner
and outer regions, extends over a large distance and the outer re-
gion contributes more accurately to the transition integral in
length form than to that in velocity form.

A subset of the Fe XIV transitions has been reprocessed with the
observed energies where the calculated BPRM line strengths (S) are

multiplied by the observed transition energies. This is a common
method practiced by the NIST for its compiled transition tables.
Since the observed energies are more accurate, the processed val-
ues are useful for diagnostics where exact observed transition
energies are used for line identifications. A sample set of these
transitions of Fe XIV, formatted similar to that of the NIST, is pre-
sented in Table 4. The transitions are grouped together as fine
structure components of the LS multiplets. The transitions with
same spin multiplicity are statistically averaged over to obtain
the LS multiplets. However, such average is carried out only for
same-spin transitions.

Current NIST table contains a small set of 151 transitions in Fe
XIV. The latest published results also consider only limited number
of transitions, with highest n to be 4. However, astrophysical mod-
eling requires all possible transitions going up to very high n. The
present work provides the most complete set of transitions for
all practical purposes. For modeling the present oscillator strengths
are available electronically in sets of Jp� J0p0 (similar to the format
given in earlier publications, e.g. Nahar 2010).

The BPRM transition probabilities are benchmarked with the
earlier results compiled by NIST as well as with recent calculations
in Table 5. NIST includes transitions from Shirai et al. (2000); Fawc-
ett et al. (1972), and Huang (1986) and rates them with alphabetic
letters, mostly D and E, for accuracies. However, comparison in Ta-
ble 5 shows that the present A-values in very good agreement with
most of those in the NIST compiled table. Similar is the case with
other work not compared in the table. For example, for the first
transition in the table, 3s23pð2Po

1=2Þ—3s3p2ð2S1=2Þ, Liang et al.

Table 4
Sample set of E1 transition probabilities among the observed levels of Fe XIV, grouped as fine structure transitions of the LS multiplet. I and K represent the calculated energy
positions in the corresponding symmetries.

Ci � Ck Ti � Tk gi:I–gk:K Eik ðÅÞ f S A ðs�1Þ

3s23p—3s3p2 2Po—4Pe 2: 1–2: 1 451.12 5.78E�04 1.72E�03 1.89E+07
3s23p—3s3p2 2Po—4Pe 4: 1–2: 1 492.84 1.33E�04 8.61E�04 7.29E+06
3s23p—3s3p2 2Po—4Pe 2: 1–4: 1 436.01 2.50E�05 7.19E�05 4.39E+05
3s23p—3s3p2 2Po—4Pe 4: 1–4: 1 474.87 1.58E�04 9.89E�04 4.68E+06
3s23p—3s3p2 2Po—4Pe 4: 1–6: 1 453.14 8.90E�04 5.31E�03 1.93E+07

3s3p2—3p3 4Pe—2Po 2: 1–2: 2 237.74 1.23E�04 1.93E�04 1.45E+07
3s3p2—3p3 4Pe—2Po 2: 1–4: 5 236.02 2.81E�03 4.37E�03 1.68E+08
3s3p2—3p3 4Pe—2Po 4: 1–2: 2 242.17 9.72E�05 3.10E�04 2.21E+07
3s3p2—3p3 4Pe—2Po 4: 1–4: 5 240.38 3.13E�03 9.90E�03 3.61E+08
3s3p2—3p3 4Pe—2Po 6: 1–4: 5 246.35 9.94E�04 4.84E�03 1.64E+08

3s3p2—3s3pð3PoÞ3d 4Pe—4Do 2: 1–2: 3 211.68 2.82E�01 3.93E�01 4.20E+10
3s3p2—3s3pð3PoÞ3d 4Pe—4Do 2: 1–4: 7 212.32 2.42E�03 3.38E�03 1.79E+08
3s3p2—3s3pð3PoÞ3d 4Pe—4Do 4: 1–2: 3 215.18 1.46E�03 4.13E�03 4.20E+08
3s3p2—3s3pð3PoÞ3d 4Pe—4Do 4: 1–4: 7 215.84 1.46E�01 4.14E�01 2.08E+10
3s3p2—3s3pð3PoÞ3d 4Pe—4Do 4: 1–6: 4 210.65 1.20E�01 3.34E�01 1.21E+10
3s3p2—3s3pð3PoÞ3d 4Pe—4Do 6: 1–4: 7 220.65 5.47E�02 2.38E�01 1.12E+10
3s3p2—3s3pð3PoÞ3d 4Pe—4Do 6: 1–6: 4 215.23 1.90E�01 8.09E�01 2.74E+10
3s3p2—3s3pð3PoÞ3d 4Pe—4Do 6: 1–8: 2 216.81 3.91E�01 1.67E+00 4.16E+10
LS 4Pe—4Do 12–20 4.54E�01 3.87E+00 3.92E+10

3s3p2—3s3pð3PoÞ3d 4Pe—4Po 2: 1–2: 4 207.44 1.46E�03 1.99E�03 2.26E+08
3s3p2—3s3pð3PoÞ3d 4Pe—4Po 2: 1–4: 6 207.25 4.06E�01 5.54E�01 3.15E+10
3s3p2—3s3pð3PoÞ3d 4Pe—4Po 4: 1–2: 4 210.80 9.93E�02 2.76E�01 2.98E+10
3s3p2—3s3pð3PoÞ3d 4Pe—4Po 4: 1–4: 6 210.60 3.76E�02 1.04E�01 5.65E+09
3s3p2—3s3pð3PoÞ3d 4Pe—4Po 4: 1–6: 3 216.97 2.69E�01 7.70E�01 2.54E+10
3s3p2—3s3pð3PoÞ3d 4Pe—4Po 6: 1–4: 6 215.18 6.49E�03 2.76E�02 1.40E+09
3s3p2—3s3pð3PoÞ3d 4Pe—4Po 6: 1–6: 3 221.83 2.45E�02 1.07E�01 3.32E+09
LS 4Pe—4Po 12–12 2.19E�01 1.84E+00 3.21E+10

3s3p2—3s3pð1PoÞ3d 4Pe—2Po 2: 1–2: 5 161.86 4.71E�04 5.02E�04 1.20E+08
3s3p2—3s3pð1PoÞ3d 4Pe—2Po 2: 1–4: 11 160.77 2.65E�05 2.80E�05 3.42E+06
3s3p2—3s3pð1PoÞ3d 4Pe—2Po 4: 1–2: 5 163.90 2.72E�05 5.87E�05 1.35E+07
3s3p2—3s3pð1PoÞ3d 4Pe—2Po 4: 1–4: 11 162.78 4.87E�06 1.04E�05 1.23E+06
3s3p2—3s3pð1PoÞ3d 4Pe—2Po 6: 1–4: 11 165.50 3.49E�05 1.14E�04 1.28E+07

3s23p—3s3p2 2Po—2Se 2: 1–2: 2 274.23 1.91E�01 3.45E�01 1.69E+10
3s23p—3s3p2 2Po—2Se 4: 1–2: 2 289.11 9.60E�03 3.65E�02 1.53E+09
LS 2Po—2Se 6–2 7.01E�02 3.81E�01 1.85E+10
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(2010), who present gf values instead of A-values from AUTO-
STRUCTURE (AS) and FAC codes, obtained 0.401 (AS) and 0.398
(FAC) for gf while the present value is 0.382 and for the second
transition, 3s23pð2Po

1=2Þ—3s3p2ð2D3=2Þ, they obtained 0.163 (AS)
and 0.158 (FAC) compared to present value of 0.153. For the third
transition, 3s23pð2Po

3=2Þ—3s3p2ð2D3=2Þ, which is also a weak transi-
tion, they obtain for the gf, 6.38e�03 (AS) and 6.13e�03 (FAC),
and present value is 6.72e�03. However, significant differences
are also noted for the present values with others. For example,
for transition, 3s23dð2D5=2Þ—3s24pð2Po

3=2Þ the atomic structure tran-
sition probability is 5.1e+10 s�1 compared to R-matrix value
3.62e+10 s�1. Another case is the fine structure transition
3s3p2ð2D5=2Þ—3s3p3dð2Do

3=2Þ for which the present A-value is
3.27E+8 s�1 while it is 1.9E+08 s�1 by Shirai et al. Some difference
can be expected from differences in the theoretical approxima-
tions, mainly from optimization of the wave functions. Relative
to atomic structure calculations, the R-matrix method considers
more configuration interactions and predicted transition parame-

ters are in general more accurate, but it can not optimize any se-
lected transitions for improvement. Through optimization,
especially for the observed levels, atomic structure calculations
can give more accurate transition values for those levels. Another
possible reason for difference arises from differences in identifica-
tion of the states and hence comparing the wroing transition. The
mixed states usually have different percentage contributions from
the contributing configurations or channels in the two theoretical
approximations leading to different spectroscopic identification.

5.3. Lifetimes

With the large set of E1 transitions, lifetimes of excited levels
can be obtained accurately from the inverse of the sum of radiative
decay rates (A-values). Compared to the allowed transitions, for-
bidden transitions typically have negligible contributions to life-
times, except for the low lying metastable levels which decay
only through forbidden transitions. Forbidden lines have been

Table 5
Comparison of BPRM A-values for E1 transitions in Fe XIV with those by (a) Shirai et al. (2000), (b) Huang (1986), (c) Fawcett et al. (1972), (d)Santana et al. (2009), (e) Tayal (2008),
(f)Fischer et al. (2006), (g) Shirai et al., 2000, (h) Gupta and Msezane (2001), (i) Wei et al. (2008).

k (Å) A(s�1) Other A(s�1) BPRM Ci � Cj SLpi� j gi� j

274.23 1.70 + 10e, 1.72e+10f,1.78 + 10g, 1.73e+10h 1.69E+10 3s23p—3s3p2 2Po—2S 2–2
334.16 2.41 + 09e, 2.46e+09f,2.38 + 09g, 2.30e+09h 2.20E+09 3s23p—3s3p2 2Po—2D 2–4
356.52 8.79 + 07e, 8.67e+07f, 7.32 + 07g 8.83E+07 3s23p—3s3p2 2Po—2D 4–4
353.75 1.98 + 09e, 1.99e+09f, 1.91 + 09g, 1.85e+09h 1.83E+09 3s23p—3s3p2 2Po—2D 4–6
453.14 2.06e+07d, 2.33 + 07e, 2.47 + 07f, 2.65e+07g 1.93E+07 3s23p—3s3p2 2Po—4P 4–6
474.87 4.851 + 06d, 5.43 + 06e, 5.91 + 06f, 6.22e+06g 4.68E+06 3s23p—3s3p2 2Po—4P 4–4
492.84 7.885 + 06d, 9.16 + 06e, 1.01 + 07f, 9.89e+06g 7.29E+06 3s23p—3s3p2 2Po—4P 4–2
436.01 4.640 + 05d, 5.68 + 05e, 5.19 + 05f, 5.66e+05g 4.39E+05 3s23p—3s3p2 2Po—4P 2–4
451.12 2.230 + 07d, 2.33e+07e, 2.60 + 07f, 2.67e+07g 1.89E+07 3s23p—3s3p2 2Po—4P 2–2
211.331 3.6e+10 Db 3.62E+10 3s23p—3s23d 2Po—2D 2–4
69.66 8.9e+10 Dc 8.96E+10 3s23p—3s24s 2Po—2S 2–2
70.613 1.7e+11 Dc 1.85E+11 3s23p—3s24s 2Po—2S 4–2
58.963 2.7e+11 Ca,c 2.61E+11 3s23p—3s24d 2Po—2D 2–4
59.579 3.1e+11 Ca,c 3.10E+11 3s23p—3s24d 2Po—2D 4–6
280.739 1.2e+10:Da 1.23E+10 3s3p2—3p3 4P—4So 4–4
288.512 1.6e+10:Da 1.66E+10 3s3p2—3p3 4P—4So 6–4
274.797 6.2e+09:Da 6.51E+09 3s3p2—3p3 4P—4So 2–4
210.615 1.9e+10 Da 1.59E+10 3s3p2—3s3pð1PoÞ3d 2S—2Po 2–2

218.578 2.5e+10:Ea 2.54E+10 3s3p2—3s3pð3PoÞ3d 4P—4Po 4–6
223.256 3.0e+09:Ea 3.32E+09 3s3p2—3s3pð3PoÞ3d 4P—4Po 6–6
213.176 4.1e+10 Da, 4.43e+10i 4.20E+10 3s3p2—3s3pð3PoÞ3d 4P—4Do 2–2
216.742 4.5e+08:Ea 4.20E+08 3s3p2—3s3pð3PoÞ3d 4P—4Do 4–2
212.154 1.1e+10 Da, 9.37e+09i 1.21E+10 3s3p2—3s3pð3PoÞ3d 4P�4Do 4–6
216.576 2.7e+10 Da, 2.99e+10i 2.74E+10 3s3p2—3s3pð3PoÞ3d 4P—4Do 6–6
216.928 4.04e+10:Ca, 4.46e+10i 4.20E+08 3s3p2—3s3pð3PoÞ3d 4P�4Do 6–8
185.099 1.4e+08 Ea 1.69E+08 3s3p2—3s3pð1PoÞ3d 2D—2Po 4–2

183.684 3.0e+08 Ea 3.71E+08 3s3p2—3s3pð1PoÞ3d 2D—2Po 4–4

184.438 2.7e+08 Ea 2.44E+08 3s3p2—3s3pð1PoÞ3d 2D—2Po 6–4

184.661 8.8e+07 Ea 6.13E+07 3s3p2—3s3pð1PoÞ3d 2D—2Do 4–4

185.423 1.9e+08 Ea 3.27E+08 3s3p2—3s3pð1PoÞ3d 2D—2Do 6–4

192.629 1.4e+09 Ea 1.64E+09 3s3p2—3s3pð1PoÞ3d 2D—2Fo 6–6

193.752 2.7e+10 Ea 2.94E+10 3s3p2—3s3pð1PoÞ3d 2D—2Fo 6–8

191.806 2.6e+10 Ea, 2.84e+10i, 2.80E+10 3s3p2—3s3pð1PoÞ3d 2D—2Fo 4–6

171.822 3.1e+08 Ea 2.27E+08 3s3p2—3s3pð3PoÞ3d 4P—2Po 2–4
193.264 4.2e+08 Ea 3.53E+08 3s3p2—3s3pð3PoÞ3d 4P—2Fo 6–8
173.851 3.3e+08 Ea 2.73E+08 3s3p2—3s3pð1PoÞ3d 4P—2Fo 6–8

69.386 7.6e+10:Da 8.85E+10 3s3p2—3s3pð3PoÞ4s 4P—4Po 2–4
69.176 5.6e+10:Da 6.28E+10 3s3p2—3s3pð3PoÞ4s 4P—4Po 4–6
70.251 8.1e+10 Da 9.72E+10 3s3p2—3s3pð3PoÞ4s 4P—4Po 6–4
69.667 1.3e+11 Da 1.45E+11 3s3p2—3s3pð3PoÞ4s 4P—4Po 6–6
91.273 5.6e+10 Da,c 2.45E+10 3s23d—3s24p 2D—2Po 4–2
91.009 5.1e+10 Da,c 3.58E+10 3s23d—3s24p 2D—2Po 6–4
76.152 7.0e+11 Ca,c 6.30E+11 3s23d—3s24f 2D—2Fo 6–8
76.022 6.6e+11 Ca,c 5.86E+11 3s23d—3s24f 2D—2Fo 4–6
72.80 8.8e+11 Da 8.26E+11 3s3pð3PoÞ3d—3s3pð3PoÞ4f presup4Fo—4G 10–12
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studied extensively as mentioned earlier in the introduction. The
present results are for the allowed transitions only.

The lifetimes of 1001 excited levels of Fe XIV using E1 transi-
tions are reported. A sample set of lifetimes is presented in Table 6.
The last column (Ntrns) lists the number of E1 transitions contrib-
uted for the lifetime of the level.

The present lifetimes should accurate for most excited levels ex-
cept for the very low lying ones which decay mainly through a single
intercombination line. For example, the intercombination transi-
tions, 3s23pð2Po

1=2Þ—3s3p2ð4P1=2Þ and 3s23pð2Po
3=2Þ—3s3p2ð4P5=2Þ,

have been the focus of a larger number of studies since the inverse
of the A-values of these transitions give lifetimes of the upper levels
3s3p2ð4P1=2Þ, 3s3p2ð4P5=2Þ. These lifetimes were measured to be
about 29 ns and 39 ns with experimental errors of about 5 ns
respectively by Trabert et al. (1988); Trabert et al. (1993)). Com-
pared to present BPRM A-values, the earlier Storey et al. (2000);
Fischer et al. (2006); Tayal, 2008; Liang et al. (2010) get larger A-val-
ues for these levels, as given in Table 5, and hence should give short-
er lifetimes than the present values. They agree better with the
experimental measurement. The present lifetimes of these levels
are 38 ns and 52 ns respectively. The lifetime of the first level,
3s3p2ð4P1=2Þ, with a single decay or transition, is seen in Table 6. It
can be noted in Table 5 that the A-values for fine structure compo-
nents of this multiplet, 3s23pð2PoÞ—3s3p2ð4PÞ, by Santana et al.
(2009) who used ab initio multireference Moller–Plesset perturba-
tion theory agree better with the present BPRM values showing con-
sistency in the two calculations. These appear to suggest that the
atomic structure calculations may have had specifically optimized
to agree with the measured lifetimes.

5.4. Estimation of accuracy

The BPRM method involves large scale computations. The accu-
racy of the results is a crucial part of the computation and they are
considered through a number of ways as explained below.

The accuracy of the energy levels and transitions of the (N + 1)-
electron system are dependent on the core or target wave func-
tions. To improve these wave functions for the core Fe XV, various
sets of configurations and choice of Thomas–Fermi scaling param-
eters knl are used until the set of calculated energies have overall
good agreement with the observed values, as shown in Table 1.
These wave functions are the input wave function for the R-matrix
calculations where the final wave functions are generated.

The choice on the number of core levels to be included in the
first term of the wave function expansion is based on the formation
of possible bound states of the ion with the given core excitations.
The present calculations included 26 levels of the core Fe XV. The

high-lying excited core levels do not form bound states of the elec-
tron–ion system, and corresponding channels have insignificant ef-
fect on the bound state energies.

The second term in the wave function expansion, Eq. (1), pro-
vides the additional configurations for (N + 1) electron system
needed for completeness of the orthogonality condition for equiv-
alent electron states. As listed in the computation section, all pos-
sible configurations for such states were included. This term also
includes some more configurations to consider the short-range
electron–electron correlation effects and coupling of channels
more accurately. The present calculation includes all these config-
urations, as listed in the Computation section, with a total of 63
configurations for the term.

Consideration of R-matrix boundary is also an important factor
to accuracy to make sure that all correlation effects are well within
the boundary so that the wave function is Coulombic outside of it.
This implies that the amplitudes of the orbital wave functions are
insignificant or almost vanishing at the boundary. The present cal-
culations chose the R-matrix boundary to be 3.5ao where inner
orbital wave functions are almost zero, the amplitudes of 3d orbital
has value of the order of 10�5.

The calculated target energies were replaced by the observed
energies in calculating the Hamiltonian matrix. This improves the
positions of the Rydberg series of resonances in photoionization
calculations. However, the improvement is not well defined or lin-
ear for energies of the (N + 1) electron system since the correlation
effect on the wave functions dominates more than that by the
slight shift in the core energies. For the present case where the cal-
culated core energies are in good agreement with the observed
energies, the improvement in energies could be about 1%.

The bound levels were obtained from the poles in the Hamilto-
nian using very fine mesh of effective quantum number (Dm=0.001
to 0.00025). Hence all the calculated energy levels within very nar-
row quantum defects were sorted out. However, there are some
missing levels in the very high energy states. These levels require
additional configurations with highly excited levels. Inclusion of
these additional configurations make the computation very large
to handle whereas these highly excited levels can be estimated
in hydrogenic approximation. The calculated highly excited levels
may have some uncertainties. The accuracy on the splitting of
the highly excited levels depends on the relativistic effects. The
BPRM method includes the three relativistic one-body correction
terms and part of the two-body terms, and higher order terms
may contribute to the splitting significantly. Nonetheless, based
on the agreement with observed energies in Table 3 and including
the possible uncertainties of the higher levels, the BPRM energies
are expected to be accurate within 10% for the entire set.

Table 6
Sample set of lifetimes of excited Fe XIV levels obtained from E1 transitions.

Level J Ij E (Ry) Lifetime Ntrans
(sec)

1 3s3p2 4Pe 0.5 1 �2.6803E+01 3.814E�08 2

2 3s3p2 2Se 0.5 2 �2.5500E+01 5.414E�11 2

3 3s3p2 2Pe 0.5 3 �2.5283E+01 2.822E�11 2

4 3p2 3Pe 3d 4De 0.5 4 �1.9726E+01 4.531E�11 16

5 3p2(3P)3d 4Pe 0.5 5 �1.9308E+01 2.942E�11 16

6 3p2 3Pe 3d 2 P e 0.5 6 �1.9141E+01 1.238E�11 16

7 3p2 1De 3d 2 S P e 0.5 7 �1.8853E+01 2.229E�11 16

8 3p2 1De 3d 2 S P e 0.5 8 �1.8756E+01 2.206E�11 16

9 3s3d2 4 P e 0.5 9 �1.8038E+01 1.302E�11 16

10 3s3d2 2 P e 0.5 10 �1.6886E+01 1.045E�11 16

11 3s3d2 2 S e 0.5 11 �1.6754E+01 1.124E�11 16

12 3s24s 2Se 0.5 12 �1.5747E+01 3.635E�12 20

13 3s3p 3Po 4p 4 P D e 0.5 13 �1.2634E+01 6.935E�12 40

14 3s3p 3Po 4p 4 P D e 0.5 14 �1.2530E+01 5.167E�12 40

15 3s3p 3Po 4p 2 S P e 0.5 15 �1.2432E+01 1.693E�11 42
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The radiative decay rates for transitions show various degrees of
agreement with the existing calculated values. Some differences,
especially for transitions with higher levels. can arise from the dif-
ferences in spectroscopic identification. The caluclated energies of
Fe XIV agree very well with the 68 observed values. These observed
energies were used to replace the 68 calculated level energies in
obtaining the oscillator strengths and radiative decay rates from
the calculated line strengths. The purpose is to carry out precise
diagnostics where accurate transition energies are used. However,
the wave functions in line strengths correspond to the calculated
energies and hence such replacement by observed energies may
not necessarily improve the radiative decay rates. Considering that
the BPRM values for energy levels and transitions have an overall
consistency of accuracy, good agreement with existing transition
probabilities indicate that BPRM transitions can have an estimated
accuracy of A (within 10%) to C (within 30%) for most transitions.

6. Conclusion

Energies and transition parameters for Fe XIV are presented
from Breit–Pauli R-matrix method. The theoretical spectroscopy
of energy levels and transitions of BPRM method is explained in de-
tail. Although laborious, the identification is unique in proper cor-
respondence between fine structure and LS terms. Through use of
powerful computational capability the BPRM method, the present
work has resulted in the most complete set of allowed transitions,
with n going up to 10, needed for both diagnostics as well as astro-
physical modeling. The results have been benchmarked with very
good agreement with the existing accurate measured energies in
less than 2% and good agreement for most of the existing calcu-
lated transitions. Based on the accuracy of the wave function of
Fe XIV, the comparison of energy levels and the transitions, and
the relativistic Breit–Pauli method used for computation, the esti-
mated accuracy of the large set of energy levels should be within
10% and be A (within 10%) to C (within 30%) for most transitions.

Electronic files for energy levels, oscillator strengths, radiative
decay rates, and lifetimes are available electronically from the
NORAD-Atomic-Data website: www.astronomy.ohio-state.edu/na-
har/nahar_radiativeatomicdata.html.
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