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Summary. We discuss the application of atomic physics to two diverse topics: As-
trophysical opacities that determine the flow of radiation through the interior of
stars, and biomedical research using nanotechnology for novel methodologies for
cancer diagnostics and therapy (theranostics). Recent determination of solar abun-
dances suggests that a re-examination of the absolute accuracy of these opacities
might be in order. A discussion of the Opacity Project work and possible sources of
missing opacity and uncertainties in atomic data is presented with a view to possi-
ble solution of the solar abundances problem. Another major application is shaping
up in biomedicine and nanotechnology: A paradigm change and transition from
conventional broadband X-ray imaging (such as in CT scanners or common X-ray
sources) to precision monochromatic spectroscoppy for cancer theranostics. A novel
methodology — Resonant Theranostics — is proposed to exploit K. resonances
due to deep inner-shell transitions that trigger Auger processes in heavy elements.
The methodology can be used to build laboratory monochromatic X-ray sources for
imaging using K, emission, as well as for therapy using K. absorption by high-Z
nanoparticles or radiosenstizing agents embedded in cancerous tumors. This review
of recent work demonstrates the scope and power of multi-disciplinary research in
general, particularly highlighting the role of atomic physics as an enabling scientific
tool from astronomy to medicine.
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1 Introduction

Over two decades ago two independent projects — the Opacity Project (here-

after OP [Seaton et al. 1994; Opacity 1995]) and OPAL ([Rogers & Iglesias
1992], and references therein) — were initiated to revise the then available
astrophysical opacities. The efforts were launched in response to a “plea for
re-examination” [Simon 1982] of the older Los Alamos opacites, that failed to
account for basic observed phenomena, such as the Cepheid pulsation period
ratios when incorporated in stellar interior models. As is now well known, both
OP and OPAL resulted in considerably higher opacities, by factors of 2-3 or
higher, and did indeed solve the Cepheid and other problems. Both projects
involved an enormous effort, but employed quite different physical formula-
tions for opacities calculations, for the atomic physics methods to compute
the basic atomic data and the equations-of-state (EOS). Nevertheless, the fi-
nal OP and OPAL results converged for the crucial q@antity of interest, the
Rosseland Mean Opacity (RMO), to within 10%.

However, in recent years several lines of investigation have revealed prob-
lems in stellar astrophysics related to opacities. The foremost is the unex-
pectedly large discrepancy in solar surface abundances, long regarded as the
‘standard’, and accurately determined from spectroscopy. But recently de-
rived abundances from elaborate 3-D N on-Local-Thermodynamic-Equilibrium
(NLTE) convection models imply a reduction in the most abundant light met-
als (CNONe) by an astounding 30-45% [Asplund et al. 2005]. This discrepancy
and possible causes have been amply discussed in literature (an extensive dis-
cussion is given by Basu and Antia [Basu and Antia 2008]). The new reduced

abundances are in serious conflict with those derived from accurate observa-

tions from helioseismology and stellar interior models. »

Stellar opacity is the common feature in stellar models. More to the point,
the absolute accuracy of opacities directly determines the uncertainties in
the models. The inverse relationship between opacities and abundances is
obvious (To wit: Any increase in opacities would lead to commensurately lower
abundances). It is estimated that an increase between 11-21% around the base
of the solar convection zone R, (CZ) = 0.73Rg (Log T ~ 6.34) may greatly
ameloriate the situation. Ry (CZ) is the boundary between the radiative and
the convection zone, and is one of the tightly constrained parameters from

helioseismology. Analyzing many stellar models, Basu and Antia ([Basu and

Antia 2008]) note that at least an increase of 10% is required (also J. Bahcall,
private communication). Thus we face the conundrum: The required increase
is more than the level of agreement between OP and OPAL, but humerically
not by a large amount compared to the enhancement already achieved. The
logical conclusion is that higher precision is needed.

Advances in theoretical methods in the intervening two decades since the
OP now enable much more accurate and consistent atomic data to be com-
puted. A number of these developments were carried out by the group at
OSU, partially under the follow-up project to the OP called the Iron Pro ject
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(Hummer et al. 1993; www.astronomy.ohio-state.edu/ ~pradhan). At the same
time, the availability of high-performance massively parallel computational
platforms also makes it possible now to undertake more accurate recalcula-
tion of opacities. '

2 The Need for Re-examination of Opacities

This critical discussion entails the atomic physics of missing opacity, accu-
racy, and consistency of OP data. In the OP work about two decades ago we
devoted considerable effort to compute atomic data using the state-of-the-art
R-matrix method [Hummer et al. 1993]. A primary feature of the R-matrix
method is the inclusion of radiative excitations via autoionizing resonances in
photoionization cross sections. But its application to large-scale calculations
necessitated compromises in accuracy, as described in the seminal paper sum-
marising the OP work ([Seaton et al. 1994]). Some of these were: neglect of
relativistic fine structure, high-energy cross sections, and inner-shell excita-
tions. | '

In addition to accuracy, a bigger problem turned out to be complete-
ness. The R-matrix calculations' (even the non-relativistic version employed
in the OP) became too cumbersome for the codes and computational re-
sources available at that time. Therefore, a considerable amount of radiative
data was computed with a much simpler method, using the atomic structure
code called SUPERSTRUCTURE. For example, most of the data for iron ions
Fe VITI-XIII was thus obtained (referred to as the PLUS data in [Seaton et al.
1994]). Based on OPAL work, it was known that these Fe ions are of crucial
importance around the so-called Z-bump, vital for Cepheid pulsation models
around Log (T) ~ 5.2-5.3. That is because there are a huge number of M-shell
transitions n =3 — n/ > 3. The problem with the inner-shell data was also
redressed in the past few years using another version of SUPERSTRUCTURE
[Seaton & Badnell 2004]. :

Could there still be some atomic data that might result in missing opac-
ity? In spite of the inclusion of inner-shell data, the outer-shell atomic data in
the revised OP calculations remained the same Seaton et al. 1994. Therefore,
a number of resonance complexes corresponding to several Rydberg series of
levels were not included. Many calculations since the OP work, particularly
under the Iron Project by the OSU group, have shown that outer-shell ra-
diative excitations into autoionizing resonances that lie below the inner-shell
ionization energies are excluded. Fig. 1 compares photoionization cross sec-
tions of an excited state of two ions in the Boron isolelectronic sequence,
O III and Fe XXI, from OP and from more recent work. The cross sections
exhibit huge photoezcitation-of-core (PEC) resonances: (first identified by Yu.
and Seaton [Seaton et al. 1994]). These complexes of (PEC) resonances con-
verge on to the inner-shell ionization threshold energy with a large jump. But
the crucial fact is that the effective cross sections are much higher than the
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OP data, and enhanced throughout the n = 2 — 3 energy range by up to two
orders of magnitude.

As inferred from Fig. 1, the missing opacity may lie in an energy range
from few eV to few hundreds of eV, depending on the element and ionization
stage. Low-lying excited states of most ionization stages of abundant elements
exhibit similar structures. This could be of direct relevance at temperatures
and densities up to Re(CZ) around Log T' ~ 6.

Photoionization Cross Sections of O III, Fe XXI
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Fig. 1. Missing resonances in photoionization cross sections of C-like O and Fe:
bottom panels (a,c) — OP data, top panels (b,d) — more recent calculations which
show that large resonance complexes were not included in OP data, and could ac-
count for some missing opacity. Note the abscissa in Rydbergs. References: Nahar
1998 [Nahar 1998], Luo and Pradhan [Seaton et al. 1994].

Apart from limited treatment of atomic structure, affecting accuracy
and resulting in missing resonances, the OP atomic calculations were non-
relativistic and in LS coupling. Therefore, a siginificant omission is that of
intercombination transitions that involve spin-change but are permitted by
change in parity and angular momentum. Although the total line strength in
intercombination lines is only a fraction of that in dipole allowed transitions

|
.
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(no spin-change), both are El transitions and the effect is of the order of
15-20%. A limited number of intercombination lines (n < 6) were included
later [Seaton & Badnell 2004]. But, as mentioned above, since most of the OP
data for Fe ions does not employ the R-matrix method, we expect the absolute
accuracy to be no better than the OPAL data also computed using an atomic
structure code (with a parametrized atomic potential). Therefore it would not
be surprising if it is ascertained that there are systematic uncerainties in both
the OP and OPAL data. :

~ Although much of fine structure splitting is subsumed by line broaden-
ing, a proper treatment should incoroporate relativistic fine structure more

accurately than the current-OP data. In the past few years, members of the

OSU group, especially former graduate student” G.X. Chen in collaboration
with W. Eissner, have developed an extended version of the relativistic R-
matrix method in the Breit-Pauli approximation used in the Iron Project
work [Hummer et al. 1993]. The OP data were computed or obtained in a va-
riety of approximations and sources. In particular, the iron data was from six
different sources, which raises some concern about consistency if not accuracy.
And it was known that the loss of accuracy owing to restricted approxima-
tions for the low-ionization stages of iron Fe I-V, and other Fe-group elements,
was especially severe [Seaton et al. 1994; Seaton & Badnell 2004]. It therefore
became necessary to include the corresponding transition probabilities from
other sources. Although low ionization stages do not affect the RMOs in a
signficant manner, they are crucial in computing radiative accelerations, and
may well account for some of the large differences between OP and OPAL
[Delahaye & Pinsonneault 2006].

3 Opacity and Radiation Force

Once the opacity is known, the radiative force exerted by photons on a given
atom may be readily computed, and photon absorption and scattering pro-
cesses are responsible for radiation pressure. Opacities and radiative accelera-
tions computed by OP have been made available from an electronic dataserver
called OPSERVER (Mendoza et al. [Mendoza et al. 2007]), located at the Ohio
Supercomputer Center at OSU and accessible from: http://opacities.osc. edu.
Fig. 2 is a schematic diagram for the computation of OP opaciites.

' Tt is a non-trivial task to process all of the archived atomic data for proper
input into the opacities code. It involves interface and mapping of data at
computing energies onto a photon-frequency mesh. The standard variable
for mapping is u = hv/kT. We define a “Rosseland window” in the range
—2.5 < Log u < 1.5, which samples the monochromatic opacity with a given
number of mesh points. Given the frequency-temperature correlation from
the EOS, and the Planck function, the u-range is chosen so as to ensure that
there is-negligible contribution to opacity for any ion from outside the Rosse-
land window. This task is performed by the code INTERFACE (Pradhan,
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RADIATIVE OPACITIES AND ACCELERATIONS
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Fig. 2. Schematic diagram of OP opacities computations.

unpublished), which also computes radiative line damping parameters us-
ing the bound-bound radiative transition probabilities, labeled as ‘bb-data’
which contains f-values for all allowed and intercombination E1 transitions.
INTERFACE maps and produces the bb files as wells the files for bound-free
photoionization cross sections, labeled as bf files, for each ion.

The MHD EOS code [Seaton et al. 1994] independently produces tables
of ionization fractions, scattering contributions, Stark broadening, and other
parameters. The first calculation would be to use the standard EOS data as
in the current OP. Later steps would follow_as mentioned above.

The opacities code OPACITY requires the bb and bf atomic data files
from INTERFACE and the EOS tables. Calculations for the monochromatic
opacity k, are carried out for each ion along isotherms in Log T for a range
of Log electron densities N,. It is also useful to tabulate results along the
variable R = p/T¢ (Ts = T x 107%) defined by OPAL. The Rosseland Mean
Opacity kg is defined in terms of x, as ’

1 fooo g(u),ﬁ%-du
KR I g(u)du
where g(u) is the Planck weighting function corrected for stimulated emission.

The k, is primarily a function of the oscillator strengths f, photoionization
cross sections o,, level populations N;, and the line profile factor ¢,

g(u) =ue™(1—e™) 7%, (1)

Ky (1 — j) = N;fijtv, k) = Njo,. - (2)

MeC
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Fig. 3 illustrates &, (Fe IV) recently computed using the more accurate and
extensive radiative R-matrix calculations by Nahar and Pradhan [Nahar &
Pradhan 2005] including fine structure, compared to the original OP data.
The difference in the Rosseland means is up to 50% at the (7, N.) shown
(close to maximum abundance of Fe IV). Although the Nahar and Pradhan
calculations were also in LS coupling, they used a much larger wavefunction
expansion than in the OP work. As noted, for such reasons the final OP
calculations used the more complete bb data for lines of Fe I-V from the
Kurucz database (R.L .Kurucz: www.harvard.edu/amp, which also includes
fine structure). Fig. 3 shows the importance of completeness, but the accuracy
issue is unresolved. '

x, (cm2/g)

0 5 £ 10 15 20
u = hv/KT

Fig. 3. Monochromatic opacity of Fe IV at Log T(K) = 4.5 and Log Ne(em™3) =17
— Recent calculations using new R-matrix calculations with fine structure (Nahar
and Pradhan [Nahar & Pradhan 2005]), and the original OP data [Seaton et al.
1994]. Although the overall features look similar, there are considerable differences
in detail and in Rosseland Mean Opacities of 10-50%.
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4 SUMMARY: The Opacity Project and the Solar
Abundance Problem '

The possible solution to fundamental problems with solar models that have

emerged in recent years appears to lie in stellar opacity. Helioseismology,

equations-of-state, solar abundances, and stellar interiors models, are discor-

dant in surprising and unexpected manner. The practical necessity of solving

this problem can hardly be overstated, owing to the Sun as the standard
that is the key to undérstanding much of astrophysics. As noted by stellar
researchers, a 10-20% revision of opacities would go a long way to resolving
many discrepancies. At the same time, the minimum uncertainties in atomic
physics are at least in that range if not much higher. In addition, computed
theoretical data reveal several sources of missing opacity or systematic inac-
curacy in the approximations employed.

5 From Stellar Opacities to Resonant Theranostics

In summary, there is some uncertainty in existing opacities calculations ow-

ing to the fact that resonances due to inner-shell excitations have not yet

been fully included. Related effects such as autoionization widths, and plasma
broadening, are not accounted for. However, the resonance phenomena so ex-
tensively studied under the OP have found a novel, and surprising, application
in biomedical physics aimed at cancer diagnostics and therapy (theranostics)
using nanotechnology.

6 Resonant Theranostics

Recently, we have proposed an integrated scheme for X-ray Resonant Thera-
nostics (therapy and diagnostics) along these lines [Silver et al. 2008; Pradhan
et al. 2009; Montenegro et al. 2009] based on. resonant monochromatic X-ray
sources. X-rays interact efficiently with high-Z elements and many radiosen-
sitized reactive agents are molecular compounds or moieties containing heavy
elements, such as bromodeoxyuridine (BUdR), iododeoxyuridine (IUdR) and
cisplatin (cis-Pt) with bromine, iodine, and platinum (Z = 35, 53, and 78)
respectively. BUdR and IUdR are widely used in medical imaging, cisPt or
Cyclo-Pt are utilized in cancer therapy. The high-Z elements undergo Auger
fluorescence when irradiated by X-rays at energies, for example, above the
lonization energy of the innermost (K) shell. Radiation induced ionization
of atoms can cause DNA strand breakups in malignant cells. Low-energy
electrons resulting from Auger breakups can cause single and double strand
DNA breakups via electron attachment resonances (references in [Pradhan
et al. 2009]).

However, while X-ray interaction with heavy elements is well known, the
detailed physical properties of high-Z elements are relatively unknown, either
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experimentally or theoretically. The problem becomes progressively more dif-
ficult with Z, especially for elements at the high-end of the periodic table such
as gold, which is finding increasing usage in nanobiotechnology. Gold is gener-
ally non-reactive and therefore ideal for constructing nanoparticles for medical
use for in vivo treatment. Laboratory experiments using gold nanoparticles
injected into mice tumors, and then irradiated with high energy 140-250 keVp
X-rays, have shown considerable reduction in tumor sizes [Hainfield et al. 2004;
Cho 2005]. Gold is particularly appropriate for such experiments owing to its
non-toxicity and high 7Z (= 79). Nanoparticle form entails sizes from a few
to a few tens of nm, and in principle sufficient to penetrate cell vascula pro-
vided the size is < 30 nm or so. X-ray irradiation then enhances the radiation
dose uptake, with consequent damage to the malignant cells with embedded
nanoparticles.

6.1 Broadband vs. Monochromatic X-rays Sources

The broadband radiation sources employed in these experiments are the gen-
erally available X-ray generators in medical facilities. They are X-ray sources
with energy output in the form of a bremsstrahlung spectrum, and deliver ra-
diation up to the stated peak voltage. The shape of the output bremsstrahlung
spectrum extends up to the peak voltage (kVp) between the cathode and the
anode of the generating X-ray tube. Most of the flux from traditional X-ray
sources covers an extremely broad range, well over half the total energy range,
and a maximum around 1/3 the peak value [Sundaraman et al. 1973]. For ex-
ample, for a 250 kVp source the X-ray output ranges between 40-250 keV
photon energies, with a broad maximum around ~80keV. Since the Au K-
edge E7(K) = 80.729 keV, a 250 kVp source is capable of ionizing all inner
n-shells and subshells of the gold atom with L,M,N,O,P edges at approxi-
mately 12-14, 3.4-2.2, 0.11-0.9, 0.01-0.11, 0.0.009 keV respectively. Of course,
much higher energy accelerators are also in common medical usage, say those
with up to 6 MVp peak voltage and a broad maximum around 2 MeV.

The main problem with using broadband bremsstrahlung X-ray sources
(ordinary devices, accelerators, or CT scanners) is as follows. The low-energy
~ 10-30 keV) flux is absorbed by body tissue close to the skin before reach-
ing the desired target (e.g. tumor); at the same time high-energy X-rays
(> 1 MeV) barely interact with the light elements and compounds (e.g. HzO).
Therefore, both the 1dw-energy and the high-energy X-rays are inefficient in
terms of proper medical use in imaging or therapy. For optimal usage and
to obviate unnecessary exposure to healthy tissue the incident X-rays should
be-in precisely the right energy range, which can be pre-determined, com-
mensurate with dosimetric parameters such as depth and shape as well as
the particular physical chemistry of the radiosensitizing agents. But relatively
high energy X-rays still are needed to ensure sufficient penetration and to
minimize photoabsorption which scales roughly as £~3 [NIST|. With the ex-
ception of the K-edges, the photoionization cross section decreases rapidly
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with energy and the efficiency of radiation absorption diminishes. Therefore,
the incident X-rays need to be not only monochromatic but also pre-selected
for maximum interaction cross sections. While it is promising that irradiation
and subsequent breakup of high-7Z atoms may be a useful tool in cancer ther-
anostics, the precise interaction of X-rays as a function of incident energy and
the target atomic structure needs to be studied in order to understand and
improve the techniques and the concepts involved. The primary aim of this

review is to outline, in principle, the theranostical efficacy of monochromatic

X-rays with high-7Z elements. _

But while broadband X-ray sources are generally used in medical prac-
tice, narrow-band or monochromatic X-ray sources such as synchrotron based
devices and laser produced plasmas are available [Zhavoronkov et al. 2005;
Andiel et al. 2001; Moribayashi et al. 2001; Berger & Motz 2004]. The most
useful characteristic of these sources is their capability to generate monochro-
matic beams of high intensity photon fluxes. Indeed it is well known that the
output spectra of ordinary X-ray tubes prominently display K a, K 3 emission
lines superimposed on a bremsstrahlung background [Sundaraman et al. 1973],
and can be easily isolated, albeit with lower X-ray fluxes which may still be
used for diagnostic imaging. Devices widely employed in X-ray atomic physics
such as the Electron-Beam-Ion-Traps may be used as possible monochromatic
sources [Silver et al. 2008]. In addition, advances are being made in generating
ultrashort K-shell radiation using femtosecond laser pulses impinging on thin
solid material [Reich et al. 2000]. These sources can be utilized not only for
basic studies of matter at atomic and molecular scales, but also to probe mate-
rials at nanoscales for applications to nanotechnology and biomedical imaging
and spectroscopy. Large energy deposition-in a small target would produce
a transient plasma on short time scales. It is of interest to investigate the
material properties of such ‘plasmoids’, and to ascertain the related physical
constants as a function of the incident X-ray energy and nuclear charge 7 all
along the Periodic Table, and other extrinsic parameters such as density and
size of the targeted material.

6.2 Auger Processes: Monochromatic X-ray Diagnostics
and Therapeutics

The relevant atomic and molecular computations are extremely difficult ow-
ing to the fact that both the relativistic effects and many-electron corre-
lation . effects need to be considered explicitly. Moreover, careful attention
needs to be paid to the energy dependence on the incident photon energy,
particularly in energy ranges where resonant phenomena occur with large
transition probabilities and cross sections. Available cross sections for attenu-
ation of X-rays by the atoms of different elements have been computed using
atomic physics methods that yield only the background cross sections, as from
the on-line databases at the National Institute for Standards and Technol-
ogy (NIST: www.nist.gov [NIST]). For molecular systems containing a given
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high-7 element, we assume that the dominant X-ray interaction is with that

element.
Fig. 4 shows these photoelectric attenuation coefficients for high-Z neutral

Fe and Au, compared with a low-7 element 0.

logy, x [ cm?/g]

1t

. _2 1 i
1. ‘ 10 100

Energy [keV]

Fig. 4. Background photoabsorption attenuation coefficients & NIST for neutral O,
Fe, and Au. The rise in s at various energies correspond to ionization edges of the
K, L, M (sub)-shells of Au, and the K-shell of Fe. The oxygen K-edge lies at 0.53
keV and is not seen (from [Pradhan et al. 2009]). ' ' :

K-shell ionization may be initiated by any photon with energy above the K-
edge. As shown in Fig. 5, that would trigger Auger decays leading to a cascade
of secondary photon emission and electron ejection. The most probably decay
is K, emission, that occurs with fluorescence yield of over 95% in the L — K
transition in high-Z atoms [Pradhan et al. 2009].

6.3 Monochromatic X-ray Emission for Imaging

Using a broadband X-ray source, such as readily available in medical facilities
and which produce a bremsstrahlung output spectrum from an ordinary X-ray
tube, we can generate pure monochromatic K, radiation. Perhaps the earliest
example to scatter broadband radiation and isolate a monochromatic wave-
length was in 1923 when Arthur Compton demostrated the Compton effect
in [Compton 1923a,b]. He used a Molybdenum anode X-ray tube to reflect
X-rays from a graphite plate at different angles: 45, 90, and 135 degrees. That
produced monochromatic Mo Ko X-rays which were then scattered from a
crystal to measure the wavelength shift precisely using the Bragg formula.
However, Compton noted that while eliminating the bremsstrahlung back-

ground, the intensity of Mo K, radiation was reduced by a factor of 1 /25000.
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Fig. 5. The Auger process and resonant excitation (from [Pradhan et al. 2009]:
(i) K-shell ionization, K« emission and/or L-shell Auger electron emission, (ii) mul-
tiple electron vacancies created by K-shell ionization due to Auger electron ejections
from higher shells and radiative decays, (iii) resonant excitation from the K-shell to
higher shells by Ka, K3, etc. by incident photons. The gold atom has electronic
shells up to n = 6, or the P-shell.

A gas cell or solid target of high-Z material may be irradiated by an X-ray tube
that produces broadband bremsstrahlung radiation. The K, radiation would
be emitted isotropically and may be detected perpendicular to the primary
X-ray beam at 90 degrees, as in the classic Compton configuration or adapta-
tion thereof. X-ray imaging can then be carried out using monochromatic K,
emission, with little background (as noted by Compton in 1923!) and vastly
reduced radiation exposure compared to the broadband X-ray source itself.
Since the K, emission is isotropic, it is reduced by a geometric factor of 1/4m
in any given direction. A cylindrical configuration to ameliorate this problem
is proposed by Huang et al. [Huang et al.], who also carry out Monte Carlo
simulations using the code GEANT4 (see also Montenegro et al. [Montenegro
et al. 2009]).

6.4 Monochromatic X-ray Absorption for Therapeutics

For resonance driven therapeutics we can utilize any K, source of sufficient
intensity for resonant absorption following K-shell ionization. Since each K-
shell ionization produces one or two L-shell vacancies [Pradhan et al. 2009],
resonant K, absorption can be achieved. For example, we may use an ordi-
nary X-ray tube that produces bremsstrahlung radiation up to 100 keV. If
the target is gold (Z = 79) with K-edge at ~81 keV, then it can produce K,
radiation at ~68 keV for imaging of a target made of another element, or a
combination of elements such as in body tissue. The therapeutics mechanism
is complemetary to imaging. We can resonantly excite gold atoms from the
K-shell thereby reversing or enhancing the efficacy of Auger cascades. Reso-
nant threrapeutics can be utilized for optimally localized energy deposition
at energies corresponding to Au K, emission/absorption at 68 keV, as well as
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higher resonances due 0 excitation from the K-shell, as shown in Fig. 5 (iii)
and via resonances in Fig. 6. _
Using the transition probabilities for excitation from the K-shell into
L,M,N,0 and P shells of gold ions, calculated by Nahar et al. [Nahar et al.
2008], we compute resonant attenuation coefficients shown in Fig. 6 from
pradhan et al. [Pradhan et al. 2009]. The resonant excitation cross sections in
Fig. 6 can be orders of magnitude higher than the background cross sections

for Au in Fig. 4.
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Fig. 6. Total resonant K-shell and non-resonant X-ray mass attenuation coefficients
r(cm?/g) for gold ions (note the log scale on the Y-axis). The resonances correspond
to excitation probabilities for Ko , Kg , etc. transitions in gold ions with F-like (top
panel) to Li-like (bottom panel) ion cores. Resonant Cross sections can be orders of
magnitude higher than the K-edge jump on the extreme right.
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Fig. 7. Energy deposited by depth across a water phantom with a 2 cm tumor,
injected with gold nanoparticles, at a depth of 10 cm in the body. Resonant energy
absorption is shown for three monochromatic X-ray beams: top panel — 68 keV
(averaged Ko resonant energy); middle panel — 82 keV (K-edge energy), and bottom
panel — 2 MeV (high energy). The region between 100 and 120 mm represents the
tumor embedded with gold nanoparticles at concentration of 5 mg/ml. The presence
of gold nanoparticles increases the energy deposited at the tumor site; this effect
is strongest at the resonant K, energy (top panel) and least at the highest energy
2 MeV. The K-edge energy at ~ 82 keV has significant absorption, but much less

than at 68 keV by several factors.

6.5 Monte Carlo Simulations of Resonant Absorption by Gold
Nanoparticles

Montenegro et al. [Montenegro et al. 2009] have carried out numerical simu-
lations using the Monte Carlo code GEANT4. They model a phantom that
simulates a tumor located 10 cms inside the body and embedded with gold
nanoparticles. Three irradiating monochromatic X-ray sources are considered:
(i) the resonant K, energy 68 keV, (ii) just above the K-shell ionization energy,
82 keV, where the K-shell photoionization cross section is at its maximum
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(Fig. 4), and (iii) a very high energy of 2 MeV characterstic of the energy
where the bremsstrahlung X-ray spectrum from linear accelerators has a broad
peak. High energy linear accelerators are used as broadband X-ray sources for -
deeper penetration in the body for imaging and therapy. The three sets of
results from GEANTA4 simulations are illustrated in Fig. 7. It is seen that
resonant K, absorption at 68 keV can lead to a sharp peak indicating that
complete absorption takes place at that energy, in contrast to less efficient
absorption following the K-edge at 82 keV.

7 Conclusion

We have attempted to highlight the diversity and the range of multi-
disciplinary applications of atomic physics by focusing on two major scientific
problems, one in astronomy and the other in biomedicine.

We would like to acknowledge support from the Large Interdisciplinary
Grants award from OSU for Computational Nanoscience on Fundamental
Atomic and Molecular Scales. The computational work was carried out at
the Ohio Supercomputer Center in Columbus Ohio.
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