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Preface to “Interactions of Positrons with Matter and

Radiation”

Dirac, in 1928, predicted the antiparticle of the electron. Positrons, produced by cosmic rays

in a cloud chamber, were detected by Anderson in 1932. Since then, positron interactions, like

electron interactions, with matter and radiation, have been studied extensively, both theoretically and

experimentally. Theoretical calculations could have been easier because of the absence of exchange

but positronium formation has to be considered in most processes. Positrons have been useful in

hospitals. Positron emission tomography (PET) scans are used in hospitals to diagnose metabolic

activity in the human body. Positrons and electrons can form positronium atoms, which annihilate,

giving 0.511-MeV gamma rays. Such rays have been observed from the center of the galaxy. Positron

annihilation has been used to detect defects in metals. In this Special Issue, we collected publications

on scattering, excitation, resonances, threshold laws, and the formation of antihydrogen, which can

be used to study whether the laws of quantum mechanics are the same for matter and antimatter.

Anand K. Bhatia

Editor
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Abstract: The opacity of the atmosphere of the Sun is due to processes such as Thomson scattering,
bound–bound transitions and photodetachment (bound–free) of hydrogen and positronium ions.
The well-studied free–free transitions involving photons, electrons, and hydrogen atoms are
re-examined, while free–free transitions involving positrons are considered for the first time.
Cross sections, averaged over a Maxwellian velocity distribution, involving positrons are comparable
to those involving electrons. This indicates that positrons do contribute to the opacity of the
atmosphere of the Sun. Accurate results are obtained because definitive phase shifts are known for
electron–hydrogen and positron–hydrogen scattering.

Keywords: photodetachment; free–free transitions; opacity

1. Introduction

The variation of the solar spectral irradiance with wavelength shows the effects of bound–bound,
bound–free, and free–free opacity of many elements in the solar atmosphere. In 1923, using a classical
approach, Kramers [1] showed that the free–free absorption coefficient is given by

kν = Z2ρT−1/2ν−3 (1)

The solar medium is opaque between 4000 and 25000 Å because of various processes, such as
Thomson scattering, bound–bound transitions, photodetachment (bound–free) or free–free transitions.
In 1939, Wildt [2] suggested that an important source of opacity in the solar atmosphere could be due
to the photodetachment of negative hydrogen ions:

hν+ H− → e + H (2)

The bound–free transitions explain the opaqueness of the Sun’s atmosphere between 4000 and
16,000 Å; beyond this range, free–free transitions account for the continuous spectrum of the Sun

hν+ e− + H→ e− + H (3)

If an electron with energy k2
0 absorbs photon energy and the final energy of the electron in the

continuum is k2
1, the change in energy is Δk2 =

∣∣∣k2
0 − k2

1

∣∣∣. These transitions also explain the opacity
of late-type stellar atmospheres. Cross sections for bound–free and free–free transitions have been
calculated by Chandrasekhar and Elbert [3] and Chandrasekhar and Breen [4], respectively. The cross
section for free–free transition, given by the latter [4] is

σ(k2
0, Δk2) =

256π2

3
(

2πe2

hc
)(

h2

4π2me2 )
5 1

k2
0k1(Δk2)3 M(k0, k1) cm2 (4)
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where various quantities have the usual meaning and

M(k, k1) =
∣∣∣M(0, k2

∣∣∣1, k1
2)
∣∣∣2+∣∣∣M(0, k1

2
∣∣∣1, k2)

∣∣∣2 (5)

M(0, k2|1, k2
1) =

k4
1

16
(3 sin2 δ−k + sin2 δ+k ) (6)

The phase shifts δ−k and δ+k are the triplet and singlet phase shifts for the scattering of an electron
from a hydrogen atom with momentum k. They were calculated using hybrid theory [5]. The present
electron–hydrogen phase shifts are much more accurate compared to those used in earlier calculations
for calculating cross sections for free–free transitions. The hybrid theory takes into account exchange,
short-range correlations, and long-range correlations, at the same time. There are a number of earlier
calculations. For example, the calculations in ref. [6] include only long-range correlations, while in
ref. [7], only short-range correlations could be considered.

It has been known that there are positrons present in the Sun [8] and in interstellar space,
as indicated by the detection of the 0.511 MeV line from the center of the galaxy due to the annihilation
of the positron and electron pairs [9,10]. Positrons are produced due to various processes: when two
protons collide, during the formation of 3He nuclei, the decay of radioactive nuclei, and the decay of
positive pions to muons, which further decay into positrons [11]. Positrons produced by solar flares can
reach the solar atmosphere and modulate the radiant flux passing through them during their lifetime.

Once positrons are available, the photodetachment of negative positronium ions

hν + Ps− → e− + Ps (7)

and free–free transitions of positrons on H are possible:

hν+ e+ + H→ e+ + H (8)

For the latter, there is only one phase shift for a positron with an incident momentum k and
Equation (6) takes the form

M(0, k2|1, k2
1) =

k4
1 sin2(δk)

4
(9)

The positron–hydrogen phase shifts (δk) were calculated using hybrid theory [12]. An earlier
calculation of reference [13] included only short-range correlations.

The cross section for photodetachment of H− is given by Ohmura and Ohmura [14] as

σ(H−) =
6.8475× 10−18γk3

(1− γρ)(γ2 + k2)3 cm2 (10)

where γ = 0.2365833 and ρ = 2.646.
Photodetachment cross sections of negative positronium ions [15] were calculated using Ps− wave

functions of the form used by Ohmura and Ohmura [14] for the negative hydrogen ion. This cross
section is written in the form

σ(Ps−) = 1.32× 10−18k3

(γ2 + k2)3 cm2 (11)

where γ = 0.12651775, and because 1.5γ2 is the binding energy, this gives a value of 0.024010 Ry [15].
In the above equations, k is the momentum of the outgoing electron. A measurement of this cross
section was reported in [16].

We list the cross sections for bound–free and free–free transitions for electrons and positrons
in Table 1 (and show them in Figure 1), where we have assumed a temperature of 6300 K and used
the H−/H ratio given by Wheeler and Wildt [17]. This temperature has been used for many years
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as representative of a typical cool star, including the Sun at an optical depth of approximately 1.
We see that the contribution of positrons cannot be neglected in calculations of the opacity of the
Sun’s atmosphere.

Table 1. Comparison of bound–free (σbf) and free–free (σff) cross sections (cm2) for electrons and
positrons, T = 6300 K.

Electrons Positrons

Δk2 λ (Å) σbf * σff σbf + σff σbf σff σbf + σff

0.26 3505 2.29 (−17) 4.28 (−20) 2.29 (−17) 9.95 (−18) 4.14 (−21) 9.95 (−18)
0.12 7594 4.15 (−17) 1.88 (−19) 4.17 (−17) 3.17 (−17) 1.56 (−20) 3.17 (−17)
0.10 9113 4.13 (−17) 2.69 (−19) 4.16 (−17) 4.17 (−17) 2.15 (−20) 4.17 (−17)
0.06 15,188 7.05 (−18) 7.45 (−19) 7.80 (−18) 8.96 (−17) 5.38 (−20) 8.97 (−17)
0.04 22,783 0.00 1.68 (−18) 1.68 (−18) 1.65 (−16) 1.13 (−19) 1.65 (−16)
0.03 30,377 0.00 2.99 (−18) 2.99 (−18) 2.53 (−16) 1.96 (−19) 2.53 (−16)
0.02 45,565 0.00 6.74 (−18) 6.74 (−18) 4.64 (−16) 4.30 (−19) 4.64 (−16)
0.01 91,130 0.00 2.70 (−17) 2.70 (−17) 1.30 (−15) 1.68 (−18) 1.30 (−15)

0.005 182,260 0.00 1.08 (−16) 1.08 (−16) 3.63 (−15) 6.72 (−18) 3.64 (−15)
0.003 303,767 0.00 3.00 (−16) 3.00 (−16) 7.69 (−15) 1.87 (−17) 7.71 (−15)
0.001 911,300 0.00 2.70 (−15) 2.70 (−15) 3.55 (−14) 1.68 (−16) 3.57 (−14)

* The number in parentheses indicates the power of ten multiplying that entry.

Figure 1. Absorption coefficients of four scattering processes with T = 6300 K (θ = 0.8). The H−
bound–free transitions are described by Equation (10) and the Ps− b–f transitions by Equation (11).
The b–f absorption coefficients are formed by multiplying the cross sections by either the fraction
of H−/H or Ps−/Ps, given by the Saha equation. The free–free transitions are for electrons on H
(Equations (4) and (6)) and positrons on H (Equations (4) and (9)). The H b–f and f–f absorption
coefficients are in units of 10−26 cm2 per Pe per H− atom, where Pe is the electron pressure. The
Ps− bound–free coefficients are in units of 10−26 cm2 per Pe per Ps− atom. The positron–H free–free
coefficients are in units of 10−26 cm2 per Pe+ per H− atom, where Pe+ is the thermal pressure of positrons.
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Our results are shown in Figure 1. An examination of Figure 1 shows several effects. The most
noticeable effect of positrons on the emergent spectrum would be an increase in the brightness
temperature of wavelengths longer than 1 μm. The positron–H free–free opacity is larger than the
electron–H free–free opacity at those wavelengths. The second effect is when the Ps abundance becomes
appreciable and a broad region of opacity appears between 0.1 and 4 μm. A third effect, positron–Ps
free–free transitions, will be described in a future work.

2. Conclusions

In addition to bound–free transitions, free–free transitions are important in the solar as well as
stellar atmospheres. We have calculated cross sections for these processes and have shown that the
free–free transitions involving electrons dominate at wavelengths longer than 16,000 Å. The same
processes are present when positrons are involved in transitions instead of electrons. Two observable
quantities, the locations of the maximum in the bound–free opacity and the transition from dominance of
bound–free to free–free opacity, are both located at longer wavelengths when positrons and the negative
positronium ions are considered. The presence of these shifted features would be a unique marker of
an object with a measurable number of positrons in its atmosphere. Processes involving positrons
cannot be neglected and their contribution to opacity could be comparable to those involving electrons.

Author Contributions: A.K.B. and W.D.P. contributed equally. All authors have read and agreed to the published
version of the manuscript.

Funding: No funding was received for this research.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: A simple universal physical mechanism hidden for more than half a century is unexpectedly
discovered from a calculation of low excitation antihydrogen. For ease of reference, this mechanism
is named Gailitis resonance. We demonstrate, in great detail, that Gailitis resonances are capable of
explaining p+7Li low energy nuclear fusion, d-d fusion on a Pd lattice and the initial transient fusion
peak in muon catalyzed fusion. Hopefully, these examples will help to identify Gailitis resonances in
other systems.

Keywords: Stark effects; Gailitis resonance; LENR; muon catalyzed fusion

1. Uncovering the Truth from the Nature Takes Time

During the 1960’s, Gailitis and Damburg [1] found weak oscillations in the scattering matrix
at energy ε slightly above H(n = 2) energy level in electron-hydrogen scattering calculations.
They suggested that the oscillations might have originated from the electric dipole component
of the target system.

In an attempt to help the antihydrogen research, a calculation of the total cross section for
antihydrogen formation for H(n ≤ 2) using nine partial waves was carried out [2] for the following
reaction, using the modified Faddeev equation,

p + Ps(n = 2)→ e + H(n ≤ 2) (1)

Near the energy region of the Gailitis oscillation, a very large H(n ≤ 2) formation cross section of
1397πa0

2 was found, where a0 is the Bohr radius. The S-partial wave portion of reaction (1) is plotted
in Figure 1 in the energy range between the Ps(n = 2) threshold to the H(n = 3) threshold.

A couple of resonant-like peaks are clearly visible. However, no previous calculations indicated
any resonance in this energy region and subsequent independent calculations also could not reproduce
it. Their calculations were carried out with a much shorter cutoff radius than the 450 Bohr radius used
in Figure 1.

Ten years later, we decided to investigate the energy region where the questionable cross section
peaks were found in Figure 1, using a much larger size job allowed by more powerful computers.
The cutoff radius used in [3,4] is 1000 Bohr radius for the following S-state and with six open channel
charge conjugation system.

Atoms 2020, 8, 32; doi:10.3390/atoms8030032 www.mdpi.com/journal/atoms7
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Channel#IncomingChannel

1.e+ + H(n = 1)

2.e+ + H(n = 2, l = 0)

3.e+ + H(n = 2, l = 1)

4.p + Ps(n = 1)

5.p + Ps(n = 2, l = 0)

6.p + Ps(n = 2, l = 1)

(2)

 

Figure 1. Total S-state antihydrogen formation cross section. Taken from reference [2]. The relatively
large cutoff radius of 450 a0 used enabled two Gailitis resonances appear near the threshold of Ps(n = 2).

After numerically solving nearly half a million coupled linear equations, complete sets of beautiful
6 × 6 scattering matrices near each of the three resonances were obtained [3,4].

Resonances occur only in channels 5 and 6 of Equation (2), due to their large electric dipole moment.
Near resonances, the Faddeev wave amplitudes of channels 5 and 6 and their scattering matrices,
tan(δii), i = 5,6, are presented in Figure 2 below.

Apparently, the largest possible run with ymax ≈ 1000a0 used in our calculations is too short,
the third resonance get cut in half. In spite of such defects, these graphs provide enough information
to reveal real physics.

Figure 2a is a plot of the K-matrix elements tan(δii), i = 5,6, as a function of the energy E1,
the collision energy with respect to channel 1. Other channel energies are determined in term of E1.
For example the channel energy for channel ε5 and ε6 are measured from Ps(n = 2), while E1 measured
from H(n = 1).

Figure 2b is a plot of the Faddeev wave amplitude for channel 6 at energy close to the
third resonance.

Figure 2c is a plot of the Faddeev wave amplitude for channel 5 at energy near the second resonance.
Figure 2d is a plot of the Faddeev wave amplitude for channel 5 at energy, not close enough to the

first resonance.

8
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All the wave amplitudes of the other Faddeev channels are orders of magnitude smaller.

(a) 

(b) (c) (d) 

Figure 2. (a–d) are taken from reference [3]. The only 6 open Channel modified Faddeev Equation
Calculation to date. More details can be found in Reference [3,4]. The cutoff radius used is 1000 a0.

When the scattering matrix shows singular behavior like Figure 2a, the traditional methods that
search for poles in the complex energy plane measure energy and width of the resonances. Here, for
the first time, we demonstrate that the Faddeev amplitudes contain all the physics that can be revealed
with much less effort.

2. Physics Revealed from Figure 2a

As the proton moves in the attractive electric dipole field from Ps(n = 2) along the y-axis, the phase
shift δ suddenly drops from 0− to −π/2. That means that the attractive electric dipole field from
Ps(n = 2) suddenly turned strongly repulsive when the energy of the proton matched the electric dipole
flipping energies, thus forcing the proton to give up all its energy, and it then turns into an expanding
wave packet centered on ym, where m is a quantum number. From Figure 2b–d, y1, y2 can be measured
directly, but not y3. The proton stripped off its energy and turns onto an expanding wave packet.
That represents the first of two stages of the lifetime of the Gailitis resonance. The second stage begins

9
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when the phase shift suddenly drops from π/2 to 0+, indicating a strong attractive force from the target.
What will happen during the second stage, which depends only on the host system, is here the Ps.
It produces the resonant reaction represented by p + Ps(n = 2)→ e+ + H(n ≤ 2). Thus, Figure 2a reveals
the pick-up action of the Gailitis resonances.

3. Other Common Property of the Gailitis Resonances

It is noticed that the widths of the initial wave packets are equal to their De Broglie wavelengths.
In this section, we only use units such that h = 1. Thus, the momentum p is related to the De Broglie
wavelength p = 1/λ, and ε = p2 = (1/λ)2. Then, the uncertainty principle is given by Δy Δp = 1.
Applied to the Gailitis resonance when Δp→p, we find Δy ≈ 1/p = λ and Δε = (Δp)2 = p2.

Thus, the Gailitis resonances have another unique property, namely, εm/Δεm = 1 for all m. Due to
the incoherent use of units in some of our previous calculations [5], this formula was listed incorrectly
as εm/Δεm = 4π2.

The lifetime of Gailitis resonances can be calculated using the uncertainty principle in the
following form:

εm = (1/Δεm) × 2.42 × 10−17 sec (3)

where the energy Δεm is given in Rydberg.

4. Resonant Condition Read from Faddeev Amplitudes

We can relate the known electric dipole moment |μ1| of the target Ps(n = 2) in the mass normalized
Jacobi coordinate system in Figure 2b–d to the resonance energies. The subscript 1 represents the
electric dipole moment only, where y2

m = <y2
m> are directly measured at the peaks of the wave packets

in Figure 2c,d. However, due to the energy we used to calculate, 2d is too far from the resonant energy.
There are two peaks in the wave packet. It is easy to identify which one produced the m = 1 resonance
(see [3,4]). Numerically, the resonant equation below comes directly from the wave functions 2c and 2d

εm = m|μ1|/y2
m, where m = 1, 2. (4)

It is noticed that this is the dipole flipping condition. The value of y3 cannot be measured from
Figure 2b with our limited computer resources. Using a numerical extension of Figure 2b beyond 1000a0,
along with help from Equation (4), ym, for m = 3 was determined. The properties of the three resonances
are listed in Table 1. All quantities are in mass normalized Jacobi coordinates and |μ1| = 47.94778.

Table 1. εm are the resonant energies in units Ryd. εm/Δεm are determined in Section 3. λm and ym are
measured directly from Figure 2b–d see Reference. [3] for more detail.

m εm (Ryd) εm/Δεm λm(a0) ym(a0)

1 5.4436(−4) 1 380.85 296.8
2 0.19436(−3) 1 637.35 702.4
3 0.84344(−4) 1 967.54 1306.0

Please notice, the εm resonant energy measured just above the Ps(n = 2) threshold is very small.
They are within the range of the fine structure energy width, where the Coulomb degeneracy is
removed by the small relativistic perturbation in the pure Coulomb force Hamiltonian that split the
Coulomb energy level into a number of independent energy levels depends on the angular momentum
quantum number �. The energy width of this fine structure energy levels is very small. All εm must
lie within this width, thus three-body scattering calculation involves 6-open channels represented in
Equation (2).

It is well known in many textbooks that an incoming charge particle p or e+ will induce a constant
electric dipole moment in the target atom. Consequently, an attractive inverse square force exists that
support Gailitis resonance listed in Table 1.

10



Atoms 2020, 8, 32

These numbers can also be simply reproduced by the resonant condition Equation (4):

εm = m|μ1|/y2
m, m = 1, 2, 3.→ (5)

The second column εm/Δεm = 1 indicates that, in the traditional measurements of energy and
width of resonances, in the complex energy plane, this ratio must be close to one and all Gailitis
resonances lying on this straight line [5]. The present method provides a complete set of properties for
all the Gailitis resonances outlined above. These properties are very useful in the search for Gailitis
resonances for more complex systems. Such searches have already solved a number of decades old
outstanding problems. A few of them are outlined below.

5. Lifetime Rate of Gailitis Resonance in Muon-Catalyzed Fusion

The molecule dtμ is composed of a deuteron and a triton nucleus bound together by a
negative muon. The “size” of this molecule is much smaller than a normal molecule bound by
an electron. As a result, the probability for the overlap of the two nuclei wave functions is large enough
to produce the nuclear reaction:

dtμ→ 4He + n + μ + 17.6 MeV. (6)

The number of neutrons, N, counted in the laboratory is given in Figure 3. The mechanism for the
formation of large initial peaks was unknown since the publication of the original data [6].

α

Figure 3. The initial time transient high dtμ formation peak, take from Reference [6].

In Reference [7], using the properties of Gailitis resonance and the experimental information that
the initial muonic atom tμwas formed at an excited state, n = 14, an estimation found the lifetime of the
Gailitis resonance is of the same order of magnitude as the radiative decay lifetime. This is consistent
with the data shown in Figure 3. Here at the end of the life of the Gailitis resonance, as Figure 2a shows,
it becomes a bound dtμmolecule before the nuclear reaction of Equation (5) takes place.

6. Long-Lived Gailitis Resonance Composed of the Electron-Rydberg Hydrogen Atom

In the Rydberg hydrogen with n~20, the electron was trapped at a very large distance, that is, a
very large ym and λm even for the n = 2 system found in Table 1. For Rydberg Gailitis resonances, the
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lifetime can be expected to exceed its radiation decay lifetime. That seemed to be the case for the earlier
stage of research in antihydrogen production when the antihydrogen was created in Rydberg states.
The expectation for such states is to radiatively cascade down to low excitation states failed.

7. Nuclear Fusion in (p+7Li) -> 8Be* -> 2α

The energy of the Gailitis resonance in p+7Li reaction overlaps with that of the compound nuclear
energy level centered at 19.9 MeV, with a decay width that extends even below the proton separation
energy of 8Be (see the arrow in Figure 4).

Figure 4. Some of the known energy levels of Be8 and reactions involved in their formation and
dissociation, see reference [8].

This compound nuclear energy level has I = 2+, the 7Li has I1 = 3/2− and the proton has I2 =
1
2 ,

with l = 1− contribution.
One possible vector sum for the resonance is I = 2+, that makes a perfect match between the

resonance and this compound nuclear energy level Be* (shown by the arrow).

8. S-State Gailitis Resonance (d, Dp)—The “Quasi-Particle”

From the e+ + H calculation, it is expected that the activity of the resonance is not strong enough
to disturb the lattice. In this section, we assume that the deuteron atom is bound on Pd lattice.

During the first stage of the life of (d, Dp), Figure 5 shows that the wave packet of d is a spherical
layer of probability density with maximum located on a spherical surface with resonant radius r0.
A deuterium atom on the lattice is represented by Dp, and it has an electric dipole moment induced by
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the lattice vibrating phonon, indicating that the electric dipole can be tuned to locate the resonances.
Tuning, for example, can be performed using new laser technology to induce a phonon state.

Figure 5. Cross section view of the wave-packet: an expanding spherical layer of probability density of
the approaching charged particle.

The r0 remains unchanged during the first stage of the life of the resonance, but the probability
density expands both inward and outward from this surface.

During the second stage, starting with a sudden attraction towards Dp, the spherical surface with
maximum probability density begins to shrink.

Dp remains on the lattice, unperturbed by the activities of the resonance. As usual, the resonant
energies of Gailitis are very small for the long-lived resonances. When the probability cloud begins
advancing over the Coulomb barrier, no matter how little, the quasi-particle (d, Dp) is already in a
shallow negative attractive tail of the central nuclear potential, far away from the complication of the
core nuclear forces.

The role of 4He+ in (d, Dp) fusion.
What does (d, Dp) have in common with 4He+? They both have one electron and two deuterons d.

The 4He+ is the lowest possible energy system involving these three particles. The most important
difference between these two systems concerning this study is the energy difference. Neglecting all
small energies involving the lattice and the Gailitis resonance the (d, Dp) is 23.85 MeV above 4He+.
This is the energy needed to separate the two d from the α-particle, the nucleus of 4He+. Unfortunately,
there is no compound nuclear energy level of α to match the nuclear properties of an S-state (d, Dp).
Instead of becoming a compound nuclear energy level of α at excitation energy 23.85 MeV (see Figure 6),
during the second stage of the life of the (d, Dp), resonant action leads the quasi-particle (d, Dp) into a
shallow negative tail of the nuclear potential of Dp, which, in an attempt to expel the intruder, injects it
with energy equal to the potential energy drop, as the cloud keeps shrinking.

As soon as the energy accumulation in (d, Dp) reaches the energy of a lattice normal mode
phonon, the nuclear energy begins to flow into the lattice, one phonon at a time, until the size of the
“quasi-particle” shrinks close to the region where the core nuclear force dominate. Then, the nuclear
force takes over the dynamics. The (d, Dp) either reaches the ground state of 4He+ and still remains on
the lattice, or gets kicked out of the lattice as a quasi-particle where background electrons can slow
it down, until reducing it to a free 4He+. This leakage of one phonon at a time is a slow process and
the amount leaked each time, one phonon, is negligible for nuclear energy. Namely, only a classical
conservation of energy need apply.
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Figure 6. Energy level diagram of 4He+.

9. Discussion

The Gailitis resonances are supported by a very simple physical phenomenon. Why did it take so
long to uncover its true nature? The answer is clearly displayed in Figure 2 and Table 1. The most
important region is between y = 296.8 a0 and y = 1306 a0. Any computer would be hard pressed
to accommodate such a large calculation correctly as seen even in some most recent calculations.
In other words, the long range Coulomb force is producing unexpectedly long range physics. Present
computational methods needs substantial improvements.

This problem is demonstrated clearly with our long struggle for calculating the simplest quantum
three-body scattering system in e+ + H(n ≤ 2), presented earlier in this report. Table 1 shows that the
first Gailitis resonance shows up at y1 = 296.8a0. Had we used an effective cut-off, ymax = 300a0, all the
physics of the Gailitis resonances would have remained hidden.

Supercomputers have advanced several generations since our calculations [3,4] and the
experimental techniques have also improved, so that we can make measurements in the molecular and
atomic level. There is no excuse for us theorists still using the decades old methods that were designed
for the needs of decades ago. It is clear that a resonance can represent its own real physical properties,
which is more than just a real and imaginary part. We must start with the wave functions for each and
every independent open channel.

The quantum 3-body multichannel scattering system presented in our work [3] is only the tip of
the iceberg. Ref. [4] is designed to provide interested readers the first step to set up their own code.
Critics should help improve it until they can find even better methods that could satisfy the needs of
the 21st century.
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Scientific processes brought multi-disciplinary physics closer, as shown from the small number of
examples presented here; the universal natural mechanism of electric dipole flipping. A lot of other
possibilities such as the role of higher order of both the electric and magnetic multipoles will be next.
It seems that experimentalists are already moving ahead quickly into these areas.

Clearly, multidisciplinary collaboration can be most fruitful in such an area like the low energy
nuclear fusion.
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Abstract: A review on the positron scattering from atoms and molecules is presented in this article.
The focus on positron scattering studies is on the rise due to their presence in various fields and
application of cross section data in such environments. Positron scattering is usually investigated
using theoretical approaches that are similar to those for electron scattering, being its anti-particle.
However, most experimental or theoretical studies are limited to the investigation of electron and
positron scattering from inert gases, single electron systems and simple or symmetric molecules.
Optical potential and polarized orbital approaches are the widely used methods for investigating
positron scattering from atoms. Close coupling approach has also been used for scattering from
atoms, but for lighter targets with low energy projectiles. The theoretical approaches have been quite
successful in predicting cross sections and agree reasonably well with experimental measurements.
The comparison is generally good for electrons for both elastic and inelastic scatterings cross sections,
while spin polarization has been critical due to its sensitive perturbing interaction. Positron scattering
cross sections show relatively less features than that of electron scattering. The features of positron
impact elastic scattering have been consistent with experiment, while total cross section requires
significant improvement. For scattering from molecules, utilization of both spherical complex optical
potential and R-matrix methods have proved to be efficient in predicting cross sections in their
respective energy ranges. The results obtained shows reasonable comparison with most of the
existing data, wherever available. In the present article we illustrate these findings with a list of
comprehensive references to data sources, albeit not exhaustive.

Keywords: Electron-Positron Scatterings; atoms and molecules; cross sections and spin polarization;
theoretical approaches

1. Introduction

A positron, the antiparticle of the electron, has the same mass, electric charge (but positive) and
spin (1/2) as that of an electron. Like other antiparticles, positrons were produced during the period
of baryogenesis when the universe was extremely hot and dense, but now they exist in much lower
numbers than its counter part, the electrons. Although not found in normal conditions, they are
produced at the galatic center or supernovae events and are found in copious amount in cosmic ray
showers and in the ionosphere. Positrons are created naturally in β+ radioactive decays such as from
K-40, particle reactions or by pair production from a sufficiently energetic photon interacting with the
atomic nuclei in a material. Nevertheless, a small percent of potassium (0.0117%) K-40 is the single
most abundant radioisotope in the human body and produces about 4000 natural positrons per day.
However, soon after its creation, they annihilate with electrons or form the exotic atom, positronium
(Ps), with a very short lifetime, finally decaying to 2 or 3 gamma rays each with energy 511 keV. Ps has
a mass of 1.022 MeV/c2 and can form otho-Ps (o-Ps) or a para-Ps (p-Ps) when the electron-positron
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spins are parallel (spin = 1) or anti-parallel (spin S = 0) respectively. An o-Ps decays to 3 and a p-Ps
decays to 2 gamma photons. The energy levels of Ps are similar to those of hydrogen atom. Gamma
rays, emitted indirectly by a positron-emitting radionuclide (tracer), are detected in positron emission
tomography (PET) scanners used in hospitals. PET scanners create detailed three-dimensional images
of metabolic activity within the human body. Positron Annihilation Spectroscopy (PAS) is used in
materials research to detect variations in density, defects and displacements within a solid material.
It is the detection of 511 keV gamma ray photons that is typically used as the signal for the source of
existence or creation of positrons, such as, in the center of our galaxy, Milky Way.

The treatment of electron and positron scattering from atoms are similar and have been studied
extensively both theoretically and experimentally. Similar is the case with molecules. The scattering
parameters of interest are the scattering cross sections and the spin polarization. The scattered
wave function can be obtained by solving the Schrödinger equation using Numerov method (e.g.,
Reference [1]), or using other methods mentioned below. The scattering parameters can be determined
using the wave function. While extensive set of references are available, this review provides selected
references that can lead to details of various approaches and experimental results. Most scattering
studies have been carried out for neutral atoms, such as, He, Ne, Mg, Ar, Kr and Xe using various
theoretical approaches, such as, polarized orbital method (e.g., References [2–5]), modified adiabatic
method (e.g., Reference [6]), variational method (e.g., Reference [7]) and optical potential method
(e.g., References [1,8–16]). There are many experimental studies on positron scattering as well (e.g.,
References [17–39]). Spin polarization for electron scattering was measured by various groups (e.g.,
References [40–42]). Among ions, the study has remained largely on single valence electron ions using
Kohn-Feshbach variational method [43], polarized orbital method [44,45] and hybrid method [46–48].
Electron/positron scattering from molecules are investigated using spherical complex optical potential
(SCOP) as well [49,50]. More references can be obtained from the cited articles. Compared to scattering
from a positive ion, a neutral target offers consistent scattering features that can help in better
understanding the general characteristics. Being less reactive species, noble gases are easy to handle
experimentally compared other targets. They are also relatively simple collision systems to approach
theoretically. Hence, it will be interesting to review the cross section data on electron/positron
scattering from inert gases. The present work will concentrate on the neutral inert gases as well.

Interaction of positron with atoms is dealt mainly with two theoretical approaches; perturbative
and non-perturbative. Perturbative methods usually work in the intermediate to high energy region
(ionization threshold to about 10 keV), while the non-perturbative theories are capable of accurate
calculations at low energies. Among various methods mentioned above, polarized orbital and optical
potential methods have been used most widely to calculate scattering parameters for atoms beyond He.
The polarized orbital method (e.g., Reference [51]) ansatzes the distortion in the target wave function.
Temkin [2,3] first introduced it, where he included long range correlation which has the characteristic
behavior of −1/r4 of the longest range polarization potential, for the distortion. The method was
converted to a hybrid model by Bhatia (e.g., References [48,52]), which included the short range
correlation and variationally bound energies. His application of the hybrid method to calculate phase
shifts, scattering lengths, photo-detachment, photoionization, positron scattering, annihilation and
positronium formation produced reasonable results, which showed good agreement with available
results. He extended the work to obtain accurate results in the elastic region for S-, P-, and D-wave
scattering as well. Bhatia’s investigation using the hybrid method focuses largely on the scattering by
single-electron systems (e.g., positron impact excitation of hydrogen [45]), since the wave function of
the target is known exactly. Besides, the possibility of direct annihilation and positronium formation
requires a composite wavefunction, which is almost impossible to formulate.

Polarized orbital method for elastic scattering of positrons from noble gases was first developed
by McEachran et al. [4] where they included in principle all multipole moments of the positron-atom
interaction. The polarized orbital was calculated by a perturbed Hartree-Fock scheme, which was used
to calculate the polarizability of atoms [53,54] and the scattered wave was obtained from a potential
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scattering problem. The method showed good agreement with measured cross sections for for He
and Ne atoms [17,21]. McEachran et al. [55] implemented their method successfully for other atoms
as well.

One of the most rigorous approach for positron-ion scattering has been the Feshbach projection
operator method [56], where the usual Hartree-Fock and exchange potentials are augmented by an
optical potential [47]. However, the method employs correlation functions that are of Hylleras type
and hence do not include long range correlation.

Kohn Variational Principle (KVP) (e.g., Reference [57]) is usually applied to low-energy positron
scattering to obtain elastic and Ps formation cross sections. In this method a two-component trial
wave function is chosen, having the correct asymptotic form with enough flexibility to describe all the
short-range distortions and correlations of the positron-atom system. This wave function is then used
in the Kohn functional, which can be written in terms of the K-matrix elements. From the K-matrix,
cross sections can be calculated.

The many-body-theory for a positron-atom interacting system (e.g., References [58,59]) is based
on the Dyson equation. This is solved by the representation of eigenfunctions of the Hartree-Fock
Hamiltonian. The formulated self-energy matrix gives the phase shifts. This approach is used to study
low energy positron scattering from atoms.

Schwinger Multichannel Calculations (SMC) is a well-known method to study low energy
scattering (e.g., References [60,61]). The backbone of the method is the computation of variational
expression for the scattering amplitude. SMC describes target polarization through single virtual
excitations of the target wave function, explicitly considered in the expansion of the scattering
wave function. The Lippmann-Schwinger scattering equations are then solved to obtain the cross
sections [62].

The other method of interest is the close-coupling (CC) approach for the scattered wave and the
R-matrix method [63,64] to solve the coupled set of integro-differential equations. Jones et al. [26]
used the convergent close-coupling (CCC) approximation, where they solve the equations with a
different set of codes than standard R-matrix codes. They use multi-configuration Dirac-Fock program
of Grant et al. [65] to obtain the target wave functions. Their results for positrons scattering from Ne
and Ar indicate that, while both polarized orbital method and CCC approximation showed good
agreement with experiment in general, the polarized orbital method yielded slightly better cross
sections. In the standard close-coupling formalism for molecules (e.g., Reference [66]), the convergence
in the expansion of the three-body wave function is obtained using the exact discrete eigenstates of the
atomic target. The technique relies on the expansion of the total wave function in the set of target states
of the atom and Ps. The CCC method allows for the examination of the effect of virtual excitation to
the continuum as well [67].

For molecules, the optical potential method (e.g., References [49,68]), Born approximations (e.g.,
References [69,70]), and so forth are the most common quantum mechanical perturbative theories used
for electron scattering presently. The positron collision studies is an extension of the optical potential
method [71]. In case of non-perturbative theories, the close-coupling or the grid-based method for
solving Schrödinger equation are employed. Irrespective of whether the method is perturbative or
non-perturbative, the positron-molecule scattering is an extension to the positron-atom interaction
technique. One has to consider multi-centre approach to deal with the projectile-target interaction due
to the absence of spherical symmetry and due to the complexity of molecules. Here we will discuss
few of the most commonly used theoretical methods to deal with positron-atom/molecule interaction.

Theoretical methods to investigate positron scattering and various target molecules studied by
these approaches along with references are listed in Table 1. The list given below is not exhaustive,
but gives an overall picture of various studies done so far. Further, this review will elaborate the most
common approach, the optical potential method, to study electron and positron scattering from atoms
and molecules with reasonable success.
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Table 1. References for positron scattering from various target molecules using various
methods: independent atom model (IAM), IAM with screening correction (IAM-SCAR) with
interference (IAM-SCAR+I), Kohn variational principle (KVP), distorted wave approximation (DWA),
many-body-calculation (MBC), R-matrix, Schwinger multichannel calculations (SMC), close-coupling
(CC) approximation.

Method Target(s) Reference

IAM H2, NH3, CO, CO2, O2, SF6, CF4, CCl4, CBr4, CI4, CH4, SiH4,
GeH4, PbH4

[72]

H2 [73]
O2, CO, CO2, SO2, CS2, OCS, SF6 [74]
N2 [75]
CO2 [76]
Hydrocarbons [77]

IAM-SCAR(+I) H2, CH4 [78,79]
N2, O2 [80]
O2 [81]
H2O [82,83]
N2O [84]
NO2 [85]
Formaldehyde [86]
Tetrahydrofuran, 3-hydroxy-tetrahydrofuran [87]
Indole [88]
Uracil [89]
Pentane isomers [90]
2,2,4-trimethylpentane [91]
Vinyl acetate [92]
Tetrahydrofurfuryl alcohol
Pyrimidine [93,94]
Pyridine [95]
Cyclic ethers (oxirane, 1,4-dioxane, tetrahydropyran) [96]
Tetrahydrofurfuryl alcohol (THFA) [97]

KVP H, He [57,98,99]
H2 [100]

DWA H
H2 [101]
Inert gases [102–106]

MBC H [107]
Noble gases [58,59]
Mg [108]

R-matrix H [63,109]
Inert gases [109–111]
HF [112]
He2 [113]
H2, N2 [109,113–115]
H2O [116]
CO2, Acetylene [117,118]

SMC He [119,120]
H2 [61,120–126]
Li2 [127]
N2 [125,128–131]
CO [132]
CO2 [120,125,133,134]
H2O [135–137]
CH4 [138]
Formic acid [139]
Benzene [140]
Pyrimidine [141]
Allene [142]
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Table 1. Cont.

Method Target(s) Reference

Silane [62]
THF [143]
Ethene [144]
Actetylene [128,145]
Ethane [146]
1,1-C2H2F2 [147]
Pyrazine [148]
Formaldehyde-water complexes [149]
C3H6 isomers [150]
Glycine and Alanine [151]
SF6 [133]
C2H4 [152]
Methylamine [153]
Iodomethane [154]

CC CO [155]
H [66,156–161]
Alkali atoms [66,162–171]
Mg [172,173]
Noble gases [174,175]
H2 [176–179]
N2 [67]

2. Scattering Parameters: Cross Sections and Spin Polarizations for Atoms

The characteristic features of the scattering can be observed in the cross section and in spin
polarization caused by the projectile. While cross section can be obtained by solving non-relativistic
Schrödinger or relativistic Dirac or Dirac-Fock equations, the latter provides accurate treatment for
spin polarization parameters. In the present review, we will present relativistic single particle Dirac
approach, which has been successful in reproducing the observed scattering phenomena.

The relativistic Dirac equation for a projection of rest mass mo and velocity v traveling in a central
field V(r) is given by (e.g., Reference [180,181]),

[cα.p + βmoc2 + V(r)]ψ = Eψ, (1)

where α and β are the usual 4 × 4 Dirac matrices and ψ is a four-component (spinor) function,
ψ = (ψ1, ψ2, ψ3, ψ4). (ψ1, ψ2) are the large components and (ψ3, ψ4) are the small components of ψ.
Defining γ = (1 − v2/c2)−1/2, the total energy is E = mc2 = moγc2 = E′ + moc2 where E′ is the
kinetic energy, and writing the radial function of the large large component as Gl =

√
ηgl(r)/r,

the equation for the large component can be rewritten as the Dirac equation reduced to the form similar
to Schrödinger equation (e.g., Reference [9]) as

g±”
l (r) +

[
K2 − l(l + 1)

r2 − U±
l (r)

]
g±l (r) = 0, (2)

where the effective Dirac potentials due to spin up and spin down respectively are,

− U+
l (r) = −2γV + α2V2 − 3

4
η′2

η2 +
1
2

η”
η

+
l + 1

r
η′

η
, (3)

and

− U−
l (r) = −2γV + α2V2 − 3

4
η′2

η2 +
1
2

η”
η

− l
r

η′

η
. (4)
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The prime and double primes represent the first- and the second-order derivatives with respect
to r, η = (E − V + moc2)/ch̄, δ = (E − V − moc2)/ch̄, and K2 = (E2 − m2

oc4)/c2h̄2. In atomic unit,
mo = e = h̄ = 1, 1/c = α, where α is the fine structure constant and hence γ = (1 + α2K2)1/2 and
E = γc2 = γ/α2. The proper solution of the Schrödinger like Dirac equation behaves asymptotically as,

g±”
l (K, r) ∼ Kr[jl(K, r)− tanδ±i nl(K, r)], (5)

where jl and nl are spherical Bessel functions of the first and second kind respectively, and δ±i are the
phase shifts due to collisional interactions. The plus sign corresponds to the incident particles with
spin up and the minus sign to those with spin downs. δ±i indicates the shifts in the phase of the radial
wave function due to the effect of interaction potentials in the scattering. The radial wave function
will be “pushed out” if the potential is repulsive and vice-versa with respect to the incoming free
radial wave. So from this quantity, we can determine various microscopic quantities like cross section.
The values of δ±i may be obtained from the values of g±l at two adjacent points r and r + h (h << r) as

tan δ±i =
(r + h)g±l (r)jl(K(r + h))− rg±|

l (r + h)jl(Kr)
rg±l (r + h)nl(Kr)− (r + h)g±l (r)nl(K(r + h))

. (6)

The wave functions g±l can be obtained by numerical integration of g±”
l using Numerov method

and the spherical Bessel functions as described in Nahar and Wadehra [1]. Schrödinger/Dirac equation,
can be solved by various other approaches mentioned above, such as, Kohn-Feshbach variational
method [43], polarized orbitals method [2–4,46,47,51], close-coupling approximation [26,64] for the
scattered wave function from which the phase shift is determined.

The generalized scattering amplitude for the collision process is given by [9],

A = f (K, θ) + g(K, θ)σ.n̂. (7)

where

f (K, r) =
1

2iK

∞

∑
i=0

{(l + 1}[exp(2iδ+l )− 1] + l[exp(2iδ−l )− 1]Pl(cosθ), (8)

g(K, r) =
1

2iK

∞

∑
i=0

[exp(2iδ+l )− exp(2iδ−l )]Pl(cosθ), (9)

and n̂ is the unit vector perpendicular to the scattering plane. The differential cross section (DCS) for
the scattering of the spin-1/2 particles by the spin zero neutral atom is given by

[DCS] =
dσ

dΩ
= ∑

ν′
| < χν′ |A|χν > |2 = | f |2 + |g|2 + ( f ∗g + f g∗)n̂.Pi, (10)

where χν′ represents a spin state and Pi =< χν′ |σ|χν > is the incident-beam polarization, which is
assumed to be zero. The integrated elastic cross section for the unpolarized incident beam can be
obtained as

σel = 2π
∫ π

0
(| f |2 + |g|2)sinθdθ, (11)

and the momentum transfer cross section by

σM = 2π
∫ π

0
(1 − cosθ)[| f |2 + |g|2]sinθdθ. (12)
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The integrated total cross section given by

σtot =
2π

K2

∞

∑
l=0

{(l + 1)[1 − Re(S+
l )] + l[1 − Re(S−

l )], (13)

where S±
l = exp(2iδ±l ). The integrated absorption cross section can be obtained from σabs = σtot − σel

Since the spin-orbit interaction is a short-range interaction, the phase shifts of the spin-up and the
spin-down particles are equal (δ+l = δ−l ) for the large angular momenta lh̄. Hence for large l, g(θ) = 0
and the contribution to the scattering amplitude comes only from f (θ). If Born approximation is used
for higher partial wave with l > M, f (θ) can be written as [9],

f (K, θ) =
1

2iK

M

∑
i=0

[(l + 1)(S+
l − 1) + l(S−

l − 1)]Pl + fB(K, θ)− 1
2iK

M

∑
i=0

(2l + 1)(SBl − 1)Pl , (14)

where fB(K, θ) is the Born amplitude, SBl = exp(2iδBl) and δBl is the Born phase shift. The number of
exact phase shifts to be evaluated depends on the impact energy before use of Born approximation.
The contribution due to Born approximation should be small. At large distance the interaction potential
V(r) is dominated by the long range part VLR(r) = −αd/2r4 of the polarization potential and Born
phase shift δBl .

The interaction potential between the spin of the electron or positron and the orbital angular
momentum L, which depends on the velocity and position vector with respect to the target atom,
can cause the spin to orient. Hence, even with an unpolarized incident beam the orientation in a
preferred direction can give a net spin polarization in the scattered beam. The amount of polarization
produced due to the collision in the scattered beam is given by [182],

P(θ) =
< Aχν|σ|Aχν >

< Aχν|Aχν >
=

f ∗g + f g∗

| f |2 + |g|2 n̂ = P(θ)n̂. (15)

The other two spin polarization parameters, T and U giving the angle of the component of the
polarization vector in the scattering plane are given by [182],

T(θ) =
| f |2 − |g|2
| f |2 + |g|2 , U(θ) =

f g∗ − g f ∗

| f |2 + |g|2 . (16)

The three polarization parameters are interrelated through the condition P2 + T2 + U2 = 1.

3. e± and Target Atom Interaction Potential

To calculate the scattering parameters, we define the projectile-target interaction and a method to
determine the respective wave functions. The scattering can be described in two general categories,
elastic (where the total kinetic energy is conserved and the interaction potential is real) and inelastic
(where part of the energy is lost due to absorption). For the inelastic processes such as excitation,
ionization, positronium formation through electron capture and so forth the absorption potential
is developed, which forms the imaginary part of the total complex potential. The total interaction
potential between a neutral target (or a single atomic electron) and a projectile electron or positron is
assumed to be symmetric or central, V(r), which depends on r only. The general form of V(r) is,

V(r) = VR(r) + iVA(r), (17)

where the real part VR(r) represents the elastic scattering and the imaginary part VA(r) represents the
absorption of energy through the inelastic channels. When the total kinetic energy is conserved the
imaginary part, VA(r), is zero. The absorption potential is negative and typically depends on the local
density function.
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VR(r) has several components: the averaged static potential VS (attractive for positrons and
repulsive for electrons), VP polarization potential (attractive for both electrons and positrons) and
an electron-electron exchange potential Vex (only for electrons). For a positron there is no exchange
probability. The total real potential is represented as,

VR(r) =

{
VS(r) + VP−(r) + Vex(r) : electron scattering,
VS(r) + VP+(r) : positron scattering.

(18)

The static potential, VS, is obtained by averaging the projectile-target interaction over the target
wave function as,

VS =
∫

|ψT(r1, ..., rZ)|2
[

Zeep

r
−

Z

∑
i=1

eep

r − ri

]
dr1...drZ =

Zeep

r
− ∑

n,l,m
Nnlm

∫
|Φnlm(r)|2

eep

r − r′ dr′, (19)

where ψT is the asymmetric Hartree-Fock target wave function, Φnlm(r) = φnl(r)Ylm(r̂) are the
partial atomic orbitals, ep is the projectile charge and Nnlm is the occupancy number of the orbital
(n, l, m). The radial part φ(r) of an orbital can be an analytic expansion, for example, tables of
Clementi and Roetti [183] or in numerical form obtained from configuration interaction atomic structure
calculation (e.g., Reference [65] or a Hylleras type wave function expansion (e.g., Reference [26]). Use
of configuration interaction form is common in close coupling approximation.

The polarization potential usually has a short and a long range part,

VP(r) =

{
VSR±(r) for r < rc,
VLR(r) = αo/r4 for r ≥ rc,

(20)

where rc is the point where the two forms cross each other for the first time. The long range behavior is
known to be of the form αo/r4 where αo is the polarizability of the target. The short range form can vary.
For the electrons scattering from a neutral atom, it could be the parameter free potential, for example,
that given by O’Connel and Lane [184]. They developed the potential on the basis of energy dependent
free-electron gas exchange potential and the energy-independent electron-gas correlation potential
smoothly joining to the long-range polarization interaction and is given by,

VSR−(r) =

⎧⎪⎨
⎪⎩

0.0622lnrs − 0.096 + 0.018rslnrs − 0.02rs, rs ≤ 0.7,
−0.1231 + 0.03796lnrs, 0.7 ≤ rs ≤ 10,
−0.876r−1

s + 2.65r−3/2
s − 2.8r−2

s − 0.8r−5/2
s , 10 ≤ rs,

(21)

rs = [3/(4πρ(r))]1/3, ρ(r) is the undistorted electronic charge density of the target. ρ(r) for the
spherically symmetric atom is given by,

ρ(r) =
1

4π ∑
n

∑
l

Nnl |φnl(r)|2, (22)

where Nnl is the occupancy number of the orbital (nl).
For the positrons scattering the polarization potential can also be parameter free, such as that by

Jain [185]. It is based on correlation energy of a single positron in a homogeneous electron gas with an
asymptotic behavior of the long range polarization potential, and is given by,

VSR+(r) =

⎧⎪⎨
⎪⎩

[−1.82/
√

rs + (0.051lnrs − 0.115)lnrs + 1.167]/2, rs ≤ 0.302,
(−0.92305 − 0.09098/r2

s )/2, 0.302 ≤ rs ≤ 0.56,
[− 8.7674rs

(rs+2.5)3 +
(−13.151+0.9552rs)

(rs+2.5)2 + 2.8655
rs+2.5 − 0.6298]/2, 0.56 ≤ rs ≤ 8.0.

(23)
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The long range form of Vp±(r) is given by VLR(r) = −αd/(2r4), where αd is the static electric
dipole polarizability. In polarized orbital method, the distortion due to polarization is incorporated in
the wave function.

The exchange potential, Vex(r) is due to exchange between the projectile electron and the target
electrons. One of the common form is given by Riley and Truhlar [186],

Vex(r) =
1
2

{
[E − VD(r)]−

√
(E − VD)2 + ρ(r)2

}
, (24)

where VD = VS + VP− is the direct interaction potential and ρ(r) is the radial density of the target.
Chen et al. [187] introduced another type of potential which was used for elastic scattering from heavy
inert gas, Kr, with reasonable success.

When the impact energy becomes accessible for the inelastic processes (such as excitations of
the target, positronium formation, etc.) absorption potential is introduced. The total absorption of
energy has been represented by various model potentials with poor to good success for certain atoms
(e.g., for Ar [9]). One major issue was the inclusion of various threshold energies for excitations and
electron capture in case of positrons to form positronium. One successful absorption potential model,
especially for electron scattering, has been the semi-empirical potential of Staszewska et al. [188,189],
which are based on qualitative features of an absorption potential at short and long ranges in order to
predict accurate differential cross sections. Their later model [189] has been in use considerably, and is
given by,

VA = −1
2

vρ(r)σ̄b, v =

√
2(E − VR)

mo
, (25)

v is the local velocity of the projectile for (E − VR) ≥ 0, ρ is the target electron density per unit volume
and σ̄b is the average quasifree binary cross section for Pauli allowed electron-electron collisions and is
obtained non-empirically by using the free-electron gas model for the target as,

σ̄b(r, E) =

⎧⎨
⎩

32π2

15p2
3

4πk3
F

[
5k3

F
α−k2

F
− k3

F [5(p2−β)+2k3
F ]

(p2−β)2 + f2

]
, p2 ≥ α + β − k2

F,

0, p2 < α + β − k2
F,

(26)

where

p(E) = (2E)1/2, f2(r, E) =

[
0, p2 > α + β
2(α+β−p2)5/2

(p2−β)2 , p2 ≤ α + β
, kF = (3π2ρ)1/3 (27)

p is the incident momentum of the projectile and kF is the target Fermi momentum. In their third
version of VA, V.3, they define the parameters α and β as,

α = k2
F + 2[Δ − (I − Δ)]− VR, β = k2

F + 2(I − Δ)− VR, (28)

where Δ is the threshold energy for inelastic scattering and I is the ionization potential. The factor 1/2
in the equation is introduced to account for the exchange between the incident electrons and the atomic
electrons of the target. The same absorption potential can be used for the positron scattering with
the factor 1/2 removed, since there is no exchange effect during the positron scattering. The earlier
version of Staszewska et al. [188] has also shown fair to good representation of absorption potential in
reproducing the total cross sections. Various other absorption potential models are also available in
literature, but have been only partly successful and hence need improvement.

Figure 1 demonstrate the general features of various components of the real part VR(r) of the total
projectile-target interaction potential V(r). The components are static potential (repulsive for electron
and attractive for positrons), polarization potential (attractive for both e±), exchange potential (only for
electrons and attractive) for e± scattered by the cadmium atoms [8]. The static potential was obtained
using Slater-type orbitals of Roothan-Hartree-Fock wave functions given by Clementi and Roetti [183].
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The same orbital functions were used to obtain the electron density in the absorption potentials. As
expected, the static potential dominates near to the nucleus and exchange potential starts away from it,
but moves toward it with increasing energy of the projectile.

Figure 1. Various interacting potentials, VS (solid), VP (dotted), Vex (dashed) for e± scattering from
Cd showing behaviors at energies of 15 and 75 eV. The curves represent the absolute values of the
potentials which are all negative except VS which is positive for electrons [8].

4. e± Scattering from Molecules

Two of the most commonly used approaches to study electron/positron interaction from
molecules are described below:

4.1. Optical Potential Approach

As mentioned above, the positron-target interaction is represented by an optical potential, which
has a real part representing elastic processes and the imaginary part taking care of the loss of flux
due to different inelastic channels. The calculations are generally carried out under the fixed nuclei
(FN) approximation. This method has been successful in investigating not only atoms, but also larger
molecules under multicentre approach. Various additivity rules are applied to find the cross section of
a molecule from its atomic constituents. The independent atom model (IAM) is the simplest among
them, where the cross section of the constituent atoms of the molecule is simply added to find the
cross section for the molecule [72]. This approach was further modified and screening correction
(IAM-SCAR) was applied to the cross section including the interference term and rotational excitation
cross sections [190].

The methodology to obtain radial charge density and interaction potentials for atomic systems
was already described earlier. The parametric form for atomic ρ and Vst are then used to compute
electron/positron impact cross section for atoms in the spherical complex optical potential (SCOP)
approach [49]. In this method, the radial part of Schrödinger equation is solved through partial wave
analysis to obtain the asymptotic solution,

ul(k, r) −−−→
r→∞

Al(k) sin
[

kr − 1
2

lπ + δl(k)
]

, (29)
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where δl(k) is the phase shift, which carries the signature of interaction on the solution. To compute
phase shift numerically, the radial Schrödinger equation is solved in the region r < a, where a is the
finite range of the interaction potential. By applying the boundary condition, r = a we have,

Rl(k, r) = Al(k, r)[jl(k, r)− ηl(k, r) tan δl ]r=a, (30)

and its logarithmic derivative,

γl =

[
R−1

l

(
dRl
dr

)]
r=a

= k
[

j′l(k, r)− η′
l(k, r) tan δl(k)

jl(k, r)− ηl(k, r) tan δl(k)

]
r=a

, (31)

where jl and ηl are the spherical Bessel and Neumann functions respectively. The ‘prime’ means
derivative with respect to ‘r’. By inverting the equation as above we can obtain,

tan δl(k) =
kj′l(k, a)− γl(k)jl(k, a)
kη′

l(k, a)− γl(k)ηl(k, a)
. (32)

The phase shift, δl(k) obtained from above is then used to construct elastic and inelastic cross
sections as [182],

Qel(k) =
π

k2

∞

∑
l=0

(2l + 1)|ηl exp(2iRe(δl))− 1|2, Qinel(k) =
π

k2

∞

∑
l=0

(2l + 1) (1 − ηl)
2 . (33)

However, for molecules there is no direct method to obtain ρ and Vst to be used to compute cross
sections. Hence, various indirect techniques were adopted to approximate the charge density and static
potential of molecules. For closed molecules like CH4, a single center expansion (SCE) is used, where
the charge density of lighter atom is expanded from the center of mass of the heavier atom [191,192].
However, for larger non-spherical molecules, this is not possible. Antony and co-workers [50,193,194]
have extensively used group additive rule to efficiently compute molecular charge density (and
static potential). In this method the molecule is assumed to be made of different centers/groups
having a group of atoms, each of them scattering positron independently. The grouping of atoms are
performed based on the assumption that the charge density of one group do not overlap with the
other. Even though such an approximation is a simplification of the actual scenario, it is sufficient to
produce reasonable results in the present case (intermediate to high energy projectiles) without the
loss of generality. Thus, for each scattering center the ρ and Vst are developed and the desired cross
section is computed for that center. Finally, cross sections calculated from each scattering center is
added to get the molecular cross section. The total ionization cross section Qion is obtained from the
Qinel using complex scattering potential-ionization contribution (CSP-ic) technique [195,196]. Further
details on the method is presented in the references.

In 1996 Reid and Wadehra [197] introduced an absorption model for positron collisions. The form
of this potential is given as,

Vabs = −1
2

ρ(r)vlocσpe, σpe = 4π

(
a0R
εEF

)2

⎧⎪⎨
⎪⎩

f (1); ε2 − δ ≥ 1

f
(√

ε2 − δ
)

; 1 ≥ ε2 − δ ≥ 0

f (0); 0 ≥ ε2 − δ

(34)

In the above equation, a0 is the Bohr radius and R is the Rydberg constant, δ = Δ
EF

, ε =
√

Ei
EF

,

f (x) = 2
δ x3 + 6x + 3ε ln ε−x

ε+x and EF is the Fermi energy. Δ defines a threshold below which all
inelastic processes such as excitation and ionization are energetically forbidden. Determination of
Δ is important while dealing with positrons. Reid and Wadehra [197] in their original model used
Δ = Δp = I − 6.8 eV (where Δp is the Ps formation threshold energy). However, this cannot be used as
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a general rule, since excitations may occur below this energy. The parameter free model developed to
find Δ is given as [198],

Δ = Δe −
(
Δe − Δp

)
1 +
(

Ei
5I − 1

3

)3 , (35)

where Ei is the incident energy and Δe is the lowest electronic excitation energy.

4.2. ab initio R-Matrix Method

The R-matrix method was developed to study scattering problems in nuclear physics by Wigner
and others [199,200] in the late 1940s. Burke et al. [201] modified it to include electron-atom scattering
processes and subsequently adapted to carry out accurate calculations for diatomic molecules [202].
This ab initio theory is primarily based on the concept of constructing two divisions in coordinate space
(inner and outer regions) to adequately and efficiently represent the target and scattering regions. These
regions are separated by a spherical boundary of radius ‘a’ containing the target molecule with N + 1
indistinguishable electrons (where +1 is due to the scattering electron). This N + 1 collision system acts
as a bound state, where the short-range correlation effect and electron exchange among the electrons
are dominant. This makes the inner region scattering problem quite complex. However, calculation
is needed to be done only once as the problem is independent of energy. For an accurate solution of
the inner region, Quantum chemistry codes are employed generating an energy independent wave
function for the N + 1 electrons system. The results obtained in the inner region are fed to the outer
region, which contains only the scattering electron. In the outer region, the scattering electron is far
away from the center and thus exchange and correlation between electrons can be ignored. Therefore,
only the long range multipolar interaction between the scattering electron and the target electron is
considered here. For the simplicity of the numerical problem, single center approximation is employed,
which converges quite rapidly without losing the generality of the problem. Since the calculations in
the outer region are relatively simple, they are repeated for each electron energy on a finite grid to
find desired scattering properties such as cross sections. In general, the inner region radius is varied
from around 10 to 15 a.u. depending on the size of the target, while the outer region is kept infinite
(100 a.u.). The value of R-matrix radius is chosen to accommodate total wave within the sphere.

The molecular orbitals are developed from atomic ones, which are expressed as basis functions
centered on respective nuclei. The orbitals are a representation of the molecular charge density
distribution, which must be negligibly small at the R-matrix boundary. The electrons are assumed
to be in certain combinations of target orbitals to produce configuration state functions (CSF) in
various total symmetries. A configuration interaction (CI) molecular wave function is expressed as
a linear combination of CSFs in CI expansion. The molecular orbital representation in occupied and
virtual orbitals are constructed using Hartree-Fock Self-Consistent Field (HF-SCF) method. For this,
Gaussian-type orbitals (GTO) are used and the continuum orbitals of Faure et al. [203] are included up
to g (l = 4). For dipole-forbidden excitations, ΔJ 
= 1, J is rotational constant without spin coupling,
the convergence is rapid for partial waves. However, for dipole-allowed excitations, ΔJ = ±1,
convergence is quite slow due to the long range dipole interactions.

The closed coupling expansion (CC) of inner region wave function under fixed nuclei
approximation is expressed,

Ψk = A ∑
ij

Φi(x1, ...., xN)uij(xN+1)aijk + ∑
i

χi(x1, ...., xN+1)bik, (36)

where ‘A’ is the anti-symmetrization operator. uij(x) are target continuum orbitals and Φi(x) are target
wave functions (together called ’target+continuum’ configuration). Φi are constructed from basic HF
method and CI expansion is used for the other. The χi are two-center quadratically integrable (L2)
functions. These are formulated with target occupied and virtual orbitals. Care has to be taken in
choosing the correct basis function as final results are strongly depended on it. Since the continuum
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orbitals do not vanish at the R-matrix boundary (r = a), the Hamiltonian is modified by adding a
surface or Bloch operator [204] to make it Hermitian inside the R-matrix sphere. The form of Bloch
operator is,

LN+1 =
1
2

N+1

∑
i=1

∑
j

[
ψN

j Yljmj
(r̂i)δ(ri − a)

(
dr
dri

− b − 1
ri

)]
ψN

j Yljmj
(r̂i). (37)

Then by diagonalizing the modified Hamiltonian (HN+1 + LN+1) the inner region electron wave
function is obtained. The inner region solutions are used to set up the R-matrix at the boundary
of the sphere. Then it is propagated to far region (aout), where it is matched with the asymptotic
functions obtained from the Gailitis expansion [205]. The numerical value of aout depends on the
nature of the target. The quality of any scattering model depends on a satisfactory representation of
the target. Therefore getting the right values of target parameters viz. ground state energy, vertical
excitation energies, ground state dipole moment and rotational constant is a necessary precursor to
scattering calculations.

The exchange and correlation effects are negligible in the outer region and the physical interactions
dominate the scattering processes. The scattering electron moves under the influence of long range
multipole potentials of the target. Hence, a single center expansion of the scattering wave function
sufficient here. This is given by,

ψ = ∑
i

φ̄i(xi..., σN+1)r−1
N+1Fi(r̂N+1)Yljmj

(r̂N+1), (38)

where xj = (r̂j, σj) is the position and spin of the jth target electron, the functions φ̄i are formed by
coupling the scattering electron spin σN+1 with the target state φi and Fi are reduced radial wave
functions. By appropriate substitutions, a set of coupled, homogeneous, differential equations for the
reduced radial wave function are obtained. The solution of this equation is obtained by propagating
the R-matrix from boundary to sufficiently large distances, where the interaction between scattering
electron and target molecule tends to zero [206]. Thereafter, asymptotic expansion techniques are used
to solve for the outer region functions [207]. In the limit r → ∞ above equation have different linearly
independent standing wave asymptotic solution j for each energetically open channels i given as,

Fij
∼= 1√

ki

[
sin
(

kir − 1
2

liπ
)

δij + cos
(

kir − 1
2

liπ
)]

Kij. (39)

The coefficients Kij define the real, symmetric K-matrix, which contains all the scattering
information. The eigenphase sum δ is used for the detection and parametrization of resonances,
obtained directly from the diagonalized K-matrix, KD

ij as δ = ∑i arctan
(

KD
ij

)
, where the summation

is over the open channels. The scattering matrix S is a transformation of the K-matrix given by,
S = (1 + iK)(1 + ik)−1.

The integral cross section for the excitation from states i to i′ [208] is given as,

σ
(
i → i′

)
=

π

k2
i

∑
S

2S + 1
2(2S + 1) ∑

Γll′
|ΓΓS

ili′ l′ |2, (40)

where Si is the spin angular momentum of the ith target state, S is the total spin angular momentum,
Γ runs over the symmetry and l and l′ are orbital angular momentum quantum numbers corresponding
to i to i′ states respectively. K-matrices form the input of POLYDCS program [209], from which the
scattering observables are evaluated. For further details on R-matrix methodology to study positron
collisions, please refer to References [115,118] and references therein.
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5. Results and Discussions

Positron and electron scattering from neutral atoms/molecules and one or two electron ions have
been investigated extensively as seen in the partial list of references in this article. For consistent
features and feasible experimental set-ups, the targets have been mainly hydrogen atom, inert gases,
He+ and Li+,2+ ions, symmetric closed shell molecules, and few other simple molecules. Theoretical
methods have been developed with significant accuracy for benchmarking the experiments. However,
issues remain unresolved for better representation of the interaction and the wave function for sensitive
cases. Examples of various features of the scattering cross sections and spin polarization for e± from
atoms and molecules are illustrated below.

5.1. Cross Sections and Spin Polarization for e± Scattering from Atoms

Since the theoretical basis for e± scattering from atoms is similar, reproduction of electron
scattering cross sections gives a measure of accuracy of the method to study positron scattering [210,211].
However, its worth noting that the presence of Ps formation channel strongly affects the shape of
the cross section in the energy range from its threshold to around 200 eV. Figure 2 left panel gives
an example of accuracy in the features of differential cross sections (DCS) for scattering of electrons
from argon, where measured DCS from 7 different experiments [18–20,22–24,212] are compared
with theoretical predictions in nonrelativistic [1] and relativistic [9] approximations. Nahar and
Wadehra obtained the static potential using analytic orbitals obtained by Clementi and Roetti [183]
and absorption potential from Staszewska et al. [189]. Very good agreement in features, shape and
magnitude benchmarks the theory. It may be noted that use of absorption potential has little effect on
the DCS values as expected for elastic scattering and that relativistic corrections have removed some
discrepancy at the minimum for DCS at 300 eV.

The potentials used for the cross sections, were used to study the angular dependence of spin
polarization of the elastically scattered electrons from argon as demonstrated on the right panel of
Figure 2 [9] at several electron impact energies. The spin-orbit polarization is highly sensitive to
interaction potential. We see very good agreement between theory and experiment at 40 eV projectile
energy. However, comparison between the theoretical and experiment values show only similar
qualitative features at 50 and 100 eV. Spin polarization can be a sensitive accuracy indicator for the
benchmark of both theory and experiment.

Figure 3 [9] presents the integrated relativistic cross section, where the left panel shows the elastic
and the right panel shows total scattering cross section for electrons from argon. The trend shows cross
section rising from very low energy to form a peak around 15 eV and then decaying. The predicted
cross sections from relativistic Dirac equation [9] and from non-relativistic Schrödinger equation [1],
both using the optical potential, compare very well with the measured values in the low energy region
for both elastic and total scattering. The predicted integrated elastic scattering cross sections using VR
do not show any difference between relativistic and non-relativistic approach. They fall almost on the
same curve (solid and dot-dashed) and agree well with the measured values from 6 sets of data from
different sources—open triangle [22], cross [20], diamond [23], plus [24], open circle [34], asterisk [35].
Cross sections with inclusion of absorption potential [189] (dotted curve) improves the agreement
slightly. However, cross sections with inclusion of an older form absorption potential [188] (dashed
curve) show better agreement with couple of experiments, for example, open squares [18]. The earlier
version of the absorption potential [188] seems to produce total cross sections closer to the experiments
than those by version 3 where the measured values are from [25] (open square), [37] (open circle), [38]
(cross), [36] (asterisk), [39] (open triangle).
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Figure 2. Left: Differential cross sections (DCS) for elastic scattering of electrons from Ar at 20, 100,
and 300 eV illustrating features from interference effects and comparing theoretical predictions from
optical potential approach with experimental measurements. Theory: solid curve represents use of
only real part of the the potential and dot that including both real and absorption potentials [9], dash
represents nonrelativistic approach with only real potential [1]). Experimental data corresponds to
7 different measurements: at 20 eV, filled circle [22], open circle [18], at 100 eV, open circle [18], solid
circle [20], at 300 eV, filled circle [23], open circle [24], asterisks [19]. Right: Angular dependence
of spin polarization P for elastic scattering of electrons from Ar at various electron impact energies.
Theoretical prediction from optical potential approach [9] is compared with measured values from
3 set-ups—open circles at 40 eV [40], solid circles at 40 and 50 eV [41], cross at 40 eV [42].

Figure 3. Integrated cross sections for elastic scattering (left panel) and total scattering (right panel) of
electrons from Ar at various energies. A rising broad peak in cross section in the low energy below
30 eV is visible [9]. Comparison show good agreement as explained in the text.
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Number of measurements for elastic and total scattering of positrons from atoms are relatively
lower than that of electrons. Differential cross sections for positron scattering from argon was first
studied experimentally by Hyder et al. [27]. The theoretical study for DCS by Nahar and Wadehra [9]
using the the optical potential approach described in the theory section was compared (Figure 4)
with this single measurement available at that time of reporting. To compare the impact of various
absorption potentials, the same set of experimental values was normalized at 90◦ with different symbols
to differentiate the type of curves produced by different absorption potentials. The comparison shows
that the relative features of the measured DCS values agree very well with the predicted values when
only the real potential (solid curve) or the complex potential that included version 3 of absorption
potential given by Staszewska et al. [189] (dotted curve) were used. It may be noted that in contrast to
electron scattering, positron scattering shows less interference structures and decays smoothly with
impact energy. Use of other absorption potentials introduce dips and humps in the DCS curves not
seen in the experiment.

Figure 4. Differential cross sections (DCS) for elastic scattering of positrons from Ar at 100 eV illustrating
features and comparison between theory [9] and experiment [27]. The experimental values have been
normalized at 90◦ with different symbols to differentiate curves to compare the differences in DCS
values with different absorption potentials.

Figure 5 left panel presents total integrated cross sections for positrons scattering from Ar atoms
where theoretical cross sections are compared with measured values from 4 experiments. Although
the measured relative values of DCS agreed well with predicted features obtained using the version
3 absorption potential of Reference [189], measured integrated cross sections are seen to be higher
than the predicted values (dotted curve). Use of their earlier version of the absorption potential
[188] yielded cross sections (solid curve) that show better agreement in the lower energy, but remains
higher overall at higher energies. These indicate that absorption potentials for positron scattering
have partial success in representing the positron-atom interaction. The right panel presents a later
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study of Jones et al. [26] who carried out both the experiment and calculated the total cross sections
for positrons scattering from argon and neon. They claim significant improvement in agreement
between the two. They measured the grant total cross sections (σGT) which includes excitations and
formation of positronium from zero to 60 eV in contrast to earlier existing experiments, where the
energy goes up to 300 eV. They do not show the broad rising peak at low energy as seen Figure 5.
Their numbers for the cross sections appear to be different from those in the left panel. The reason for
this difference is not clear. For the theoretical predictions, they consider two approaches (i) relativistic
optical potential (ROP) method, which reduces to their relativistic polarized orbital method below the
first excitation threshold and (ii) convergent close coupling (CCC) method. Their ab initio absorption
potential correspond to inelastic scattering due to excitations and positronium formation channels.
There is an overall improvement of their approaches in agreeing with the measured values. It is
difficult to determine which approach worked better, since their CCC shows better agreement at lower
energies with their own experiment, while ROP is better with other measurements.

Figure 5. Left: Comparison of total integrated cross sections for scattering of positrons from Ar at
various energies between the theory using optical potential [9] and 4 experiments—open squares [21],
open circles [25], asterisks [28], and cross [29]. The solid curve corresponds to use of absorption
potential of Reference [188] and dotted curve to version 3 potential of Reference [189]. Although sold
curve shows agreement in the low energy cross sections the rest of the measured integrated cross
sections remain in-between the two predictions. Right: Total integrated cross sections for scattering
of positrons from Ar at various energies by Jones et al. [26]: (a) Measured grand total cross section
(σGT) (filled circles) below the ionization threshold for positronium formation (EPs are compared
with various theoretical approximations, (b) Measured σGT is compared with other experiments,
(c) Measured σGT above (EPs are compared with other measured values and theories, (d) Measured
cross section σGT−Ps where cross section for positronium has been subtracted above (EPs are compared
with their ROP prediction.)

In contrast to Ar, optical potential approach has shown better agreement with experiments in
reproducing the integrated elastic scattering cross sections for Mg (e.g., Reference [10]) and total
scattering cross sections for Na atoms (e.g., Reference [12]) by positrons. The left panel of Figure 6
shows integrated cross sections for elastic scattering of positrons from magnesium by Hossain et
al. [10] (solid curve) using an optical potential similar to that used for Ar by Nahar and Wadehra [9]
and obtained very good agreement with the measured values of Stein et al. [32,33]). The right panel in
the figure presents total cross sections for positron scattering from Na atom [12] where optical potential
approach [12] was found to be higher in magnitude than other results, but with similar shape and
within the experimental errors of Kaupilla et al. [30] and Kwan et al. [31]. The cross-sections of Reid
and Wadehra [13], Hewitt et al. [14] and Lugovskoy et al. [15] falls below the SCOP data. However,
the data of Cheng et al. [16] show a different nature, even though falls very close to other values.
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Figure 6. Left: Comparison of predicted total integrated cross sections for scattering of positrons from
magnesium obtained by Hossain et al. [10] using optical potential similar to the present work show
good agreement with experimental values. Right: Total cross section for e+-Na interaction [12].

5.2. e± Scattering from Molecules

We present some illustrative examples of electron and positron scatterings from molecules.
Figure 7 presents positron impact total cross section from HCl molecule. The result obtained employing
the SCOP method is compared with the theoretical values of Sun et al. [213] and measurements of
Hamada et al. [214]. The theories agrees reasonably well in the high energy range. However, below
40 eV the data of Sun et al. [213] underestimate SCOP. This is probably because they performed the
calculation using additivity rule to compute the total cross sections for the molecule. Further, they have
taken Δp as the inelastic threshold, which results in larger magnitude of cross sections at low energies.
On the other hand, SCOP values show excellent agreement the measurements of Hamada et al. [214],
both in shape and magnitude. Their values are corrected for forward angle scattering, which strengthen
our case in terms of reliability of data obtained using SCOP method.

Figure 8 shows Qtot for electron/positron scattering by C4H4N2 molecule. For both cases SCOP
method is in very good agreement with the theoretical values reported by other groups [93,94,215,216].
However, for positron scattering data of Sanz et al. [93] falls faster that other cross sections. The
measurements [217–219] also show reasonable agreements with theories, except with Reference [220]
for electron scattering and Reference [94] for positron scattering. Both these measurements
underestimates other values significantly [221].

Figure 9 shows the comparison of electron/positron scattering total and ionization cross sections
respectively for propene. In Figure 10 the ratios of cross section is plotted to clearly show the variation
in cross section. As expected, the total cross section for electrons is larger than positrons in the
intermediate energies. This is very clear in the ratio in Figure 10. However, for the ionization curve,
the trend is reversed at intermediate energies. At high energies, typically around 1 keV, both curves
tends to converge. This is because at such energies the scattering potential is weak compared to the
kinetic energy of the projectile and the scattered wave is approximated as plane wave, in accordance
with the first Born approximation.
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Figure 7. Total cross section for e+-HCl molecule interaction [50].

Figure 8. Left: Total cross section for e−-pyrimidine molecule interaction [222]. Right: Total cross
section for e+-pyrimidine molecule interaction [222].

Figure 9 shows the comparison of electron/positron scattering total and ionization cross sections
respectively for propene. In Figure 10 the ratios of cross section is plotted to clearly show the variation
in cross section. As expected, the total cross section for electrons is larger than positrons in the
intermediate energies. This is very clear in the ratio in Figure 10. However, for the ionization curve,
the trend is reversed at intermediate energies. At high energies, typically around 1 keV, both curves
tends to converge. This is because at such energies the scattering potential is weak compared to the
kinetic energy of the projectile and the scattered wave is approximated as plane wave, in accordance
with the first Born approximation.
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Figure 9. Left: Total cross section for e−/e+-propene interaction [223]. Right: Total ionization cross
section for e−/e+-propene interaction [223].
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Positron impact total cross sections are computed for many atomic and molecular targets by
Antony and his group using SCOP formalism. The list of the targets studied, with references to articles
published, are presented in the Table 2.

36



Atoms 2020, 8, 29

Table 2. Positron scattering cross section predicted through optical potential method with references
(Qtot: Total CS, Qps: positronium formation CS, Qel : elastic CS, Qion: direct ionization CS, Qmtcs:
momentum transfer CS, Qinel : ine;elastic CS, Qtion: total ionization CS, Qdi f f : differential CS).

Target Cross Sections Reference

Inert gases Qtot, Qion, Qps, Qtion [11]
C, N, O Qtot, Qion, Qps, Qtion [71,198]
Be, Mg, Ca, Sr, Ba, Ra Qtot, Qps, Qel , Qion, Qmtcs, Qinel , Qtion [224]
Li, Na, K, Rb, Cs, Fr Qtot [12]
C2, N2, O2 Qtot, Qion, Qps, Qtion [71,198]
CH4, CO, CO2, H2, N2, NO Qtot, Qion, Qps, Qtion [196,225]
H2O, NH3, HCl, OCS, SO2 Qel , Qtot [50]
SiH4, GeH4, SnH4, PbH4 Qion, Qps, Qtion [226]
CH3F, CH3Cl, CH3Br, CH3I Qtot, Qion, Qps, Qtion [227]
C2, C2, C2H2, C3H8, C3H4 Qtot, Qel , Qion, Qps, Qtion [228]
C3H6 Qtot, Qion [223]
n-pentane, iso-pentane, neo-pentane Qel , Qinel , Qdi f f , Qtot [229,230]
C4H4N2 Qel , Qtot [222]

6. Conclusions

We present a review of the elastic and inelastic scattering of electrons and positrons from atoms
and molecules. The present conclusion can be given by the following points:

• Current theoretical methods for electron scattering from inert atoms are well established. However,
their predictions for spin polarization may provide a measure of their effective representation.

• Current theoretical method for elastic scattering of positrons from inert gases, single and double
electrons systems and molecules have also been developed well, but further studies are needed.

• There is a critical need for improved absorption potential for positron scattering from atoms
and molecules.

• Further study is needed to expand the scope for scattering from ions that are abundant in
astrophysical plasmas.
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Abstract: When an incident particle on a target gets attached to the target, the cross-section at that
energy could be much larger compared to those at other energies. This is a short-lived state and decays
by emitting an electron. Such states can also be formed by the absorption of a photon. Such states are
below the higher thresholds and are called autoionization states, doubly excited states, or Feshbach
resonances. There is also a possibility of such states to form above the thresholds. Then they are called
shape resonances. Resonances are important in the diagnostic of solar and astrophysical plasmas.
Some methods of calculating the resonance parameters are described and resonance parameters
occurring in various systems are given.

Keywords: autoionization states; doubly excited states; Feshbach states; resonances; shape resonances

1. Introduction

In measuring scattering cross-sections, a peak or dip implies that the incident particle has formed
a compound state which decays after a while. Such a state is called an autoionization state, a doubly
excited state, or a resonance state, and has a very short lifetime compared to real bound states. Such
states can also be formed by absorption of radiation in the target. Resonances are ubiquitous in
electron-atom and electron-ion interactions. They play an important role in solar and astrophysical
plasmas to infer temperatures and densities of plasmas [1]. However, they are not that common in the
case of positron-target systems.

In a simple system like a positron-hydrogen, the positron and electron tend to be on the same
side of the nucleus because of the attraction between the two particles, unlike in the case of the
electron-hydrogen system where the two electrons tend to be on the opposite sides of the nucleus
because of the repulsion between the two electrons. This shows that the correlations become very
important in a positron-hydrogen system. This makes calculations of resonances difficult because
many terms are required to calculate resonance parameters. Moreover, there is a positronium channel
open below all the thresholds and this adds further complications.

2. Methods of Calculations

There are methods like the stabilization method, complex rotation method, Feshbach operator
formalism [2], close-coupling method, and R-matrix method to calculate the resonance parameters.
In approach [2], projection operators P and Q are defined such that P projects on a state and Q = 1
− P removes that state, P2 = P, Q2 = Q (idempotent), and PQ = 0 (orthogonality). We form a wave
function QΨ which is such that the lower states have been removed [3]. Therefore, using Raleigh–Ritz
variational principle, we obtain eigenvalues:

εQ =
< QΨ|H|QΨ >
< QΨ|QΨ >

(1)
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These eigenvalues give us the positions of resonances. We obtain these bound states which are
embedded in the continuum and are below the higher thresholds. They correspond to resonance
states within the continuum which must be calculated separately and the width for each state
must be calculated. In the narrow region of the width, the scattering phase shift increases by π

radians. Calculation of the shift and width requires continuum functions (cf. Equation (2.13a)) in [3].
Various approximations like the exchange approximation, method of polarized orbitals, close-coupling
approximation have been used to calculate continuum functions. However, it is difficult to write
projection operators P and Q when the positronium channel is open. We need to use a method which
does not depend on projection operator formalism [2].

The complex rotation method, based on a theorem by Belslev and Combes [4], has been applied
extensively to calculate resonance parameters with great accuracy. The advantage of this formulation
is that only discrete functions are included in the wave function and the continuum function is not
necessary. In this method, the radial part is rotated by an angle θ. The Hamiltonian is transformed
in the same way. The angle is varied until the eigenvalues do not change. Widths of the states are
also obtained in the same calculation. Since there are also eigenvalues in the continuum, the shift
mentioned above is included in the resonance positions obtained in this method. This is discussed
further in Section 3.

This method gives the resonance positions which include the shift due to the interaction of discrete
states with the continuum and need not be calculated separately. The eigenvalues obtained in this
method are complex, where the complex part gives the width of the state.

In the positron-hydrogen system, Mittleman [5] showed that the equation for the positron-hydrogen
system has an attractive potential proportional to 1/r2 due to the degeneracy of the 2s and 2p states of
the hydrogen atom and therefore, there should be an infinite number of resonances in this case as in
the electron-hydrogen system. Mittleman [5] conclusively showed the existence of resonances without
carrying out detailed calculations. The resonances in electron-hydrogen system have been observed
but not in the positron-hydrogen system, at least up to now.

3. Calculations and Results

The first successful calculation for the S-wave resonance was carried out by Doolen, Nuttal, and
Wherry [6] using a sparse-matrix technique in the complex-rotation method. In this method, the radial
coordinates are transformed by an angle θ:

r→ reiθ (2)

The Hamiltonian H = T + V is transformed to:

H = Te−2iθ + Ve−iθ (3)

They used a wave function of the form:

Φ(r1, r2, r12) = exp(−α(r1 + r2)L0
l (u)L

0
m(v)L0

n(w) (4)

In the above equation, α is the nonlinear parameter, L0
l is a Laguerre polynomial and:

u = α(r2 + r12 − r1), v = α(r1 + r12 − r2), and w = 2α(r1 + r2 − r12) (5)

They found only one resonance whose complex energy is given by:

E(complex) = Re(E) + Im(E) = Re(E) − iΓ/2 (6)

Re(E) represents the position of the resonance and the imaginary part represents the half width of
the resonance. In this method, Im(E) is plotted vs. Re(E) and we look for the stationary paths as the
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angle θ is increased for a fixed value of the nonlinear parameter α. Their results as a function of the
number of terms are given in Table 1.

Table 1. Position and width of the resonance below n = 2 threshold of the hydrogen atom.

Number of Terms Position Γ/2

286 −0.2573744 0.0000676
364 −0.2573733 0.0000674
455 −0.2573745 0.0000671
560 −0.2573740 0.0000677
680 −0.2573741 0.0000677

This table shows that the resonance is at E = −0.2573741 Ry with a width of 0.0001354 Ry. It is
clear from the table that a wave function with very large number of terms is needed to calculate the
resonance parameters which is not so in the case of the electron-hydrogen. Prior to this, attempts by
various authors failed to infer the existence of this resonance due to using a very small number of
terms in their wave functions. This calculation provided incentive to look for resonances below the
higher thresholds as well. Varga, Mitroy, Mezie, and Kruppa [7] carried out calculations below the
n = 2, 3, and 4 thresholds. Their results are shown in Table 2. There are two resonances below n = 2
threshold, three below n = 3 threshold, and three below n = 4 threshold.

Table 2. Positron-hydrogen resonances [7] below higher thresholds. Units are Ry.

Threshold n Position Width

2 −0.257244 0.000132
−0.250262 0.0000096

3 −0.116094 0.001284
−0.112006 0.0003132

4 −0.076958 0.0000788
−0.067714 0.0000528
−0.064380 0.00003376

It is possible to find positions of higher resonances, using the relation between two resonances
given by Temkin and Walker [8]:

εn+1 = e−2π/αεn, (7)

α = (
√

37− 5/4)
0.5

(8)

This was deduced for electron-hydrogen resonances but does give reasonable values of higher
resonances in positron-hydrogen system as well.

The potential between a positron and He+ is repulsive. Therefore, an existence of resonances in
this system seems unlikely. Using the stabilization method, Bhatia and Drachman [9] showed the
existence of several resonances. This was confirmed by Ho [10] who carried out a definitive calculation
using the complex rotation method described above and showed the correctness of their results [9].
Hylleraas type functions have been used in most calculations. The resonance parameters obtained by
him are shown in Table 3.
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Table 3. Positions and widths of S- and P-resonances in e+-He+ system below the n = 2 threshold [10],
Units Are Ry.

State Position Width

S-wave −0.74099 0.25886
−0.3712 0.0786

P-wave −0.70869 0.35504
−0.36956 0.08634

Kar and Ho [11] carried out similar calculations for e+-He system and their results agree with
those obtained by Ren, Han, and Shi [12], who used hyperspherical coordinates. Their results are
shown in Table 4. The resonances are very narrow compared to those in e+-He+ system.

Table 4. Resonance parameters in the e+-He system. Units Are Ry.

Resonance Ren, Han, and Shi [12] Kar and Ho [11]

Position Width Position Width

1 −4.15308 0.00046 −4.15306 0.00052
2 −4.13262 0.00030 −4.1326 0.00034
4 −4.12556 0.00004

4. Resonances in Ps

The Ps− system is obtained when the proton in H− is replaced by a positron. Now the nucleus
has the same mass as an electron. Therefore, the mass polarization term in the Hamiltonian becomes
important. The binding energy of Ps− is very close to half of the binding energy of H−. The Hamiltonian
is given by:

H = −2∇2
1 − 2∇2

2 − 2∇1 · ∇2 − 2/r1 − 2/r2 + 2/r12 (9)

H = T + V (10)

where r1, r2, are the coordinates of electrons with respect to the positron and r12 =
∣∣∣∣→r 1 −→r 12

∣∣∣∣.
Resonances, in singlet and triplet states in Ps−, have been calculated by Ho [13] using 364 terms in

the singlet states and 455 terms in the triplet states. His results, obtained using the complex rotation
method, are shown in Table 5.

Table 5. Singlet and triplet S-wave resonances in Ps−. Positions are with respect to the ground state of
the positronium. Units Are Ev.

n Position Width Position Width

Singlet states Triplet states
2 4.7340 1.17(−3) 5.0742 1.36(−4)

5.0709 2.74(−4)
3 7.7646 2.04(−3) 6.0038 2.72(−4)

5.9908 1.50(−3)
4 6.2526 3.27(−3) 6.3383 2.72(−4)

6.3267 4.08(−3)
6.3317 4.63(−3)

5 6.4519 6.12(−3)
6.4723 1.91(−3)

There are several doubly-excited or Feshbach-type triplet P even parity resonances below n = 2,
3, 4, 5, and 6 thresholds. These have been calculated by Ho and Bhatia [14]. They are given below
each threshold in Table 6. The third resonance below n = 4 threshold is a shape resonance because it is
above the n threshold.
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Table 6. Doubly-excited 3Pe resonances in Ps−.

n Position (Ry) Width (Ry)

2 −0.12440 a 0.00054
3 −0.063261 3.58(−4)

−0.0562095 5.78(−5)
4 −0.037789236 3.01(−5)

−0.0033087 1.8(−6)
0−0.030972 a 6.4(−5)

5 −0.02493166 5.09(−5)
−0.0220972 5.24(−5)
−0.021660 2.64(−5)

6 −0.017596 1.06(−4)
−0.015894 1.6(−4)
−0.015811 1.14(−4)
−0.013761 4.0(−5)

a Shape resonance, above the threshold.

There are also odd parity triplet and singlet states which have been calculated by Bhatia and
Ho [14–16]. Their results are shown in Tables 7 and 8. The lowest odd parity state in Ps− has been
observed by Michishio et al. [17] using laser beams of 2285 and 2297 angstroms and their results for the
position and width agree with those given in Table 8.

Table 7. Odd parity triplet P-shape resonances of Ps−.

n State Position (Ry) Width (Ry)

3 3P −0.05450 9.20(−4)
5 3P −0.01971 6.60(−5)
7 3P −0.01008 4.00(−5)

Table 8. Odd parity singlet P-shape resonances of Ps−.

n Position (Ry) Width (Ry)

2 −0.12434 9.00(−4)
4 −0.030975 6.00(−5)
6 −0.01375 5.20(−5)

Similar calculations have been carried out by Bhatia and Ho [18] for odd parity singlet and triplet
D states of Ps−. Their results are given in Table 9.

Table 9. Triplet and singlet D states of Ps−. Positions are with respect to the ground state of Ps = –0.5 Ry.

N E(Ry) Width (Ry) E(Ry) Width (Ry)

Triplet States Singlet states
3 −0.05589808 3.12(−6) −0.060088253 1.43(−4)
4 −0.034501270 3.61(−4) −0.032722544 2.60(−5)

−0.03269579 3.10(−5) −0.037098862 4.78(−5)
−0.032722544 2.60(−4)
−0.0302010 a 8.54(−4)

5 −0.023408248 1.75(−4) −0.2467214 4.60(−5)
−0.01977681 a 8.14(−5) −0.2191458 4.47(−5)

−0.02135816 2.30(−4)
a Shape resonance.
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5. Resonances in PsH

As it is, it appears that the system having two neutral atoms, cannot have bound states. However,
if it is viewed as a system consisting of a positron and H−, then the positron is in the field of the
Coulomb field of the hydrogen ion. There should be infinite number of bound states and resonances.
Drachman and Houston [19] and Ho [20] have calculated the parameters of the S-wave resonance
given below in Rydberg units:

ER = −1.1726± 0.0007 Γ = (4.6± 1.1) × 10−6 (11)

by Drachman and Houston [19], and:

ER = −1.205± 0.001Γ = (5.5± 2.0) × 10−3 (12)

by Ho [20].
Similarly, there are P-wave and D-wave resonances.
A hybrid theory [21] has been developed, which considers the long-range and short-range

correlations at the same time. The theory is variationally correct. In the scattering calculations,
calculated phase shifts have lower bounds to the exact phase shifts. This method has been applied to
calculate resonance parameters in He and Li+. Phase shifts are calculated in the resonance region [22]
and then fitted to the Breit–Wigner formula (cf. Equation (17) in [22]) to infer resonance parameters (cf.
Equation (17) of [22]). The results obtained agree with those obtained using the Feshbach formalism [3].
The hybrid theory can also be applied to calculate resonance parameters in positron-target systems.
Such calculations have not yet been carried out.

The books mentioned in references [1,23] have several chapters describing various methods
employed to calculate resonance parameters. The author has two chapters in the book mentioned in
ref. [1] (written with Aaron Temkin) on methods of calculating resonance parameters, also in [3].

6. Conclusions

Resonances in electron-target systems can be calculated easily. However, in the case of
positron-target systems, calculations are not easy because of the positronium channel which is
present below every threshold. As indicated above, correlations are very important. Therefore, wave
functions having many terms are required. There are other systems with positrons where resonance
parameters have been calculated. Here, we have discussed a few such systems and have described
some of the methods of calculations. A theory called hybrid theory which includes the long-range and
short-range correlations and is variationally correct has given resonance parameters for He and Li+,
which agree with those obtained in earlier calculations. This is achieved by calculating phase shifts in
the resonance region and fitting them to the Breit–Wigner expression to infer resonance parameters.
This approach could be applied to positron-target systems. There could be results in the future, using
this approach.
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Abstract: Positrons play a major role in the emission of solar gamma-rays at energies from a few
hundred keV to>1 GeV. Although the processes leading to positron production in the solar atmosphere
are well known, the origin of the underlying energetic particles that interact with the ambient particles
is poorly understood. With the aim of understanding the full gamma-ray spectrum of the Sun, I review
the key emission mechanisms that contribute to the observed gamma-ray spectrum, focusing on the
ones involving positrons. In particular, I review the processes involved in the 0.511 MeV positron
annihilation line and the positronium continuum emissions at low energies, and the pion continuum
emission at high energies in solar eruptions. It is thought that particles accelerated at the flare
reconnection and at the shock driven by coronal mass ejections are responsible for the observed
gamma-ray features. Based on some recent developments I suggest that energetic particles from both
mechanisms may contribute to the observed gamma-ray spectrum in the impulsive phase, while the
shock mechanism is responsible for the extended phase.

Keywords: solar flares; coronal mass ejections; shocks; positrons; positronium; positron annihilation;
pion decay

1. Introduction

Positrons, the antiparticle of electrons, were proposed theoretically by Dirac and were first
detected by Anderson in 1933 [1]. Positrons are extensively used in the laboratory for a myriad of
purposes (see review by Mills [2]). Astrophysical processes involving positrons have been found in the
interstellar medium [3], and galactic bulge and disk [4]. Positrons are commonly found in the Sun [5].
The proton–proton chain, which accounts for most of the energy release inside the Sun involves the
emission of a positron when two protons collide to form a deuterium nucleus. There are plenty of
electrons present in the solar core, so the positrons are immediately annihilated with electrons and
produce two gamma-ray photons. In one proton–proton chain, two positrons are emitted and hence
contribute a total of four photons in addition to the two photons emitted during the formation of
a helium-3 (3He) nucleus from the fusion of deuterium nucleus with a proton.

High-energy particles exist in the solar atmosphere, energized during solar eruptions.
Solar eruptions involve flares and coronal mass ejections (CMEs). A process known as magnetic
reconnection taking place in the solar corona is thought to be the process which converts energy stored
in the stressed solar magnetic fields into solar eruptions (see Figure 1 for a schematic of a typical
eruption). One part of the released energy heats the plasma in the eruption region, while another goes
to energize electrons and ions. Electromagnetic radiation from radio waves to gamma-rays produced
by the energized electrons and protons by various processes is known as a flare. Acceleration in the
reconnection region is referred to as flare acceleration or stochastic acceleration. CMEs also carry
the released energy as the kinetic energy of the expelled magnetized plasma with a mass as high
as 1016 g and speeds exceeding 3000 km/s. Such fast CMEs drive fast-mode magnetohydrodynamic
shocks that can also energize ambient electrons and ions to very high energies. Diffusive shock
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acceleration and shock drift acceleration are the mechanisms by which particles are energized at the
shock (see [7] for a review on acceleration mechanisms during solar eruptions). The flare and shock
accelerations were referred to as first- and second-phase accelerations during an eruption by Wild
et al. [8]. Accelerated particles have access to open and closed magnetic structures associated with
the eruption resulting in a number of electromagnetic emissions via different emission mechanisms.
Energetic particles escaping along interplanetary magnetic field lines are detected as solar energetic
particle (SEP) events by particle detectors in space and on ground. These particles, originally known as
solar cosmic rays, were first detected by Forbush [9] in the 1940s.

Figure 1. Schematic of a solar eruption and the sites of particle acceleration (e,p, . . . ): one in the current
sheet formed low in the corona and the other on the surface of the shock driven by the coronal mass
ejection (CME) flux rope. The arrows toward the current sheet indicate the reconnection inflow while
the ones diverging away indicate the outflow. The red ellipses in the photosphere represent the feet
of flare loops where accelerated particles precipitate and produce flare radiation. Particles from the
shock propagate away from the Sun and are detected as energetic particle events in space. The dark
ellipse inside the flux rope represents a prominence that erupted along with the CME (adapted from
Gopalswamy [6]).

Invoking the copious production of energetic particles from the Sun, Morrison [10] suggested that
the active Sun must be a source of gamma-rays. He listed electron-positron annihilation as one of the
processes expected to produce gamma-ray emission from cosmic sources [10]. Elliot [11] suggested
that “positive electrons” from muon decay should lead to detectable 0.5 MeV gamma-ray line emission.
Lingenfelter and Ramaty [12] performed detailed calculations of gamma-ray emission processes from
the Sun. Chupp et al. [13] identified for the first time the positron annihilation radiation at 0.5 MeV
along with other nuclear lines during the intense solar flares of 1972 August 4 and 7 using data from
the Gamma-ray Monitor onboard NASA’s Seventh Orbiting Solar Observatory (OSO-7) mission.

2. Mechanisms of Positron Production

Positrons are predominantly produced by three processes: (i) emission from radioactive nuclei,
(ii) pair production by nuclear deexcitation, and (iii) decay of positively charged pions (π+) that take
place when ions accelerated in the corona interact with the ions in the photosphere/chromosphere.
Kozlovsky et al. [14] list 156 positron-emitting radioactive nuclei resulting from the interaction of
protons and α-particles (helium nuclei) with 12 different elements and their isotopes. The most
important positron-emitting radioactive nuclei that result from the interaction of protons (p) and
α-particles with carbon (12C, 13C), nitrogen (14N, 15N), and oxygen (16O, 18O) are listed in Table 1. In the
interaction of p and α with 16O, the oxygen nucleus, ends up in the excited state (16O*) of 6.052 MeV;
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this nucleus deexcites by emitting an electron-positron pair with a lifetime of 0.096 ns. Another such
excited nucleus is 40Ca* with a lifetime of 3.1 ns. Kozlovsky et al. [15] list another set of 23 positron
emitters produced when accelerated 3He interact with targets such as 12C, 14N, 16O, 20Ne, 24Mg, 28Si,
and 56Fe. The radioactive nuclei have a lifetime ranging from a tenth of a nanosecond to ~1 million
years (see [14] for a list). There are 26 radioactive nuclei with a lifetime �10s.

Table 1. Important interactions and the resulting radioactive nuclei.

Interaction Target Nuclei Radioactive Nuclei

p - carbon 12C 11C, 12N, 10C, 13N

p - carbon 13C 13N

α - carbon 12C 11C, 15O

p - nitrogen 14N 11C, 13N, 14O

p - nitrogen 15N 15O

α - nitrogen 14N 17F, 13N, 11C

p - oxygen 16O 11C, 13N, 15O, 16O*

p - oxygen 18O 18F

α - oxygen 16O 19Ne, 18F, 15O, 13N, 11C, 16O*

Note: *Nucleus in excited state.

Positrons from radioactive nuclei have an energy of several hundred keV, while those from
π+ decay have much higher energy (up to hundreds of MeV). Almost all the positrons emitted by
radioactive nuclei and a major fraction of those produced by π+ decay (~80%) slow down to thermal
levels (tens of eV) before directly annihilating or forming a positronium (Ps) atom by capturing
an electron. The formation of Ps in this way is via radiative recombination. Ps can also be formed due to
charge exchange with H and He atoms. Positronium is a hydrogen-like atom (with the proton replaced
by a positron). There are two types of Ps, known as orthopositronium (O-Ps) and parapositromium
(P-Ps), depending on how the spins of the positron and electron are oriented. In O-Ps, the electron
and positron spins are in the same direction (triplet state); in P-Ps, the spins are oppositely directed
(singlet state). O-Ps and P-Ps decay into 3 and 2 photons, respectively. O-Ps is formed preferentially:
75% of the time compared to 25% of the time for P-Ps [16]. Four key processes that determine the fate
of the positrons produced in the solar atmosphere are discussed in [5]. These processes involve the
interaction of positrons with the ambient hydrogen and helium in redistributing their energy, formation
and quenching of Ps, and the ultimate production of gamma-rays by direct annihilation or via Ps.
Direct annihilation of positrons can occur with free and bound (in H and He) electrons in the ambient
medium. Positronium quenching occurs resulting in the emission of second-generation positrons
when Ps collides with electrons, H, H+, and He+. Another quenching process is the conversion of O-Ps
to P-Ps when O-Ps collides with electrons and H.

Pions (π0 and π±) are created when accelerated protons and α-particles from the corona collide
with those in the chromosphere/photosphere. A detailed list of possible interactions (p-p and p-α)
are listed in Murphy et al. [17]. High-energy positrons are primarily emitted from the decay of π+

into positive muons (μ+), which decay into positrons. In a similar reaction, negative pions (π−) decay
into negative muons (μ−), which decay into electrons. π0 decays into 2 gamma-rays most of the time
(98.8%). In the remaining 1.2% of cases, π0 decays into an electron positron pair and a gamma-ray.
The rest energy of neutral pions is 135 MeV, while that of charged pions is 139.6 MeV. To produce
these particles, the accelerated protons need to have high energies, exceeding ~300 MeV. The pions
are very short-lived (π0: 10−16 s; π±: 2.6 × 10−8 s), while the muons live for a couple of microseconds
(2.2 × 10−6 s). The >300 MeV protons needed for pion production seem to be accelerated both in the
flare reconnection and CME-driven shocks (see Figure 1).
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3. Gamma-Rays Due to Positrons

Nonthermal electromagnetic emission produced by charged particles is one of the key evidences
for particle acceleration in the Sun (see, e.g., [18] for a review). Energetic electrons are readily inferred
from nonthermal emission they produce at wavelengths ranging from millimeters to kilometers.
Theories of radio emission have helped us understand the acceleration mechanism for the electrons and
the radio emission mechanism. Energetic electrons also produce hard X-rays and gamma-rays. On the
other hand, the electromagnetic indicators of energetic ions are limited to gamma-rays, ranging from
a few hundred keV to >1 GeV. Positrons, which are produced by various processes noted in Section 2,
contribute to the gamma-ray emission from the Sun at various energies via different processes.

Figure 2 shows the total gamma-ray spectrum from the Sun, exhibiting both line emission
and continuum as predicted [10]. This spectrum is constructed from all possible processes that
emit gamma-rays during solar eruptions [19]. At low energies (<10 MeV), there are many lines
superposed on the electron bremsstrahlung continuum, the lowest being the 0.511 MeV line (positron
annihilation, marked e+). The next narrow line is the neutron capture line at 2.223 MeV. When energetic
protons spallate ambient nuclei, neutrons are produced and emitted over a broad angular distribution;
the downward neutrons slow down and are captured by a proton in the ambient medium forming
a deuterium nucleus and releasing the binding energy as the 2.223 MeV line. The other lines are due
to nuclear deexcitation of varying widths due to various combinations of incumbent and insurgent
ions. The continuum emission has several components. Below the 0.511 MeV line, there is a weak Ps
continuum that merges with the strong primary electron bremsstrahlung continuum. Primary electrons
are those arriving from the acceleration site in the corona, as opposed to secondary electrons, which are
produced in the chromosphere/photosphere due to the impact of accelerated ions from the corona
(e.g., via π– decay). The quasi-continuum between 0.7 MeV and 10 MeV (on which the discrete
lines are superposed) is due to a multitude of broad nuclear lines caused by insurgent heavy ions
interacting with ambient H and He nuclei. If the primary electron bremsstrahlung continuum is hard,
it can be detected above background even at energies exceeding 10 MeV. When there is significant
pion production both a broad line like feature centered near 70 MeV from neutral pions and a hard,
secondary positron bremsstrahlung continuum can also be detected above 10 MeV (see below).

 

Figure 2. Overall theoretical spectrum of gamma-ray emission from the Sun from 0.1 MeV to 2 GeV.
The blue dashed line labeled “brem” represents the contribution from the bremsstrahlung of energetic
electrons accelerated during solar eruptions. The red line represents computed spectrum taking into
account of all possible processes that contribute to gamma-ray emission. At energies below ~10 MeV
there is a quasi-continuum with several lines superposed. e+ and n represent the 0.511 MeV positron
annihilation line and the 2.223 MeV neutron capture line. 12C and 16O mark the next intense lines
produced by nuclear deexcitation. The pion continuum at high energies is denoted by π, which involves
contribution from both neutral and charged pions. The energy for these emission components is from
energetic particles (electrons and ions) accelerated in the solar corona during solar eruptions (adapted
from Ramaty and Mandzhavidze [19]).
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3.1. The 0.511 MeV Gamma-Ray Line

The width of the solar annihilation line can range from ~1 keV to 10 keV full width at half maximum
(FWHM) depending on the ambient conditions of the medium in which the annihilation takes place:
e.g., temperature, density, and the ionization state [20]. Detailed calculations and comparison with
observations have confirmed that the 0.511 MeV line is produced over a range of these parameters
in the chromosphere/photosphere region [5]. One of the major contributors to the line width is the
temperature in the region of annihilation because the ambient electrons have a distribution of speeds
at a given temperature. The environmental conditions also determine the formation and destruction of
Ps. Parapositronium annihilates emitting two 0.511 MeV photons (2γ decay), with lifetime ∼0.125 ns.
On the other hand, orthopositronium annihilates in three 341 keV photons ((3γ decay) with a lifetime
∼142 ns [21]. Depending on the initial energy of the positron capturing an electron, the 3γ decay results
in a gamma-ray continuum at energies below the annihilation line (see Figure 2). The flux ratio of
the 3γ continuum (from O-Ps) to the 2γ line (from direct annihilation with free and bound electrons,
and the decay of P-Ps) is an important parameter that can be used to infer the properties of the ambient
medium (density, temperature, and ionization state). Murphy et al. [5] found that the flux ratio at
a given temperature in an ionized medium remains constant up to an ambient hydrogen density of
~1013 cm−3 and then rolls over to values lower by 2–3 orders of magnitude at densities ~1017 cm−3.
The constant value depends on the ambient temperature starting from ~3 for 2000 K and decreasing to
~0.001 at 10 MK. For a neutral atmosphere, the temperature dependence is weak: the constant value of
the flux ratio is ~5 at densities below ~1014 cm−3 and rolling over to ~0.008 at an ambient density of
~1017 cm−3.

The 0.511 MeV emission can originate from different environments at different times during
an event. Figure 3 shows the profile of the 0.511 MeV line during the 2003 October 28 eruption,
considered to be an extreme event. In this event, the profile was quite wide during the first 2 min
of the event compared to the last 16 min. Detailed calculations by Murphy et al. [5] revealed that
the early part of the gamma-ray emission (broad line) might have occurred in an environment with
a temperature in the range (3–4) × 105 K and densities � 1015 cm−3. This implies that temperature
in the chromosphere has transition-region values. Even though a 6000-K Vernazza et al. [22] model
could marginally fit the observations, it was ruled out based on other considerations such as the low
atmospheric density inferred (~2 × 1013 cm−3). On the other hand, the narrow line late in the event
is consistent with an environment in which the temperature is very low (~5000 K), the density is
same as before (~1015 cm−3), but the ionization fraction in the gas is ~20%. These results point to the
inhomogeneous and dynamic nature of the chromosphere inferred from other considerations [23].
The derived conditions also depend on the atmospheric model, which itself has been revised [24].

3.2. Pion Continuum

The pion continuum described briefly above is shown in Figure 4 with different components:
(i) the π0 decay continuum, which has a characteristic peak around 68 MeV, (ii) the bremsstrahlung
continuum due to positrons emitted by μ+ resulting from π+ decay (π+ brm), (iii) the positron
annihilation continuum due to in-flight annihilation of positrons from π+ decay (π+ ann), and (iv) the
bremsstrahlung continuum due to electrons emitted by μ− resulting from π− decay (π− brm). The sum
of the four components (Total) represents the spectrum of gamma-rays resulting from pion decay
assuming that the accelerated particle angular distribution is isotropic. The π0 continuum dominates
at energies >100 MeV and determines the spectrum at these energies but its contribution is very
tiny at 10 MeV. For example, the π− bremsstrahlung has four times larger contribution than from
π0 decay, while π+ bremsstrahlung and annihilation contributions are larger by factors of 20 and 75,
respectively. Below 10 MeV, the gamma-ray spectrum is mostly determined by π+ bremsstrahlung.
Thus, below ~30 MeV, the combined contribution from positrons dominate the spectrum. The π0

continuum exceeds the π+ bremsstrahlung around 30 MeV, producing the characteristic “giraffe”
shoulder around this energy. Such a spectrum was first derived from the observations of pion
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continuum in the 1982 June 3 event by Forrest et al. [25], who identified a gamma-ray emission
component that lasted for ~20 min beyond the impulsive phase of the flare. The spectrum in Figure 4
was calculated in great detail by Murphy et al. [17] to explain the 1982 June 3 event assuming that
the primary protons have a shock spectrum [26]. They also performed a similar calculation assuming
a stochastic particle spectrum thought to be produced in the reconnection site. While the early part of
the 1982 June 3 gamma-rays can be explained by the steep stochastic spectrum, the part extending
beyond the impulsive phase (late part) needs to be explained by the shock spectrum, which is much
harder than the stochastic spectrum. Furthermore, these authors found that the shock spectrum is
similar to the SEP spectrum observed in space.

 

≳

Figure 3. Profiles of the 0.511 MeV annihilation line during the 2003 October 28 event observed by
the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). (Top) During the early phase
(first 2 min of observation) the data points are fitted with a Vernazza atmosphere [22] at a temperature
of 6000 K and a Gaussian with a width of ~6.7 keV corresponding to a temperature of (3–4) × 105 K.
(Bottom) During the late phase (last 16 min of observation), the data are fitted with a Gaussian (width
~1 keV) and a 5000-K atmosphere with 20% ionization (adapted from Murphy et al. [5]).
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Figure 4. Contributions (in units of photons per unit energy interval) to the solar gamma-ray spectrum
from π0 decay, bremsstrahlung due to electrons from π– decay (π– brm), bremsstrahlung due to
positrons from π+ decay (π+ brm), annihilation radiation of positrons from π+ decay (π+ ann). The
energetic particles responsible for the production of pions were taken to be accelerated from a shock.
The top two curves (solid and dashed) represent the total “giraffe” spectrum that combines these
four components. The solid curve is for the ambient atmosphere while the dashed curve is for the
abundance of the 1982 June 3 event derived from the associated solar energetic particle (SEP) event.
The nuclear deexcitation line spectrum for the two abundances are also superposed. (Adapted from
Murphy et al. [17]).

The time-extended gamma-ray emission first detected by Forrest et al. [25] using the Gamma-Ray
Spectrometer on board the Solar Maximum Mission has been observed by many different missions,
but such events were rare [27,28]. Two events had durations exceeding ~2 h [29,30]. The Large Area
Telescope (LAT) on the Fermi satellite has detected dozens of such time-extended gamma-ray events
from the Sun at energies >100 MeV, thanks to the detector’s high sensitivity [31]. The average duration
of these gamma-ray events is about 9.7 h and with six events lasting for more than 12 h [32,33],
including an event that lasted for almost a day. The time-extended events are known by different names
“long duration gamma-ray flare (LDGRF)” [34,35], “sustained gamma-ray emission (SGRE)” [33,36],
and “late-phase gamma-ray emission (LPGRE)” [32]. The Fermi/LAT observations have revived the
interest in the origin of the high-energy particles in these events because the accelerator needs to
inject >300 MeV ions toward the chromosphere/photosphere to produce the pions required for the
gamma-ray events.

Works focusing on the time-extended nature of these gamma-ray events explore ways to extend
the life of the >300 MeV protons from stochastic (impulsive-phase) acceleration, e.g., by particle
trapping in flare loops (e.g., [37]). In this scenario, the largest spatial extent of the gamma-ray source is
the size of the post-eruption arcade (or flare area) discerned from coronal images taken in extreme
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ultraviolet wavelengths. In the shock scenario, the gamma-ray source is spatially extended because the
angular extent of the shock is much larger than that of the flare structure [38,39]; shock acceleration is
naturally time-extended evidenced by type II radio bursts and SEP events [33]

Gopalswamy et al. [40] demonstrated the spatially extended nature of the gamma-ray source
during the 2014 September 1 event (see also [36,39,41]). They used multiview data from the Solar and
Heliospheric Observatory (SOHO) and the Solar Terrestrial Relations Observatory (STEREO) missions
to obtain a detailed picture of the eruption, including magnetic structures that extend beyond the flare
structure (post-eruption arcade, PEA) as described in Figure 5. It must be noted that both the flux rope
and PEA are products of the eruption process (magnetic reconnection). The PEA remains anchored to
the solar surface, while the flux rope is ejected into the heliosphere with speeds exceeding 2000 km/s.
The flux rope is a large structure rapidly expanding into the heliosphere compared to the compact flare
structure. The flux rope drives a shock because of its high speed and the shock accelerates the required
>300 MeV protons. The protons travel down to the chromosphere/photosphere along the field lines
located between the flux rope and shock and produce the gamma-rays. Particles traveling away from
the shock into the heliosphere are detected as SEP events. Shocks are known to accelerate particles as
they propagate into the heliosphere beyond Earth’s orbit, but the high-energy particles required for
pion production may be accelerated only to certain distance from the Sun; this distance determines the
duration of an SGRE event. In the case of the 2014 September 1 event, the SGRE lasted for about 4 h.
With a shock speed >2300 km/s obtained from coronagraph observation, one can infer that the shock
stopped accelerating >300 MeV protons to sufficient numbers by the time it reached a distance of about
50 solar radii from the Sun. Evidence for the shock shown in Figure 5 is the interplanetary type II radio
burst that lasted until the end of the SGRE event and a bit beyond. The estimated duration of the type
II burst (about 7.5 h) is in agreement with the linear relation found between the two durations [33].

 

Figure 5. (a) An extreme ultraviolet image obtained by the STEREO mission showing the spatial
structure of the eruption region consisting of dimming regions (D1, D2) and the post-eruption arcade
(PEA). (b) A flux rope (green) and shock (red) structures superposed on a SOHO white-light image
showing the CME. The blue dot (at heliographic coordinates N14E90) represents the centroid of the
Fermi/LAT gamma-ray source located between the flux rope (FR) leg and the shock front. The flux
rope legs are rooted in the dimming regions D1 and D2. (c) A schematic showing the FR and the
surrounding shock. Particles accelerated near the shock nose travel along magnetic field lines in the
space between the FR and shock, precipitate in the chromosphere/photosphere to produce gamma-rays
via the pion-decay mechanisms discussed in the text (adapted from Gopalswamy et al. [40]).

In a given eruption, both flare and shock populations are expected to be present, the flare particles
being the earliest. Murphy et al. [17] concluded that the nuclear deexcitation line flux is primarily due
to the flare population, while the 0.511-line flux has roughly equal contributions from flare and shock
populations. On the other hand, the extended phase emission is solely due to the shock population.
The conclusion on the extended phase emission initially derived from studying the 1982 June 3 event,
seems to be applicable to all events with time-extended emission [33]. Recently, Minasyants et al. [42]
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found that in certain gamma-ray events with high fluxes of >100 MeV photons, the development
of the flare and CME are simultaneous. The CME started during the impulsive phase of the flare.
They found that the >100 MeV flux is highly correlated with the CME speed, although the sample
is small. Figure 6 shows the relation, replotted with a second-order polynomial fit instead of their
linear fit. Normally, one would have thought the impulsive phase gamma-ray flux should be related to
the impulsive-phase proton population, and not to the shock population. On further examination,
it is found that a type II radio burst started in the impulsive phase of the events, indicating early
shock formation. This is typical of eruptions that produce ground level enhancement (GLE) in SEP
events [43–45], implying particle acceleration by shocks to GeV energies within the impulsive phase.
This result suggests that the shock population may also have contribution to >100 MeV photons in the
impulsive phase.

Figure 6. Scatter plot between >100 MeV gamma-ray flux (F) from Fermi/LAT against the CME speed
(V) for events in which the CME onset was during the impulsive phase. The speeds of three CMEs are
different from those in Minasyants et al. [42]. The polynomial fit to the data points and the square of
the correlation coefficient (R) are shown on the plot.

STEREO observations have revealed that shocks can form very close to the Sun, as close as 1.2
solar radii [46]. Shocks typically take several minutes to accelerate particles to GeV energies after
their formation. This means, shocks are present within the closed field regions of the corona early on,
sending particles toward the Sun and augmenting the impulsive phase particles. The precipitation
sites are expected to be different from the PEA as discussed in Figure 5. Once the shock propagates
beyond ~2.5 solar radii, accelerated particles can move both ways, away and toward the Sun.

4. Conclusions

Positrons are important particles both in the laboratory and in astrophysics. They are extremely
useful in understanding high-energy phenomena on the Sun. They provide information on various
processes starting from particle acceleration, transport, and interaction with the dense part of the solar
atmosphere. Positrons provide information on the physical conditions in the chromosphere/photosphere
where they are produced and destroyed by different processes, leaving tell-tale signatures in the
gamma-ray spectrum. In addition, gamma-rays and positrons provide information on the magnetic
structures involved in solar eruptions that support the acceleration and transport of the highest-energy
particles in the inner heliosphere. Spatially resolved gamma-ray observations beyond what is currently
available (e.g., [47]) are needed to resolve the issue of the relative contributions from stochastic and
shock accelerations in solar eruptive events.
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Abstract: To overcome the numerical difficulties inherent in the Maxwell–Boltzmann integral
of the velocity-weighted cross section that gives the radiative attachment rate coefficient αRA for
producing the negative hydrogen ion H− or its antimatter equivalent, the positive antihydrogen ion
H+, we found the analytic form for this integral. This procedure is useful for temperatures below
700 K, the region for which the production of H+ has potential use as an intermediate stage in the
cooling of antihydrogen to ultra-cold (sub-mK) temperatures for spectroscopic studies and probing
the gravitational interaction of the anti-atom. Our results, utilizing a 50-term explicitly correlated
exponential wave function, confirm our prior numerical results.

Keywords: antihydrogen; radiative attachment; photodetachment; antihydrogen ion; analytical;
hydrogen ion

1. Introduction

The Antiproton Decelerator (AD) facility at CERN [1] has provided the foundation for a variety of
experiments (e.g., [2–4]) over more than a decade. Small numbers of these anti-atoms are trapped by
the ALPHA and ATRAP collaborations using specialized magnetic minimum neutral atom traps [5–7],
with confinement times of many minutes being routine at ALPHA [8]. They have done spectroscopic [9]
measurements for H in their quest to investigate possible violations of CPT symmetry, experimental
limits on its charge [10], and preliminary limits on the gravitational interaction of the anti-atom [11].

Building on the latter idea, the GBAR collaboration [12–14] means to measure the gravitational
attraction of matter versus antimatter using neutral H atoms, but cooling them sufficiently is difficult
because of their neutrality. They intend to form the antihydrogen ion H+ as an intermediate step
because its net charge would allow for sympathetic cooling with a mixture of positively charged ions of
ordinary matter such as Be+, and, after they are cooled, the extra positron would be stripped off prior
to studies of the gravitational interaction of the anti-atom [12–14]. The authors of [15,16] calculated the
cross section and rate coefficient for the radiative attachment of a second positron to create the H+ ion,

H (1s) + e+ → H+
(

1s2 1Se
)
+ h̄ω . (1)

We first [15] used the effective range wave function of Ohmura and Ohmura [17] and then [16] a fully
two-positron 200-term wave function [18] composed of explicitly correlated exponentials of the kind
introduced by Thakkar and Smith [19]. These extend to temperatures lower than Bhatia’s [20] results.

Calculating the radiative attachment rate coefficient αRA for producing the negative hydrogen
ion H− or its antimatter equivalent, the positive antihydrogen ion H+, requires the evaluation of
a Maxwell–Boltzmann integral of the velocity-weighted cross section whose integrand is akin to
a slightly-rounded Heaviside step function that is difficult to handle numerically, particularly for
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temperatures below 1000 K. Evaluating this integral analytically would, then, be ideal, perhaps using
the analytical results for the underlying six-dimensional photoionization integral for the cross section
itself given in Keating’s master’s thesis [21]. However, integrating squares of sums of the large variety
of terms in that final cross section is a daunting task.

This variety of terms arises in Keating’s work as the Lth derivatives of the Laplace transform of
the spherical Bessel function j1(kr),

LL(p; k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
k2

[
k − p tan−1

(
k
p

)]
L = 0

1
k2

[
− kp

p2+k2 + tan−1
(

k
p

)]
L = 1

i(L−2)!
2k2

[
p+ikL
(p+ik)L − p−ikL

(p−ik)L

]
=

−(L − 2)!

k (k2 + p2)
L

L

∑
j=0

(2)(L
j )

j(L + 1)
j + 1

(−1)j/2 kj pL−j L = 2, 3, 4, ...

(2)

where the “(2)” on the summation sign in the last line indicates steps of two, p = α + γ or α + β of
Equation (8), and k is the wave number. One might wonder, then, if one could back up to the final
radial integral of the cross section that has a consistent analytic form r3/2+he−σr j1(kr) for the direct
and cross terms. It indeed turns out to be possible to perform the Maxwell–Boltzmann integral of
products of that analytic form first, and then integrate over each of the radial integrals in the product
r3/2+he−σr j1(kr) R3/2+je−τr j1(kR), and finally sum over all such product terms and the terms of the
explicitly correlated exponential wave function.

We give a synopsis of how one finds the radiative attachment cross section, explicate the integrals
one needs to calculate, and show how a fully analytical rate coefficient may be found. Tests of the new
form confirm the numerical integrals of prior work.

2. The Radiative Attachment cross Section

Since this approach relies on finding the radiative attachment cross section from the
photodetachment cross section via the principle of detailed balance, we give a short history.
Photodetachment from the hydrogen ion H−, for instance, is known to be responsible for the opacity of
the sun [22,23], garnering much attention in the 1940s–1980s [24–42] and more recently [43–51]. Ward,
McDowell, and Humberston [52] described the parallel Ps− case as calculating an allowed dipole
transition to the continuum of the two-electron (or two-positron) Hamiltonian

h̄ω + H−
(

1s2 1Se
o

)
→ H−

(
1s kp 1Po

o

)
. (3)

Following Ghoshal and and Ho [50], we put the (length gauge1) cross section for photodetachment
(or photoionization), σPI , laid out by Chandrasekhar [24,25] in atomic units, and obtain

σPI =
2pωαa2

0
3

∣∣∣〈ψ f

∣∣∣k̂ · (r1 + r2)
∣∣∣ψi

〉∣∣∣2
= 6.81156 × 10−20 cm2k

(
k2 + 2I

) ∣∣∣〈ψ f |z1 + z2|ψi

〉∣∣∣2 , (4)

where α is the fine structure constant, a0 is the Bohr radius, and the magnitude of the momentum of the
detached electron or positron p = h̄k may be related to the energy ω (and the photon wavelength λ)
and the H− electron or positron affinity, I, by

1 Since the cross section differences between velocity and length gauge formulations (due to the approximate nature of the
two-positron wave functions used) are small, we will present only length gauge results in this work.
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2ω = 2 (2πν) = 2
hc
λ

= 2

(
h̄2k2

2
+ I

)
≡
(

p2 + γ2
0

)
. (5)

In the matrix element for photodetachment

μPI =
∫

ψ∗
f (z1 + z2)ψidτ (6)

in Equation (4), ψ f is a continuum state wave function for the outgoing positron represented by (the
dipole term of) a plane wave multiplied by a hydrogen ground state wave function,

ψ f =
1√
2π

(eikz1−r2 + eikz2−r1) (7)

Accurate two-positron initial-state wave functions may take the form

ψH(r1, r2, r12) =
1√
2

(
1 − P̂12

)
e−αr1−βr2−γr12 ∑

l,m,n
clmnslt2mun, (8)

where P̂12 is the permutation operator for the two identical positrons α ↔ β, with Hylleraas
coordinates [53] given by s = r1 + r2, t = r1 − r2, and u = r12 ≡ |r1 − r2|. One may also express this as
sums of powers of r1 and r2 instead of powers of s and t, via the binomial theorem. Often, the difficulty
of finding the nonlinear parameters in the exponential is reduced by setting β = α and γ = 0.

Alternatively, Thakkar and Smith [19] introduced a set of wave functions involving solely
exponentials, with the nonlinear inter-electron (inter-positron) correlation parameter γ retained,

ψTS(r1, r2, r12) =
1√
2

(
1 − P̂12

)
∑
k

cke−αkr1−βkr2−γkr12 , (9)

where the parameters in the exponentials are generated in a quasi-random fashion,

αk = η
(
(A2 − A1)

1
2 〈k(k + 1)〉 √2 + A1

)
βk = η

(
(B2 − B1)

1
2 〈k(k + 1)〉 √3 + B1

)
,

γk = η
(
(G2 − G1)

1
2 〈k(k + 1)〉 √5 + G1

) (10)

where 〈x〉 denotes the fractional part of x. The downside of having to find six nonlinear parameters
that minimize the energy, rather than the single nonlinear parameter one varies in a many Hylleraas
expansions, is sufficiently compensated for in that the wave function has a consistent form and is
generally easier for evaluating integrals. For the fifty-term wave function we use, these parameters
are [54]: A1 = 0.2380, A2 = 1.3240, B1 = 0.9800, B2 = 1.3290, G1 = −0.0720, G2 = 0.288, and
η = 1 − 2.458 × 10−7. The quasi-random assignment of the 50 values for each of αk, βk, and γk
in Equation (10) means that we do not have to vary these 150 parameters directly. Because the
optimization algorithm is not perfect, one must scale the wave function with η very slightly different
from one so that it satisfies the virial theorem. The coefficients ck are found by diagonalizing the
Hamiltonian matrix in order to minimize the ground state energy and then normalized.

Using this wave function for a given triplet of α = αk, β = βk, and γ = γk in the sum in Equation (9),
the matrix element for ionizing either positron under the influence of the length dipole operator (z1 + z2)

is the sum of four terms:

μPI = 2 (I11 + I21)
λ3/2
√

2π
=

∫ ∫
d3x1d3x2e−αr1−βr2−γr12 (z1 + z2)

λ3/2
√

π

1√
2

, (11)

×
[
e−λr2 eikz1 + e−λr1 eikz2

]
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where the first factor of two comes from I11 = I22 and so on, whose subscripts j refer to zj in the dipole

operator and in the plane wave, respectively, and we have factored out the coefficient λ3/2√
2π

that is
common to all terms. We keep λ, the magnitude of the charge of the hydrogen nucleus, in symbolic
form rather than setting it to one so that we can take derivatives of it to represent powers of rj.

The cross section for radiatively attaching a second positron to H (1s) to create the (1s2 1Se) state of
the H+ ion, via the reaction in Equation (1), can be obtained from the principle of detailed balance (see,
e.g., Landau and Lifshitz [55]) following the lead of Drake [56] and then Jacobs, Bhatia, and Temkin [57],
who applied the principle of detailed balance to obtain the radiative attachment coefficient (for an electron)
to form the (2p2 3Pe) metastable H− state from H (2s, 2p). For the (1s2 1Se) case, we have [16],

σRA(k) =
g1 p2

ω

g2 p2
e

σPI =
6α2 (k2 + γ2

0
)2

12 · 22k2 σPI , (12)

where g1/g2 = 6/12 is the statistical weight ratio. Here, the photon momentum relative to the ion is
given by pω = h̄ω/c = (k2 + γ2

0)/2c, and pe is the positron momentum k. Note that c in atomic units
is the inverse of the fine structure constant α.

To estimate formation rates of H+, it is helpful to calculate the positron attachment to H as a
function of temperature rather than energy, as is common in astrophysical applications. This rate
coefficient αRA is formed as the expectation value of vσRA with the normalized Maxwell–Boltzmann
distribution f (v) as,

αRA(T) = 〈vσRA〉 = 4π
∫ ∞

0
dv vσRA (k (v))

(
m

2πkBT

)3/2
v2exp

[−mv2/ (2kBT)
]

=

√
8kBT

me

1√
π

∫ ∞

0
dx x

gPI

gRA

P2
ω

p2
e

σPI

(√
2kBTx

)
exp [−x] .

(13)

whose overall coefficient is

√
8kBT

me
=

√
8 × 8.61733262 × 10−5 eV K−1T

0.51099895000 × 106 eV
299792458 × 102 cm/s

= 1.10113894 × 106 cm/s
√

K−1T

(14)

where the temperature T is given in Kelvins K.

3. Evaluating Integrals

The algebra in each case is greatly reduced by making the replacement

e−γr12 e−r2(β+λ) =

(
− ∂

∂γ

)(
− ∂

∂λ

)
e−r2(β+λ)

r2

e−γr12

r12
(15)

in each term, with the notation

Ij1 =

(
∂

∂γ

)(
∂

∂λ

)
R0j1 (16)

where

R011 =
∫ ∫

d3x1d3x2e−αr1
e−r2(β+λ)

r2

e−γr12

r12

(
z1eikz1

)
(17)

R021 =
∫ ∫

d3x1d3x2e−αr1
e−r2(β+λ)

r2

e−γr12

r12

(
z2eikz1

)
.
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For the cross-terms
(

z2eikz1
)
=
(

r2 cos θ2eikr1 cos θ1
)

, we need the conversion given in Ley-Koo
and Bunge [58]

Yk,m (θ2, φ2) =
k

∑
M=−k

[
D

(k)
m,M (0, θ1, φ1)

]∗
Yk,M (θ12, φ12) (18)

where from Edmonds [59] we have

Y1,0 (θ2, φ2) =
1

∑
M=−1

[
D

(1)
0,M (0, θ1, φ1)

]∗
Y1,M (θ12, φ12) ,

=
1

∑
M=−1

[√
4π

3
Y1,M (θ1, φ1)

]∗
Y1,M (θ12, φ12)

(19)

so that in this case

cos θ2 = 2
√

π

3
Y1,0 (θ2, φ2) = 4π

3 ∑1
M=−1Y∗

1,M (θ1, φ1)Y1,M (θ12, φ12)

= P1 (cos θ2) = cos θ1 cos θ12 + sin θ1 sin θ12cos (φ1 + φ12)
(20)

we recover the law of cosines. Ley-Koo and Bunge [58] note that the only contribution comes from the
term with M = 0, “because the point of interest is on the polar axis” so that only the cosine-product
term remains, which we confirmed by calculating both terms.

Introducing an addition theorem for the plane wave ([60], p. 671, Equation (B.44)) helps us to do
the first angular integral in each of the terms in Equation (17),

∫
dΩ1 (r1P1 (cos θ1))

(
∞

∑
l=0

(2l + 1) il jl(kr1)Pl (cos θ1)

)
=

(
r1

2
(2 + 1)

2π

)(
(2 + 1) i1 j1(kr1)

)
. (21)

All expressions that follow should in principle be multiplied by this factor of i, but, since we take the
absolute square of sums of these transition amplitudes to get the cross section, we ignore this factor.

We follow Ley-Koo and Bunge [58] in replacing dΩ2—the differential solid angle around r̂2

in a frame of reference in which r1 is taken as the polar axis—by dΩ12 = sin θ12dθ12dφ12. One
can immediately integrate over dφ12. They change variables to cos θ12 =

(
r2

1 + r2
2 − r2

12
)

/ (2r1r2)

giving sin θ12dθ12 = (−2r12) dr12/ (2r1r2), but one may also change variables to cos θ12 = u12 giving
sin θ12dθ12 = du12 and simply do that integral using integrals we have not found in the literature:

∫ 1

−1
du12

e−γ
√

r2
1−2r1r2u12+r2

2√
r2

1 − 2r1r2u12 + r2
2

=
e−γ|r1−r2 | − e−γ|r1+r2 |

γr1r2

∫ 1

−1
du12

e−γ
√

r2
1−2r1r2u12+r2

2√
r2

1 − 2r1r2u12 + r2
2

u12 =
1

γ3r2
1r2

2

((
e−γ|r1−r2 | + e−γ(r1+r2)

)
r1r2γ2 − e−γ|r1−r2 | + e−γr1−γr2

+ γ
(

e−γ(r1+r2) (r1 + r2)− e−γ|r1−r2 | |r1 − r2|
))

[r1 > 0, r2 > 0] , (22)
1

γr1r2

∂

∂a

∫ 1

−1
du12 e−γ

√
r2
1−a2r1r2u12+r2

2

∣∣∣∣
a=1

u12 =
1

γr1r2

∂

∂a
1

a2γ4r2
1r2

2

(
e−γ

√
r2
1−2ar2r1+r2

2
(
−
(

r2
1 − 3ar2r1 + r2

2

)
γ2

+

∣∣∣∣(aγ2r1r2 − 3
)√

r2
1 − 2ar2r1 + r2

2γ − 3
)
+ e−γ

√
r2
1+2ar2r1+r2

2

×
((

r2
1 + 3ar2r1 + r2

2

)
γ2 +

(
ar1r2γ2 + 3

)√
r2

1 + 2ar2r1 + r2
2γ + 3

))
a=1

The last integrals to do for the cross section are
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R011 = 8π2 2
(β + λ)2 − γ2

∫ ∞

0
dr1r2

1 j1 (kr1)
(

e−(α+β+λ)r1 − e−(α+γ)r1
)

.

R021 = 8π2 4

((β + λ)2 − γ2)
2

∫ ∞

0
dr1

(
j1 (kr1)

(
e−(α+β+λ)r1 − e−(α+γ)r1

))
+ 8π2 4

((β + λ)2 − γ2)
2

∫ ∞

0
dr1

(
r1 j1 (kr1)

(
(β + λ)e−(α+β+λ)r1 − γe−(α+γ)r1

))
+ 8π2 2

(β + λ)2 − γ2

∫ ∞

0
dr1

(
r2

1 j1 (kr1) e−(α+β+λ)r1
)

(23)

These are easily done and the derivatives in Equation (16) taken, providing the core of the numerical
Maxwell–Boltzmann integral in Equation (13) for the rate coefficient αRA for producing the negative
hydrogen ion H− or its antimatter equivalent, the positive antihydrogen ion H+ [16].

4. Doing the r1 Integrals Last

The conventional path to crafting an analytical rate coefficient αRA for producing the positive
antihydrogen ion H+, or its matter equivalent, would be to integrate pair-products of terms in the
analytical results for the cross section found from Equation (23) above, or as given in Keating’s master’s
thesis [21], reproduced in Equation (2). This latter form organizes the sums of terms in the cross section
most compactly, but integrating every pair-product of every term in even this set (Equation (2)) would
require some two-dozen analytical integrals such as

∫ ∞

0

e−x (γ0
2 + 2kBTx

)3
4
√

2(kBT)5/2x3/2
tan−1

(√
2kBTx
p f

)
tan−1

(√
2kBTx

pi

)
dx (24)

and

∫ ∞

0

e−x (γ0
2 + 2kBTx

)3 tan−1
(√

2kBTx
pi

)
4k2

BT2x
(

p2
f + 2kBTx

) dx , (25)

few of which are easily done.
Instead of this obvious approach, we take the road less traveled and take these integrals in

reverse order because of the uniformity of the integrands in Equation (23). The downside of this
novel approach is that we must form the product of distinct radial integrals rather than squaring
the analytical result of the result of a single integration, and there are many dead ends on a path to
integrating over both of these radial variables after integrating over the equivalent of x in Equation (13).
We did, however, find a means to do so, as follows.

We first take the derivatives in Equation (16) of Equation (23) to obtain the requisite terms of
Equation (11), after substituting the conventional Bessel function for the spherical Bessel function

1√
kr1

√
π
2 J 3

2
(kr1) = j1 (kr1) ([60], p. 673, Equation (C.2)):

I11 = 4π
∫ ∞

0 dr14π
(

1√
k

√
π
2 J 3

2
(kr1) r3/2

1

)

×
(

8γ (β + λ) e−(α+β+λ)r1

((β + λ)2 − γ2)
3 − 8γ (β + λ) e−(α+γ)r1

((β + λ)2 − γ2)
3 +

2r1γe−(α+β+λ)r1

((β + λ)2 − γ2)
2 +

2r1 (β + λ) e−(α+γ)r1

((β + λ)2 − γ2)
2

) (26)

and

I21 = 4π
∫ ∞

0
dr14π

(
1√
k

√
π
2 J 3

2
(kr1) r3/2

1

)(
48γ (β + λ) e−(α+β+λ)r1

r2
1 ((β + λ)2 − γ2)4 − 48γe−(α+γ)r1 (β + λ)

r2
1 ((β + λ)2 − γ2)4 +

48γ (β + λ)2 e−(α+β+λ)r1

r1 ((β + λ)2 − γ2)4

− 48γ2 (β + λ) e−(α+γ)r1

r1 ((β + λ)2 − γ2)4 +
16γ (β + λ) e−(α+β+λ)r1

((β + λ)2 − γ2)3 +
8γ (β + λ) e−(α+γ)r1

((β + λ)2 − γ2)3 +
2r1γe−(α+β+λ)r1

((β + λ)2 − γ2)2

)
.

(27)

72



Atoms 2020, 8, 13

The first term of I11 may be combined with third-to-last term of I21, as may the third term of I11,
with the last term of I21. The second term of I11 and the second-to-last of I21 cancel, thus one is left with
seven terms comprising three powers of r1 with two kinds of exponentials, a considerably uniform set
of analytic functions to be integrated.

If one wishes to do the Maxwell–Boltzmann integral of products of such functions first,
the products must be written as unique integrals. That is, the rate coefficient will be sums of terms

B(T, a, σ, h, τ, j, β, γ, λ, α, γb , ps, pt) =
6.811556×10−20

(
1.10114 × 106√T

)
√

π
(
22c2
) gPI

gRA

×128π4λ3 ∫ ∞
0 dR1

∫ ∞
0 dr1

∫ ∞
0 dx

r
h+ 3

2
1 R

j+ 3
2

1

(
2kB Tx + γ2

0

)3
J 3

2

(√
2
√

kB Txr1

)
J 3

2

(√
2
√

kB TxR1

)
e−σr1−τR1−ax

kB T
(
(d + λ)2 − γ2

)ps
(
( f + λ)2 − γ2

b

)pt

(28)

where we replace β in the denominators with d and f to allow for multiplication of sums of terms
whose positrons are exchanged by the P̂12 permutation operator in Equation (9) for the two identical
positrons α ↔ β, as well as different values of α and β arising from the various terms in the adjoining
sum over terms in the wave function. The latter also explains the need to distinguish γb from γ in the
second denominator. It turned out that the a in the exponential was unneeded for the present problem,
but we have left it in for those who might need this sort of integral for another problem and later set it
to equal one.

One may perform the x and then the r1 integrals as they stand, but the resulting expression did
not allow for integration over R1. This is, of course, why one normally would never do the integrals
in this order if it could be avoided. However, the hope of an overall simpler summing of products
of terms if this unusual and difficult integration order is successful eventually found fruit in a series
approach. We first express the Bessel functions in terms of the hypergeometric function [61–63]

J 3
2
(kr1) =

1
Γ
( 5

2
) ( kr1

2

)3/2

0F1

(
;

5
2

;−1
4
(kr1)

2
)

(29)

and combine their product as [64,65]
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2
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1
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(30)

After expanding

(
2kBTx + γ2

0

)3
= 8k3

BT3x3 + 12k2
BT2x2γ02 + 6kBTxγ04 + γ06 (31)

the integral over powers n of x in this sum is [66] (p. 364 No. 3.381.4)

∫ ∞

0
dxe−axxm+n+ν = a−m−n−ν−1Γ(m + n + ν + 1)
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The r1 integral, including coefficients from the second line of Equation (28), for each term in the
m-sum follows as [67]

B2 = π32
19
2 −mλ3 a−m−n− 5

2 (kBT)m+ 3
2 Γ
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1 /∈ R∨ � (R2

1
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]

We ignored the restriction against R1 being an element of the reals under the assumption that this result
could likely be considered as a distribution whose integral would smooth out any singularities arising
from this restriction. That assumption paid off. Let us consider the gamma functions of negative
integer arguments that append each of the 2F3 functions ([66], p. 946 No. 8.334.3; [68]),

Γ(−2m − 3) = −π csc(π(2m + 3))
Γ(2m + 4)

Γ(−m) = −π csc(πm)

Γ(m + 1)

Γ(−h − 2m − 5) = −π csc(π(h + 2m + 5))
Γ(h + 2m + 6)

Γ(−h − 2m − 6) = −π csc(π(h + 2m + 6))
Γ(h + 2m + 7)

(33)

whose ratios have the following values for m an integer:

−π csc(π(2m + 3))
Γ(2m + 4)

(
−π csc(πm)

Γ(m + 1)

)−1

=
(−1)m+1Γ(m + 1)

2Γ(2m + 4)

−π csc(π(h + 2m + 5))
Γ(h + 2m + 6)

(
−π csc(πm)

Γ(m + 1)

)−1

= 0

−π csc(π(h + 2m + 6))
Γ(h + 2m + 7)

(
−π csc(πm)

Γ(m + 1)

)−1

= 0

Integrating the one remaining term (under the restriction �(j) > −4 ∧ ((�(h + j) < −2 ∧ �(σ −
τ) ≤ 0 ∧ �(σ + τ) ≥ 0) ∨ (�(h + j) ≥ −2 ∧ �(σ − τ) < 0 ∧ �(σ + τ) > 0)) ∧ (�(τ) > 0 ∨ (�(τ) =
0 ∧ �(j + 2m) < −6)) gives us our final result,
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B(T, a, σ, h, τ, j, β, γ, λ, α, γb, ps, pt)=
6.811556×10−20
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The rate coefficient is then a quadruple sum. First, we have a sum over the seven terms in I11 + I21

of Equations (26) and (27) plus their seven permutations α ↔ β, all taking on appropriate values of σ, h,
and ps as used in Equation (28), and being multiplied by the appropriate numerators in Equations (26)
and (27) such as 48γ(β + λ). Second, we have a sum over the corresponding 14 terms of the second
factor that takes on the values of τ, j, and pt, multiplied by the corresponding numerators. Third,
we have a sum over the n terms in the wave function having differing values for the parameters α, β,
and γ, and that term’s coefficient c whose value is found by diagonalizing the Hamiltonian matrix in
order to minimize the ground state energy and then normalized. We display the first and last elements
of the fifty-term version we used for both analytical and numerical calculations in case readers wish to
check it against their own derivations:

α(1) = 0.6878357596671101, · · · , α(50) = 0.37080904876118337
β(1) = 1.2354854281591452, · · · , β(50) = 1.1073078257847453

γ(1) = 0.012984468708341133, · · · , γ(50) = 0.28320160279252
c(1) = −2.534888772248287, · · · , c(50) = 0.02873436866901307

. (35)

The final sum is again over this same wave-function set, but this time associated with the second
factor τ. Because the off-diagonal terms of these four sums are symmetrical, it is more efficient
computationally to account for that.

5. Comparison with Numerical Integration

Table 1 shows the comparison of the present analytical rate coefficient αRA for attaching a positron to
antihydrogen to form H+ to our prior rate coefficient found via numerical integration [16], at temperatures
ranging from 1 to 400 K. There we found that, for a fully two-positron 200-term wave function [18]
composed of explicitly correlated exponentials and for T � 6 K, the rate coefficient is essentially linear
and may be fit by αRA = 0.001050× 10−15 cm3s−1 T K−1. One sees the potential for this linear behavior
in the analytic result in Equation (34) in the factor outside of the sum, but only if the m = 0 term is the
dominant contributor to the sum at this temperature. For a fifty-term wave function, the first three terms in
the analytical sum are

(
0.00106039− 1.2144278× 10−6 + 1.203002× 10−9)× 10−15 cm3s−1 T K−1, which

sum to a value 0.00105917× 10−15 cm3s−1 T K−1 and the numerical integral for this same fifty-term wave
function gives 0.00102625× 10−15 cm3s−1 T K−1, a 3% difference.
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As the temperature increases, this series result that involves powers of the temperature will
eventually fail. For a Z = 1 ion, we find that there is no convergence of the m series at T=700 K.
For higher Z, higher temperatures are likely possible.

Table 1. The rate coefficient αRA (10−15 cm3s−1) for attaching a positron to antihydrogen to form H+

for a fifty-term wave function.

Positron
Analytical Integration

Number of Terms
Numerical Integration

Temperature (K) in m-Sum (34)

1 0.001059 3 0.001026
10 0.01056 4 0.01053
100 0.1030 15 0.1030
400 0.3809 15 0.3810

6. Discussion and Concluding Remarks

We found the analytic form for the rate coefficient αRA for attaching a positron to antihydrogen to
form H+ as a series convergent for temperatures of 400 K and below, which may be used to estimate
formation rates. As our result is for attachment from the 1s antihydrogen state, it depends on the
trapped antihydrogen having been held for long enough to ensure that it will have decayed to the
ground state from the likely excited state in which it is formed [7,8].

If the positron plasma is held in a Penning trap of the type used to form antihydrogen, such as
those reviewed in [69] at a density of ne = 1016 m−3 in a magnetic field of 1 T at a sub-mm plasma
radius, then the positron speeds due to rotation of the plasma can be neglected. The temperature
range currently used to form and trap antihydrogen is in the range of 10s of K or lower. At 100 K,
the rate coefficient is αRA = 10 × 10−17 cm3s−1, and if there is unit overlap between the positron
plasma and the antihydrogen, then the reaction rate, the product ne αRA, at this temperature would
be 10 × 10−7 s−1 per antihydrogen atom. As the temperature falls to 10 K, the reaction rate falls in an
essentially linear manner to be 1 × 10−7 s−1 per antihydrogen atom. This might just be observable,
given the long antihydrogen storage times achieved by ALPHA [8], if all ALPHA’s antiprotons could
be converted into trapped Hs, while still allowing the anti-atoms to interact with warm positron clouds.
Cold p numbers, and hopefully those of trapped H as well, will likely be enhanced by around a factor
of 102 within the next three years as CERN’s AD facility is enhanced by the addition of a further
storage ring, ELENA (see, e.g., [70]) that will deliver antiprotons to experiments at an energy nearer
100 keV than the current 5 MeV.
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Abstract: The Coulomb-dipole theory of positron vs. electron impact ionization of hydrogen
(as a proxy for neutral atoms) is reviewed, emphasizing how the analytic form of the threshold law
(but not the magnitude) can be the same, whereas the physics of each is entirely different.

Keywords: Coulomb-dipole theory; positron vs. electron impact ionization

Threshold laws have been examined over a long period of time. It is not the purpose of this note
to review the literature, but rather to concentrate on our own [1,2] approach and, in particular, to show
how it applies to both positron as well as electron impact ionization, and to compare it with results
from other Wannier [3] (electron) and modified Wannier (positron) approaches [4] to threshold laws
for positron vs. electron impact ionization.

We start with the basic formula for the yield of two particles emerging from an initial state (Φi):

Q(E) =
∫ ∫

‖ME‖
2
δ(E−→k 1

2 −→k 2
2)d3k1d3k2 (1)

where the transition matrix element is

ME =

∫ ∫
Ψ f (

→
k 1,
→
k 2,
→
r 1,
→
r 2)[Vt(

→
r 1,
→
r 2) −Vi(

→
r 1,
→
r 2)]Φi(

→
r 1,
→
r 2)d3r1d3r2 (2)

The ME is expressed in final state form, whereby Ψ f is, in principle, the exact solution of
the Schrodinger equation, (potential Vt); Ψ f is normalized as a plane (s-partial) wave with unit
amplitude at infinity, and Φi is the initial state before the interaction has taken place. Let us deal with
electron/positron impact ionization of hydrogen. Then, the (s-wave) initial state is

Φi =
sin(kir1)

kir1
φ10(r2) (3)

Which implies (in Rydberg units)

Vi = − 2
r2

(4)

So that
Vt−Vi = ∓ 2

r1
± 2

r12
(5)

where the upper sign refers to electron and the lower sign positron scattering. Thus, the ME
becomes explicitly

ME = ∓
∫ ∫

Ψ f
∓(→r 1,

→
r 2,
→
k 1,
→
k 2)(

2
r1
− 2

r12
)

sin(kir1)

kir1
φ10(r2)d3r1d3r2 (6)
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This shows explicitly how the ME, from which the threshold law is derived, relates to the exact
solution,Ψ f , of the Schrodinger equation. The Wannier law [3] does not deal directly with the wave
function, but is (in my opinion) a brilliant analysis of the final state treated as a classical system. For
electron-atom (ion) ionization, it gives the well-known threshold law

Q−(W)(E) ∝ E− 1
4 +

μ
2 |
μ= 1

2 [
100−9
4z−1 ]

1
2
∝ E1.1268 (7a)

where z = charge of the residual ion (z = 1 for neutral atom, specifically H, ionization). For positron
impact, the classical theory is quite different, and Klar [4] has derived

Q+(E) ∝ E2.65... (7b)

However, the classical assumption is not, in my opinion, fully justified. We believe the threshold
is controlled by the region of phase space in which the outgoing particles do not share the available
energy equally (i.e., the symbol �means between a factor 2 and 10). In this region, the faster particle
sees the slower particle plus the residual ion as a unit, which is a dipole, whose dipole moment is the
distance of the slower particle from the residual ion. At the same time, the slower particle sees the
residual ion directly, i.e., it is a pure Coulomb wave. Thus, the name Coulomb-dipole (CD) theory.
Mathematically, this derives from the fact that the potential reduces as below in the CD region

Vt = ∓ 2
r1
− 2

r2
± 2

r12
� − 2

r2
± 2r2

r2
1

cos(ϑ12) (8)

For electron/positron impact, ϑ12 = π/0. This says in the electron case that the two outgoing
electrons repel each other and come out on opposite sides of the residual ion (the proton in the case of
hydrogen), but with one electron much farther out than the inner electron, such that it sees the inner
electron and the residual ion as a dipole facing away from the faster, outgoing electron, whereas in
the positron impact case the outgoing positron is the faster particle and it sees the dipole formed by
the slower electron and the residual ion facing toward the faster particle. In both cases, the potential
between the faster particle and the dipole is attractive; thus,

Vt −Vi � −2r2

r2
1

(9)

Thus, the dipole moment seen by the faster particle is = 2r2. At the same time, the slower particle
(an electron in both cases) comes out seeing the full charge of the residual ion (as a pure Coulomb
wave). The associated wave function is

Ψ f ∝ Fd(r1, r2, k1)Fc(r2, k2) (10)

This is so in both cases. Thus, the matrix element reduces to

MECD(E, k1, k2) ∝
∞∫

0

r1
2dr1

1
2 r1∫
0

r2
2dr2Fd(r1, r2, k1)Fc(r2, k2)[∓ 2

r1
± 2

r1 ± r2
]
sin(kir1)

k1r1
φ10(r2) (11)

In (11), we have switched to the SSCL (Spherically Symmetric Contra/Co Linear) model [5],
wherein the interaction 2

r12
→ 2

r1∓r2
, and in the CD region (r1 � r2 ; k1 � k2) the interaction in (11)
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reduces to − 2r2
r1

2 (in the first approximation) in both cases (i.e., an attractive dipole). Thus, finally the
CD matrix element reduces to

MECD(E, k1, k2) ∝
∞∫

0

r1
2dr1

1
2 r1∫
0

r2
2dr2Fd(r1, r2k1)Fc(r2, k2)[−2r2

r1
2 ]

sin(kir1)

k1r1
φ10(r2) (12)

From (12), it is clear that both the electron and positron threshold laws will have the same form.
The derivation of the threshold law from (12) via Equation (1) is given in Ref. [1,2]; it is

Q±(E) ∝ E

(ln(E))2 [1 + C sin(α ln(E) + β)] (13)

Note first that (13) is not a pure power law. However, it is important also to realize its limitations,
which are contained in (12) where the proportionality constant and limits of integration imply:

(a) The constant of proportionality as between positron vs. electron impact ionization will be entirely
different. (The respective Schrodinger equations are different. It is only in the respective CD
regions that the wave functions have a similar form, cf. Equation (10); I would expect the electron
to be much larger than the positron constant of proportionality.)

(b) The energy distribution cross section, from which (13) is derived does not include the non-
CD region k1 ≥ k2 ≥ 1

2 k1. This means a major part of the energy distribution (cross section) is
not included. Specifically, when � is interpreted > 2, we find for k2

2 > (1/5)E that the energy
distribution is not covered by the CD theory. The part that is covered has the following form [4]:

σE(ε) ∝ [1 + cos(α ln(ε) + β))

(ln(ε))2 ] (14)

In (14), ε is the energy of the slower electron in the region ε < E/5. Nevertheless, the area under
this restricted part of the energy distribution curve is, according to the CD theory [1], larger than the
area under the middle part, which is the dominant contributor to the total yield curve in the threshold
limit (E→ 0) [6,7].

We conclude by noting that a recent numerical calculation of the positron-atom impact cross
section at very low energies by Bray et al. [8] gives results that are consistent with Klar’s prediction.
On the other hand, an experiment on positron-argon ionization [9], with an energy resolution not fine
enough to test the modulation of the CD theory, found linear dependence, which is consistent with the
CD theory [1,2] in the first approximation.
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Abstract: The excitation cross sections of the nS states, n = 2 to 6, of atomic hydrogen at various
incident positron energies (10.23 to 300 eV) were calculated using the variational polarized-orbital
method. Nine partial waves were used to obtain converged cross sections. The present results
should be useful for comparison with results obtained from other theories and approximations.
The positron-impact cross section was found to be higher than the electron-impact cross sections.
Experimental and other theoretical results are discussed. The threshold law of excitation is discussed
and the cross sections in this region were seen to obey the threshold law proportional to (ln k f )

−2.
Cross sections were calculated in the Born approximation also and compared to those obtained using
the variational polarized orbital method.

Keywords: positron-impact excitation; variational polarized orbital method; Born approximation

1. Introduction

Dirac [1] in 1928 formulated the well-known relativistic wave equation and predicted an antiparticle
of spin h̄/2. This antiparticle, later on called the positron, was detected experimentally by Anderson [2]
by observing, in a cloud chamber, decay of cosmic ray pions into positrons and neutrinos. Over the years,
research has been carried out to study its interaction with matter. For example, positronium annihilation
has been observed from the center of the galaxy and also in solar flares. Positron annihilation can
be used to study metallic defects [3]. They are essential in the formation of antihydrogen and in
understanding of positron binding to neutral systems. Resonances in electron-atoms and electron-ions
are ubiquitous but not in the case of positrons. However, some resonances have been calculated
in positron-atom systems. Positrons are also used to detect diseases in a body by observing the
positronium decay, called positron emission tomography.

The static potential between an incoming positron and a fixed target and the polarization potential
are of opposite signs. The resultant potential is attractive but not attractive enough to bind a positron
to atomic hydrogen. Total cross sections for positrons colliding with hydrogen atoms have been
measured by Zhou et al. [4] in the energy range 1 to 1000 eV. Their measured cross sections include
elastic scattering, excitation to all the higher levels, and perhaps ionization, but not annihilation and
positronium cross sections. Total cross sections have been calculated by Gien [5] using the modified
Glauber approximation, and by Walters [6] using a multi-pseudostate approximation, supplemented
by the second Born approximation. He has calculated elastic and excitation of 1S to 2S and 2P cross
sections, 2P cross sections being much larger than the 2S cross sections. Total cross sections calculated
by him are the sum of elastic and excitation cross sections to all levels above n = 1. In a previous
publication [7], results for positron-impact excitation cross sections for the excitation of the 2S state of
atomic hydrogen were given for the incident positron energies (10.30 to 300 eV). It was shown that at
high-incident energies cross sections are very close to those obtained using the Born approximation.
In that calculation [7], there was a misprint in the computer program for scattering, found recently,

Atoms 2020, 8, 9; doi:10.3390/atoms8010009 www.mdpi.com/journal/atoms85
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affecting results for higher partial waves. For example, for k = 0.90 the cross section changes from
previous value of 0.247 to 0.246, at k = 1.2 it changes from 0.338 to 0.317, and at the highest k = 4.696
it changes from 0.0128 to 0.0151. After correcting, the same calculation was repeated and extended
to the excitation of higher states up to n = 6. Previous results were not much affected. Nine partial
waves were used to obtain converged cross sections. The results of the previous calculation were
compared with the close-coupling results of Burke et al. [8] and of Morgan [9] for the 2S excitation.
A close-coupling calculation was carried out by Sarkar and Ghosh [10] with two basis sets of hydrogen
and positronium states. The agreement is good with all these calculations and the comparison is not
repeated here. There are various approximations to calculate excitation cross sections. The aim of this
calculation is to provide another method for comparison of results obtained from various theories and
approximations. Rydberg units are used and cross sections are in units of πa2

0.

2. Theory and Calculations

The present calculations were carried out using the variational polarized-orbital method [11],
using the expression for the cross section:

σ =
k f

ki
|T f i|2, (1)

where ki and k f are the initial and final momenta of the positron, respectively, and the transition
matrix is:

T f i = −( 1
4π

) < Ψ f

∣∣∣∣∣ 2r1
− 2

r12

∣∣∣∣∣Ψi > (2)

The positions of the incident positron and target electron is given by r1 and r2, r12 =
∣∣∣∣→r 1 −→r 2

∣∣∣∣.
The nucleus is assumed to be of infinite mass and the incident wave function is Ψi, which, in principle,
is an exact solution of the Schrödinger equation. It is given by:

Ψi(
→
r 1,
→
r 2) = u(

→
r 1)Φpol(

→
r 1,
→
r 2) (3)

The scattering function u(
→
r 1) in the plane wave normalization for a partial wave L is given by:

u(
→
r 1) = a(L)

u(r1)

r1
YL0(Ω1). (4)

The plane wave normalization is:

a(L) =
√

4π(2L + 1). (5)

Other quantities in Equation (3) are given in [7] and the parameter β in Equation (8) of [7] is
generally equal to 0.5. The final state wave function for a partial wave L is given by:

Ψ f (
→
r 1,
→
r 2) = ei

→
k f .
→
r 1 ΦnS(

→
r 2) = 4π(i)L jL(k f r)

∑
YLm(k̂ f )YLm(Ω1)ΦnS(

→
r 2) (6)

ΦnS are the excited S state functions. Using Equations (3) and (6) in Equation (2), we find that the
cross section is given by:

σL(πa2
0) = 16π(2L + 1)2 k f

ki
(ZL)

2, (7)

where

ZL =

∫
r1dr1u(r1) jL(k f r)X(r1), (8)
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and

X(r1) =

∫
d
→
r 2

Rns(r2)

r12
(R1s(r2) +

χ(r1)

r2
1

e−r2(0.5r2
2 + r2)

cos(θ12)√
π

). (9)

jL is the spherical Bessel function, Rns and R1s are the radial functions for the nS and 1S states.
In the expression (7), we used:

∑
m
|YLm(k̂ f )|2 =

2L + 1
4π

, (10)

Total cross sections converge when L is equal to 8 or less and it is given by:

σ(πa2
0) =

8∑
L=0

σL(πa2
0). (11)

3. Born Approximation

The Born approximation is obtained by replacing the scattering function u(
→
r 1) in Equation (3) by

an incident plane wave ei
→
k i.
→
r i :

T f i = − 1
4π
< e−i

→
k f ·→r 1ϕ2S(

→
r 2)

∣∣∣∣∣ 2r1
− 2

r12

∣∣∣∣∣ei
→
k .i
→
r 1 Φpol > (12)

T f i = T1 + T2 (13)

It can be shown that:

T1 =
4
√

8

(a2 + p2)3 , (14)

T2 =

√
2

3

∞∫
0

dr sin(pr)χST(r)[− 112
r2a5 + e−ar(

58r
a2 +

56
a3 +

112
a4r

+
112
a5r2 )] (15)

Cross section is given by:

σ =
k f

ki

∫
d
�
k f

∣∣∣∣∣T
∣∣∣∣∣
2

(16)

In the above equations,
→
p =

→
k i −

→
k f , a = 3/2, and χST is given in Equation (7) of [7].

4. Results

Results for various cross sections, calculated in the variational polarized approximation [11],
are given in Table 1 from ki = 0.867 to ki = 4.696. The higher excited state cross sections are small
compared to the n = 2 excitation cross sections. However, they increase as the incident energy increases.
Walters [6] has calculated elastic and excitation to 2S and 2P cross sections at k = 2.0, 2.711, 3.834,
and 4.696 corresponding to 54.4, 100, 200, and 300 eV. In Table 2, results for elastic and total excitation
cross sections obtained in this calculation are given and are compared to those obtained by Walters [6].
He has calculated elastic and excitation to 2S and 2P states, but not for higher states. The sum of
these three cross sections does not add up to his total cross sections, which agree with those obtained
by Gien [5] and the experimental results obtained by Zhou et al. [4]. It seems there is a substantial
contribution from higher-excited nP, nD, and nF states. These calculations will be carried out in the
near future.
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Table 1. Excitation cross sections of nS states, n = 1 to 6, of atomic hydrogen using the variational
polarized orbital method with lmax = 8.

ki 2S 3S 4S 5S 6S Total

0.867 4.68 (−2) 4.68 (−2)
0.8675 5.75 (−2) 5.75 (−2)
0.868 6.64 (−2) 6.64 (−2)
0.869 8.12 (−2) 8.12 (−2)
0.87 9.35 (−2) 9.35 (−2)
0.88 1.69 (−1) 1.69 (−1)
0.89 2.14 (−1) 2.14 (−1)
0.90 2.46 (−1) 2.46 (−1)
0.92 2.90 (−1) 2.90 (−1)
0.95 3.28 (−1) 8.90 (−4) 3.28 (−1)
0.96 3.35 (−1) 1.39 (−3) 3.37 (−1)
1.00 3.53 (−1) 2.60 (−3) 5.94 (−4) 2.32 (−2) 3.86 (−5) 3.79 (−1)
1.10 3.50 (−1) 4.27 (−3) 9.09 (−4) 1.02 (−1) 3.30 (−4) 4.57 (−1)
1.20 3.17 (−1) 5.20 (−3) 1.01 (−3) 4.71 (−2) 6.00 (−4) 3.71 (−1)
1.40 2.50 (−1) 6.03 (−3) 1.15 (−3) 5.40 (−2) 1.97 (−3) 3.13 (−1)
1.50 2.20 (−1) 6.12 (−3) 1.19 (−3) 5.62 (−2) 2.62 (−3) 2.86 (−1)
1.55 2.05 (−1) 6.18 (−3) 1.21 (−3) 5.72 (−2) 2.77 (−3) 2.72 (−1)
1.60 1.95 (−1) 6.19 (−3) 1.23 (−3) 8.13 (−2) 2.98 (−3) 2.63 (−1)
1.80 1.53 (−1) 6.07 (−3) 1.24 (−3) 5.91 (−2) 4.43 (−3) 2.24 (−1)
2.00 1.21 (−1) 5.83 (−3) 1.18 (−3) 5.68 (−2) 5.09 (−3) 1.90 (−1)
2.50 7.13 (−2) 5.11 (−3) 8.97 (−4) 4.36 (−2) 4.39 (−3) 1.25 (−1)
2.711 5.83 (−2) 4.80 (−3) 7.76 (−4) 3.77 (−2) 3.66 (−3) 1.05 (−1)
3.834 3.24 (−2) 3.30 (−3) 4.32 (−4) 2.05 (−2) 1.26 (−3) 5.85 (−2)
4.696 1.51 (−2) 2.41 (−3) 3.52 (−4) 1.66 (−2) 4.33 (−4) 3.49 (−2)

Table 2. Elastic and total excitation cross sections (πa2
0) and those obtained by Walters.

E (eV) A a B b C c D d E e F f

54.4 3.54 (−1) 2.62 (−1) 6.16 (−1) 1.37 3.02 2.85
100.0 2.15 (−1) 1.05 (−1) 3.20 (−1) 9.80 (−1) 2.24 2.00
200.0 9.58 (−1) 5.85 (−2) 1.54 (−1) 6.28 (−1) 1.33 1.24
300.0 8.18 (−2) 3.49 (−2) 1.17 (−1) 4.65 (−1) 9.69 (−1) 8.73 (−1)

a Elastic cross sections. b Total excitation cross sections (n = 2 to 6).c Elastic and excitation cross sections in the
present calculation. d Elastic and excitation to 2S and 2P states obtained by Walters [6]. e Total cross sections
obtained by Walters [6]. f Total cross sections (interpolated) obtained by Gien [5].

In Figure 1, total excitation cross sections for 2S to 6S are shown. We added cross sections at
ki = 0.867, 0.8675, 0.868, and 0.869, close to the threshold. In the present calculation, very close to
the threshold kf tends to zero and the Bessel function is close to 1, making cross sections large in the
threshold region.

The minimum is at k = 0.87 and the cross sections increase smoothly up to k = 1.0, then they
start decreasing. The cross sections in the threshold region are shown in Figure 2. Wigner [12] has
emphasized the importance of the long-range forces near the threshold region. The long-range force
has been included in the present calculation, as indicated in [7,11]. In the threshold region the cross
sections are proportional to (ln(k f ))

−2 [13]. The cross sections calculated here in the threshold region
can be fitted to −0.03367+ 3.477672

(ln(k f ))
2 − 0.12238

(ln(k f ))
4 , as shown by the solid line in Figure 2. Threshold behavior

can be a useful diagnostic of the long-range potential [13].
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Figure 1. (Color online) Total excitation cross sections as a function of the incident k to nS states, n = 2
to 6.

Figure 2. (Color online) 2S excitation cross sections as a function of the incident k in the threshold
region, the solid line represents the fit to the squares (calculated cross sections).

No scaling law between the cross sections proportional to the power of n, the quantum number of
the excited state, could be discerned. The cross sections including polarization of the target obtained in
the Born approximation are given Table 3. In general the Born approximation is valid at high-incident
energies. However, the agreement is quite good even at low-incident energies.
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Table 3. 2S excitation cross sections in the Born approximation.

ki Cross Section ki Cross Section ki Cross Section

0.867 4.23 (−2) 0.92 3.11 (−1) 1.55 3.30 (−1)
0.8675 5.21 (−2) 0.95 3.77 (−1) 1.60 3.13 (−1)
0.868 6.03 (−2) 0.96 3.93 (−1) 1.80 2.53 (−1)
0.869 7.40 (−2) 1.00 4.42 (−1) 2.00 2.08 (−1)
0.87 8.56 (−2) 1.10 4.82 (−1) 2.711 1.15 (−1)
0.88 1.61 (−1) 1.20 4.66 (−1) 3.834 5.75 (−2)
0.89 2.10 (−1) 1.40 3.88 (−1) 4.696 3.83 (−2)
0.90 2.50 (−1) 1.50 3.49 (−1)

A comparison of positron-impact excitation cross sections and electron-impact cross sections to the
excited 2S is shown in Figure 3, which was given in the previous publication [7] and is repeated again
because results at higher energies are not the same as before, as explained above. The positron-impact
cross sections are higher than the electron-impact cross sections.

Figure 3. (Color online) Comparison of the 2S excitation cross sections as a function of the incident k of
positron (upper curve) and electron impacts (lower curve).

5. Conclusions

We applied the variational polarized method to calculate excitation cross sections by positron
impact for 2S state to 6S states. Results of this calculation were compared to the results obtained using
other theories and approximations. The positron-impact cross sections were found to be higher than
the electron-impact cross sections. Cross sections in the threshold region were proportional (ln (k f )

−2

and they were fitted to a form depending on (ln(k f ))
−2 and (ln(k f ))

−4. The present results were also
compared with those obtained using the Born approximation.
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Abstract: Recent observations on resonance states of the positronium negative ion (Ps−) in the
laboratory created huge interest in terms of the calculation of the resonance parameters of the simple
three-lepton system. We calculate the resonance parameters for the doubly excited 1P◦ states in Ps−
using correlated exponential wave functions based on the complex-coordinate rotation method. The
resonance energies and widths for the 1P◦ Feshbach resonance states in Ps− below the N = 2, 3, 4, 5 Ps
thresholds are reported. The 1P◦ shape resonance above the N = 2, 4 Ps thresholds are also reported.
Our predications are in agreement with the available results. Few Feshbach resonance parameters
below the N = 4 and 5 Ps thresholds have been reported in the literature. Our predictions will provide
useful information for future resonance experiments in Ps−.

Keywords: positronium negative ion; Feshbach and shape resonance states; correlated exponential
wave functions; complex-coordinate rotation method

1. Introduction

The study of doubly excited resonance states (DERS) in Ps− has found significant relevance since
the experimental observations of Michishio et al. [1] for a 1P◦ shape resonance in Ps− near the N = 2
positronium (Ps) threshold. The DERS that appear from the closed channel and open channel segments
of the scattering wave functions are commonly known, respectively, as Feshbach resonances (or closed
channel resonances) and shape resonances (or open channel resonances). The present work aims to
report on both the 1P◦ shape and Feshbach resonances in Ps−.

To introduce this system, it would be of interest to recall its historical development from its
existence and stability. The existence of the Ps− was predicted by Wheeler in 1946 [2], and its ground
state energy—the only stable state—was first reported by Hylleraas in 1946 [3]. Mills first reported
the observation of the Ps− in the laboratory [4]. He also reported the decay rate of this elusive ion [5].
Since then, a great number of theoretical studies and several experimental observations have been
devoted to exploring the basic properties of this simplest bound three-lepton (e−, e+, e−) system,
and such a system was investigated as an interesting triatomic (XYX) molecule [6]. The molecular
spectra of the Ps− exhibiting the rotational and vibrational spectra are presented with illustrations in
previous articles [6,7]. Theoretical predictions and experimental determinations for the Ps− have been
highlighted in recent papers [8–16].

The DERS in Ps− were first reported by Ho [17]. He calculated the S-wave resonance parameters
(RP) of this ion. After this pioneering work [17] on the resonance states in Ps−, a great number of
theoretical calculations on resonance states in Ps− below the N = 2 Ps threshold have been reported in
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the literature, including the 1P◦ Feshbach [7,18–22] and shape [7,12,22,23] resonance states. Until now,
many of these studies used different sophisticated methods or techniques or approaches, such as
the technique of direct solution of the three-body scattering problem [24], the stabilization method
(SM) [11,21,25,26], the complex-coordinate rotation method (CRM) [11–13,25,26], the technique of
adiabatic molecular approximation [6], the Kohn variational method [27], the adiabatic treatment
in hyperspherical coordinates (ATHC) [18,28,29], and the hyperspherical close-coupling approach
(HCCA) [22,30–32].

First, we will briefly summarize previous works studying the doubly-excited 1P◦ resonance states,
as these DERS are of our present interest. The 1P◦ Feshbach resonances in Ps− below the N = 2 Ps
threshold have been studied by Botero [18] using the ATHC, and by Bhatia and Ho [19], using the CRM
with Hylleraas-type wave functions (HW). Ho and Bhatia [20] studied the doubly excited 1P◦ Feshbach
resonance states below the N = 3, 4, 5, 6 Ps thresholds using the HW based on the CRM. The 1P◦ shape
resonances in the Ps− above the N = 2, 4 and 6 threshold have also been reported by Ho and Bhatia [23],
using the HW and utilizing the CRM. Igarashi et al. [22] reported the 1P◦ Feshbach resonances near the
N = 2, 3, 4 Ps thresholds and shape resonance associated with the N = 2 Ps threshold in the framework
of HCCA. We have reported the 1P◦ Feshbach resonance parameter [21] below the N = 2 Ps threshold
based on the SM and the 1P◦ shape resonance parameters [12] above the N = 3 Ps threshold based on
the CRM using the exponentially correlated wave functions (ECW). In the present work, we calculate
the 1P◦ Feshbach RP in Ps− below the N = 2, 3, 4, 5 thresholds and the shape RP in Ps− above the
N = 2 and 4 thresholds by using the ECW and the CRM. Throughout this paper, the RP are meant for
resonance energies and total widths, and atomic units (a.u.) are used unless stated otherwise.

2. Theory

The Hamiltonian (in atomic units) for the proposed (e−, e+, e−) system can be written as

H = T + V, (1)

T = −1
2

3∑
i=1

∇2
i , (2)

V =
3∑

i, j = 1
i < j

qiqj

ri j
, (3)

where q1, q2, and q3 indicate the charges of two electrons 1, 2 and the positron, respectively and rij is
the relative distance between the particle i and j.

As stated in the previous section, the 1P◦ state ECW can be proposed in the following form by
introducing an overall scaling parameter ω and a permutation operator P̂12 for two electrons:

Ψ(ω) =
NB∑

i = 1
l1 + l2 = L

Ciϕi(ω), (4)

ϕi(ω) = (1 + P̂12)

NB∑
i = 1

l1 + l2 = L

Ci exp[(−αir13 − βir23 − γir21)ω]Y
l1,l2
LM (r13, r23) (5a)
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A well-known form of the bipolar harmonics Y
l1,l2
LM (r1, r2):

Y
l1,l2
LM (r13, r23) = rl1

13rl2
23

∑
m1,m2

(
l1 l2 L

m1 m2 −M

)
Yl1m1(r̂13)Yl1m2(r̂23), (5b)

where NB is the number of basis terms. The nonlinear variational parameters αi, βi,γi in the ECW (4)
are generated by the proper choice of a quasi-random process of the following form

Zi =
[1
2

k(k + 1)
√

pZ

]
(R2,Z −R1,Z) + R1,Z, (6)

[z] assumes the fractional part of z, the real intervals [R1,Z, R2,Z] (Z = α, β,γ) require optimization
to obtain the appropriate values of R1,Z and R2,Z. pZ stands for a prime number and it takes the
numbers 2, 3, and 5 for Z = α Z = β and Z = γ, respectively.

To set the present DERS calculations using the CRM [33], the radial coordinates are transformed
following a dilation rule comprising of the so-called rotational angle θ.

r→ r exp(iθ), (7)

and the form of the transformed Hamiltonian:

H(θ)→
⎛⎜⎜⎜⎜⎜⎝−1

2

3∑
i=1

∇2
i

⎞⎟⎟⎟⎟⎟⎠ exp(−2iθ) +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3∑
i, j = 1

i < j

qiqj

ri j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
exp(−iθ), (8)

In the case of nonorthogonal basis functions, the overlap and Hamiltonian matrices take the form

Nnm(ω) =
〈
ϕn(ω)

∣∣∣ϕm(ω)
〉

(9)

and
Hnm(θ,ω) =

〈
ϕn(ω)

∣∣∣H(θ)
∣∣∣ϕm(ω)

〉
(10)

The complex characteristic values can be obtained by solving the equation
∑

n

∑
m

Cnm[Hnm(θ,ω) − E(θ,ω)Nnm(ω)] = 0 (11)

Resonance poles can be located by observing the complex energy E(θ,ω) for various values of θ
and ω. The complex resonance energy is given by

Eres = Er − iΓ
2

(12)

where Er is the resonance energy, and Γ is the width. The RP are identified by locating stabilized roots
with respect to the variation of the scaling parameter ω in the ECW for optimum choice of the nonlinear
variational parameters αi, βi,γi, and of the rotational angle θ.

3. Results and Discussions

To extract RP (resonance positions and widths), we calculate the complex-energy eigen values
E(θ,ω) for different values of θ and ω by diagonalizing the transformed Hamiltonian matrix. For the
present problem, the parameters θ and ω are varied respectively from 0.00 to 0.60 with mesh size
0.02 and from 0.1 to 0.6 with mesh size 0.001. Exploiting the computational technique, we extract
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the 1P◦ resonance states associated with the N = 2, 3, 4, 5 Ps threshold. Figure 1 depicts the
rotational paths near the pole for the 1P◦ (1) Feshbach resonance (FR) in the Ps− lying below the
Ps (N = 2) threshold in the energy plane (EP) for five different values of the scaling parameter
ω using 900-term ECW. In this figure θ = 0.20 (002) 0.40 means the θ assumes the value from 0.2
to 0.4 with mesh size 0.02. Similarly, Figures 2–5 shows respectively the rotational paths near
the poles for the 1P◦ (2) Feshbach resonance below the N = 2 Ps threshold, for the 1P◦ (4) FR
below the N = 3 Ps threshold, for the 1P◦ (5) Feshbach resonance below the N = 5 Ps threshold,
and for the 1P◦ (7) FR below the N = 5 Ps threshold. From Figure 1, we can determine the RP
(Er, Γ/2) as (−0.063155862 ± 2 × 10−9, 0.459 × 10−6 ± 1 × 10−9) a.u. In a similar way, from Figures 2–5,
we can estimate the RP (Er, Γ/2) respectively as (−0.06254245 ± 4 × 10−8, 0.11 × 10−6 ± 3 × 10−8),
(−0.0281013 ± 1 × 10−6, 0.169 × 10−4 ± 2 × 10−6), (−0.010580 ± 3 × 10−6, 0.16 × 10−4 ± 3 × 10−6), and
(−0.010384 ± 3 × 10−6, 0.19 × 10−4 ± 3 × 10−6). All the results obtained from the present calculations
are summarized in Tables 1 and 2.

In Table 1, we present the 1P◦ Feshbach resonance energies and widths (in a.u.) in Ps− below
the N = 2, 3, 4, 5 Ps thresholds. The 1P◦ (7) FR below the N = 4 Ps threshold and the 1P◦ (5), 1P◦ (6),
1P◦ (7), 1P◦ (8) Feshbach resonances below the N = 5 Ps threshold are reported for the first time in
the literature, to the best of our knowledge. In this table, we also present the 1P◦ shape resonances
obtained from the resent calculations above the N = 2 and 4 Ps thresholds. The 1P◦ shape RP above the
N = 3 threshold are taken from our recent work [12] and are presented in this table for completeness.
In Table 1, we have also included the available results from the other calculations [18–23]. Table 1
shows that our predications of RP using the ECW are in agreement with the results of Bhatia et al. [19]
and Ho et al. [20,23] using HW and the CRM. The 1P◦ intrashell resonance states are also in agreement
with those obtained by Ivanov and Ho [7] using CI-type basis functions and the CRM. Table 1 also
shows that our resonance energies and widths are fairly comparable with the reported results of
Igarashi et al. [22], except for the resonance widths of the 1P◦ (4), 1P◦ (5), 1P◦ (6) resonance states below
the N = 4 Ps threshold. The numbers in the table inside parentheses denote the uncertainty in the
last digit. But our listed results in this table from the works of Ho and collaborators [7,19,20,23] are
converted from Rydberg units to atomic units, and so the uncertainty in the last digit exhibits a value
with fractional part. The discrepancy in resonance widths is probably due to the technique used or due
to interference of higher lying states in HCCA calculations. The discrepancy with other calculations in
terms of precision is probably due to the use of different computational tools in different calculations.
Though only a few results are presented as new in this paper, all of the results shown in Table 1 were
obtained using different wave functions.

Our estimated FR energy and width below the Ps (N = 2) threshold are also in good accord
with our previous work using the 600-term CEW and the stabilization method [21]. In Table 2,
we present our calculated resonance energies for the doubly excited 1P◦ states using the ECW and
the CRM in electron volts (eV). To express our present results from a.u. to eV, we measure the
resonance energy from the ground state of the Ps− (−0.2620050702325 a.u. [34]). The corresponding
resonance widths obtained from this calculation are presented in meV. To convert a.u. to eV, we use the
relation 1 a.u. = 27.21138501195 [35]. Table 2 shows that the 1P◦ shape resonance above the N = 2 Ps
threshold obtained from the present calculation is in good agreement with the recent experimental
observation [1]. We have examined convergence of our calculations with the increasing number of
terms in ECW. We have also studied the stability of our works with different choices of nonlinear
variational parameters. Our estimated resonance parameters are convergent and stable up to the
quoted digits in Table 1.
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Figure 1. The rotational paths near the pole for the 1P◦ (1) FR of Ps− lying below the Ps (N = 2) threshold
in the EP for five different values of the scaling parameter ω using 900-term wave ECW.
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Figure 2. The rotational paths near the pole for the 1P◦ (2) FR of Ps− lying below the Ps (N = 2) threshold
in the EP for three different values of the scaling parameter ω using 900-term ECW.
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Figure 3. The rotational paths near the pole for the 1P◦ (4) FR of Ps− lying below the Ps (N = 3) threshold
in the EP for three different values of the scaling parameter ω using 900-term ECW.
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Figure 4. The rotational paths near the pole for the 1P◦ (5) FR of Ps− lying below the Ps (N = 5) threshold
in the EP for three different values of the scaling parameter ω using 900-term ECW.
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Table 1. The 1P◦ Feshbach and shape RPs (in a.u.) in Ps− associated with the N = 2, 3, 4, 5 Ps thresholds.
The numbers in the parentheses denote the uncertainty in the last digit.

Present Calculations Other Calculations

Er
Γ
2 Er

Γ
2 Reference

N = 2: Eth = −0.0625

1P◦ (1) −0.063155862(2) 0.459(1) × 10−6

−0.0631553(1.5)
−0.0631559
−0.063155
−0.0625087

0.5(1.5) × 10−6

0.4435 × 10−6

0.41 × 10−6

a
b
c
d

1P◦ (2) −0.06254244(4) 0.11(3) × 10−6 −0.062543 0.125 × 10−6 c

1P◦ (shape) −0.06218(2) 0.00020(2) −0.06217(1.5) 0.000225(1.5) e
−0.062158 0.00032 c

N = 3: Eth = −0.0277777777778

1P◦ (1) −0.03162236(2) 0.0001103(2) −0.03162235(0.5) 0.0001103(0.5) a
−0.031621 0.00011 c

1P◦ (2) −0.02921495(2) 0.75(2) × 10−6 −0.02921495(0.5) 0.75(0.5) × 10−6 a
−0.029212 0.75 × 10−6 c

1P◦ (3) −0.0281276(1) 0.33(3) × 10−6 −0.028125 0.30 × 10−6 c
1P◦ (4) −0.0281013(1) 0.169(2) × 10−4 −0.028099 0.165 × 10−4 c
1P◦ (5) −0.027863(1) 0.2(1) × 10−6 −0.027864 0.435 × 10−7 c
1P◦ (6) −0.027809(2) 0.28(3) × 10−5 −0.027811 0.175 × 10−5 c

1P◦ (shape) −0.0255(2) 0.0021(2) f

N = 4: Eth = −0.015625

1P◦ (1) −0.01889032(1) 0.0000154
−0.01889035(0.5) 0.0000154(0.5) g
−0.018890385(1) 0.000015395 h
−0.018863 0.000016 c

1P◦ (2) −0.01704109(1) 0.8(2) × 10−6 −0.01704125(0.5) 0.65 × 10−6 g
−0.017031 0.55 × 10−6 c

1P◦ (3) −0.016536(2) 0.10(2) × 10−4 −0.0165385(0.5) 0.098(0.5) × 10−4
g−0.016480 0.1 × 10−4

1P◦ (4) −0.016163(1) 0.2(1) × 10−5 −0.016161(2.5) 0.235(2.5) × 10−5 g
−0.016139 0.21 × 10−6 c

1P◦ (5) −0.015882(2) 0.20(2) × 10−4 −0.015880 (2.5) 0.085(2.5) × 10−4 g
−0.015855 0.32 × 10−5 c

1P◦ (6) −0.015802(1) 0.10(1) × 10−5 −0.0158025(1) 0.125(1) × 10−5 g
−0.015819 0.65 × 10−7 c

1P◦ (7) −0.01566(2) 0.035(3) × 10−5

1P◦ (shape) −0.01548(1) 0.000022(2) −0.0154875(0.5) 0.000015(0.5) e
−0.0154775(1.5) 0.0000305 h

N = 5: Eth = −0.01

1P◦ (1) −0.012463(2) 0.16(2) × 10−4 −0.0124625(0.5) 0.1525(5) × 10−4 g
−0.01246295 0.1525 × 10−4 h

1P◦ (2) −0.011216(1) 0.2(1) × 10−5 −0.0112155(2.5) 0.135 × 10−5 g
1P◦ (3) −0.01104(1) 0.22(1) × 10−4 −0.01104375(0.5) 0.1575(0.5) × 10−4 g

1P◦ (4) −0.01083(2) 0.70(2) × 10−4 −0.010830(0.5) 0.68(0.5) × 10−4 g
−0.01083009(1.5) 0.68045 × 10−4 h

1P◦ (5) −0.010580(3) 0.16(3) × 10−4

1P◦ (6) −0.01048(1) 0.2(1) × 10−4

1P◦ (7) −0.010384(3) 0.19(3) × 10−4

1P◦ (8) −0.01022(1) 0.7(1) × 10−4

a: Bhatia and Ho [19], b: Kar and Ho [21], c: Igarashi et al. [22], d: Botero [18], e: Ho and Bhatia [23], f: Kar and Ho
[12], g: Ho and Bhatia [20], h: Ivanov and Ho [7].

99



Atoms 2020, 8, 1

Table 2. The 1P◦ Feshbach and shape RP (in eV) in Ps− associated with the N = 2, 3, 4, 5 Ps thresholds.
The resonance positions are measured from the ground state of the Ps− ion.

Present Calculations

Er(eV) Γ (meV)

N = 2
1P◦ (1) 5.4109623645 0.024980052
1P◦ (2) 5.4276543 0.0060

1P◦ (shape)
5.43752 10.88456

5.437(1) a 10(2) a

N = 3
1P◦ (1) 6.26903263 6.002832
1P◦ (2) 6.33454159 0.0408
1P◦ (3) 6.36412989 0.01796
1P◦ (4) 6.36484555 0.9198
1P◦ (5) 6.37133002 0.0109
1P◦ (6) 6.372799 0.1524

1P◦ (shape) 6.4356 b 114.29 b

N = 4
1P◦ (1) 6.61548907 0.83811
1P◦ (2) 6.66580918 0.0436
1P◦ (3) 6.6795534 0.544
1P◦ (4) 6.6897032 0.108
1P◦ (5) 6.6973496 1.088
1P◦ (6) 6.6995265 0.0544
1P◦ (7) 6.70339 1.9048

1P◦ (shape) 6.70829 1.198

N = 5
1P◦ (1) 6.790385 0.0870
1P◦ (2) 6.824318 0.108
1P◦ (3) 6.829107 1.20
1P◦ (4) 6.834822 3.810
1P◦ (5) 6.841624 0.870
1P◦ (6) 6.844346 1.08
1P◦ (7) 6.846958 1.034
1P◦ (8) 6.85142 3.80

a Experiment (Ref. [1]), b Our recent work (Ref. [12]).
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ω=0.118
ω=0.120
ω=0.122
ω=0.124

Figure 5. The rotational paths near the pole for the 1P◦ (7) FR of Ps− lying below the Ps (N = 5) threshold
in the EP for four different values of the scaling parameter ω using 900-term ECW.

4. Conclusions

In this work, we have calculated the resonance parameters for the doubly excited 1P◦ states in
Ps− using correlated exponential wave functions in the framework of the complex-coordinate rotation
method. The resonance energies and widths for the 1P◦ resonance states in Ps− below the N = 2, 3, 4, 5
Ps thresholds are reported. The 1P◦ shape resonance above the N = 2, 4 Ps thresholds are also reported.
Few resonance states have been identified for the first time in the literature. The resonance energies and
widths obtained from this work, using different wave functions as compared with those used in earlier
investigations, are in agreement with the available data. With the recent experimental observation
of the 1P◦ shape resonance states in the positronium ions, it is hoped that our investigations for the
doubly excited 1P◦ resonance states will provide useful information for future resonance experiments
in Ps−.
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