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The differential and total cross sections for the formation of positronium in its ground state from
Li and Na atoms by the impact of intermediate-energy positrons are calculated in the first Born and
distorted-wave Born approximations. Hellmann-type pseudopotentials are used to represent the
alkali-metal ion cores. The difference in the use of pseudopotentials and the static potential for the
core representation for evaluating various rearrangement cross sections is discussed.

I. INTRODUCTION

There has been a growing interest in the investigation of
electron capture from alkali-metal atom. As an example,
charge-transfer processes with Li have been suggested to
be occurring in plasma diagnostic probes.! Also, alkali-
metal atoms are many-electron systems that can be sim-
plified to be one-electron systems due to a single valence
electron. Theoretical calculations as well as experimental
measurements have been carried out for ionization of and
electron capture from alkali-metal atoms by proton im-
pact (for some recent works see Refs. 1 and 2). The
charge-transfer® and the total collisional* cross sections
for positron impact on alkali-metal atoms have been cal-
culated by several authors, and the total collisional cross
sections have been measured for a potassium target by
Stein et al.’ In the present paper, the first Born approxi-
mation (FBA) and the distorted-wave Born approximation
(DWBA) are used to calculate the cross sections for the
ground-state positronium (Ps) formation from lithium and
sodium by the impact of intermediate-energy positrons.
Although the FBA cross sections are calculated and com-
pared both in the post and the prior forms, DWBA cross
sections are calculated, for computational convenience,
only in the post form.

To compare the effects of different potentials (model
potential versus pseudopotential) describing the ion cores,
the first calculation® is done to calculate the cross sections
for positronium formation from Li in the first Born ap-
proximation by using the static potential for the lithium
ion core. The next calculations, employing FBA and
DWBA, are for the positronium formation in both lithi-
um and sodium using the pseudopotentials. In these cal-
culations the alkali-metal ion cores have been represented
by Hellmann-type pseudopotentials. A significant differ-
ence, in the values as well as in the shape, is observed for
differential cross sections (DCS) in FBA using the pseu-
dopotential and the static potential. A discussion about
the formulation of various potentials representing the ion
cores and the resulting differences in the shape of the
DCS is presented in Secs. II B and III.

II. THEORY
A. Rearrangement cross sections

Let a positron of mass M, with lab impact energy E
and velocity v collide with a target alkali-metal atom at
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rest and form positronium in the ground state by electron
capture from the target (7). Because of the single valence
electron it is reasonable to treat the alkali-metal atom as a
hydrogenic system by representing the ion core by a cen-
tral potential, V,(r), which could either be a pseudopoten-
tial or a model potential. Then the initial and the final
channel interactions are

Vit R)=V, .(t,)+ V,.o(R)=—e>/r,+ V,(R),  (la)
Verr,R)=Vr_(r7)+ V,.r(R)= Vp(rT)—f— V,(R), (1b)

respectively. The position vectors are shown in Fig. 1.
The notation used is similar to that of Ref. 7. The in-
teraction between the projectile and the valence electron is
represented by V., that between the projectile and the
target ion core is represented by V,.r, and that between
the target ion core and the electron is represented by V..
In the present work V,(r) is chosen to be of the Hellmann
or Yukawa type:®

2 2
e e A
V. = - —
(1) P + p exp(—4r)
elay ezaq

(2)

2r2+d??  2r2+d?)’
The parameters A4 and ¢ for the valence electron in lithi-
um and sodium atoms are listed in Ref. 8. @, and «, are
the dipole and the quadrupole polarizability, respectively,
of the alkali-metal ion core. Both the valence electron
and the projectile positron experience the same interaction
with the atomic core except that the signs of the first two
terms of V), change in the case of the positron interaction.
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- T
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FIG. 1. Coordinate system.
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This assumption is believed to be plausible for the follow-
ing reasons. In the case of alkali-metal atoms the single
valence electron is far removed from the alkali-metal ion
core which contains the other tightly bound electrons and,
therefore, the exchange effects in the valence-
electron—ion-core interaction are expected to be small.
Furthermore, the exchange interaction is, in general, a
short-range and much weaker interaction compared to the
static interaction. There are, of course, no exchange ef-
fects in positron—ion-core interactions. Thus, it appears
reasonable to assume that in the energy range being con-
sidered here the valence electron and the incident positron
experience similar interactions, apart from the sign of
some terms, with the alkali-metal ion core. Defining the
quantities

a=Mr/(m +Mr), B=M,/(m +M,), 3

where m is the electron mass and M is the mass of the
alkali-metal ion core, the various position vectors of Fig. 1
are related as

Rr=R,—(1-B)x, ,

rr=R,+pr, ,

R=Rr+(l—a)rr, (4)
R,=BRr+(1—aPB)rr,

r,=—Ry+tarr .

Ry is the position vector of the positron relative to the
center of mass of the alkali-metal atom and R, is that of
the ion core relative to the center of mass of the final
bound state, Ps. The reduced masses are

ur=mMy/(m +Mp)=am ,

up=mM,/(m +M,)=Pm ,

vi=M,(m +M7)/(m + M +M,), (5)
vi=Myp(m +M,)/(m +Mp+M,) .

In the center-of-mass frame, the total energy of the sys-
tem is

E =12k}/2v;)+ e, =k} /2vs) +e, , (6

where 7k; =v;v is the initial relative momentum and #ik
is the final relative momentum, g; is the internal energy of
the (e +T) system, and ¢ is the internal energy of the fi-
nal bound Ps state. The average momentum transfer vec-
tors are

K=ka—k,', J=ak,—kf . (7)

If W;" is the exact wave function of the complete sys-
tem in the initial channel with outgoing wave boundary
conditions, then the Schrodinger equation satisfied by W;t
is

_iVZ __ﬁiVZ 4V, 4+ Vy |V =EW; (8)
2Vi R, 2,U,T T, i Te i — i >

which, for the purpose of using the two-potential theory,
can be rewritten as
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[Hp+(V; —U) Y =EV¥Y; , 9)
where
#” o i
Hp=Hy+U;+Vp¢, Hy=——-—Vg_ —5—V; , (10
21/,' T 2#7* T

and U; is as yet an arbitrary distortion potential. The dis-
torted wave X;', then, is

1

gyt — U
Xi =1 E_Hyiic Uit » (11)
where X;* and ¢; satisfy
HpXt=EX{ and (Hy+ V5 ), =E; . (12)

Similar forms for the different wave functions

(W5 ,Xr,9¥y, etc.) can be obtained for the final channel.

Let ¢;(rr) represent the internal state of (e + T') such that
ﬁ2

— 2‘uT V‘2'T+ VTe

bi(rr)=¢€;;(r7) . (13)

A similar equation could be written for the final internal
state ¢,(r,) of Ps. The initial and final channel wave
functions are then

¥ =explik;'Rr)d;(r7), ¥r=expliks-R,)ds(r,), (14)

respectively. If X;' is chosen, following Ref. 7, to be of
the form

X" =¢:(rr)explik; Rr)+g (R, (15)
then it follows from Eq. (11) that
1
8i ¢1(rT) E——-HD—FI.S Uﬂ[’x . (16)

Upon operating on both sides of Eq. (16) by (Hp —E), us-
ing Eq. (13) and then taking the Fourier transform of the
resulting equation, it is seen that g ;" satisfies

gHKAUK?—k}—in)/(2v;))+ U;(K —k;)
+2m=72 [ g U(K—pldip=0. (17

Here the tilde represents the Fourier transform. Similar-
ly, for the final channel, if one writes

X7 =¢s(r,)[explik;-R,)+g7 (R,)], (18)

then an integral equation, similar to Eq. (17), can be ob-
tained for g ;. The integral equations can be solved to
first order in the distortion potentials U; and Uy to give

2v; U;(K—k;)

5+
FK)=—————
& # K2—ki—in

(19)

and

St S’ i A (20)

The specific forms chosen for the distortion potentials are
the static potentials

UiRp)= [ |4i(r7)|2V;(x,,R)d%r;

21
UrRy)= [ |¢5(r,) | *V(rr,R)d’r, .
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Since U; depends only on Ry and Uy depends only on
R,, the T-matrix element for the transition from the ini-
tial state to the final state is given by’

T=(X;|V,—~Us|¥"), (22a)
in the post form, and
T=(VY;|V,—U; |X}"), (22b)

in the prior form. If the perturbations (¥V;—U;) and
(Vy—Uy) are weak enough, ¥;% and W; can be replaced
by X and X7 . This approximation is the distorted-wave
Born approximation (DWBA) used here, and the T-
matrix element in this approximation is given by

T=X7|V,—Us|Xi"), (23a)
in the post form, and
T=(X7|V;—=U; |X["), (23b)

in the prior form. The present DWBA calculations for
the positronium formation from alkali-metal atoms have
been done in the post form only. The T-matrix element in
the post form is

T=T,+T,+T,, (24)
where
Ty={Ys | Vy—Us|¥;),
T,= (1//f|Vf‘Uf|gi+¢i)
+{8r ds 1 Vi—Us|4))=TF +T7 , (25)

Ty=(g7ds|V—Us|g" ;).

Note, on using Eqgs. (19) and (20), that T';, T, and T are
first, second, and third order in the potential, respectively.
Then keeping consistently terms up to third order in the
potential, the differential cross section is

do vivrky 2
aag = T|?, (26)
dQ DWBA 472ﬁ4ki| I
where
| T |*={| T |*+2[Re(T))Re(T,)+Im(T)Im(T,)]} .
27)

When distortion is excluded, the first Born approxima-

m=1ln=11=0

where

3 3 dI
S 3 (=D

dx' x?+K?

4535

tion is obtained for which

in the post form, and
T={Ys|Vil¥hi), (28b)

in the prior form. The cross sections for positronium for-
mation in FBA have been calculated both in the post and
the prior forms in order to check the accuracy of the trial
wave functions for the valence electron of the alkali-metal
atom. A better trial wave function, obtained by a lower-
ing of the energy in the variational principle, results in a
smaller post-prior discrepancy. The integrated cross sec-
tion for positronium formation

o=2r foﬂ l:—g

is evaluated numerically.

Atomic units are used in the present calculations. In
these calculations the pseudopotential, Eq. (2), has been
reduced without losing much accuracy to

Vo(r)=—1/r +(A /r)exp(—_r)

sin0d o (29)

(30)

for computational ease. The parameters 4 and & for the
valence electron in lithium and sodium atoms are taken
from Ref. 8. It was found that even without the polariza-
tion terms for the ion cores in ¥,(r) the use of Eq. (30) in
Eq. (13) gives the energy ¢; of the valence electron in the
alkali-metal atom very close to the observed values. The
value of g; obtained in the present calculations is
—0.195895 6 a.u. compared to —0.198 1624 a.u.'” for the
2s valence electron of Li and —0.182596 a.u. compared
to —0.1888644 a.u.!® for the 3s valence electron of Na.
The trial wave function for the s-state valence electron is
expanded in terms of hydrogenic wave functions as

3 2 _
$i(0)=Yuo(®) 3 3 ciyom—_aor' exp(—8,,7), 31

m=1i=1
where ¢; and 8, are variational parameters. Writing the
distortion potential as

UiRp)= [ |8:r7) | V,e(r,)drr+V,(Rr),  (32)

where it is assumed that a=1 in the second term, the
Fourier transform of the distortion potential can be writ-
ten as

1

>

Omn0=Caom —1€2n—1D2+(Com _1€2n+C2n —1Com)D3+C2pmc2nDy

Omn1=Com —1€2n —1D1+2(Com 120 +C2n _1C2m D3 +3¢3mC2n D3

(33)

— . i +1
anZ_(02m—162n+clm62n—l)Dl+3CZmCZnD2 s an3:c2mc2nDl > x=8m+6nv Di:l!/x’+ .
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The distortion potential in the final channel is
UrR,)= [ [6,(5,) 2LV, (R)+V,(rp)ldor, . (34)

It vanishes when B=7 as in the case of Ps formation.
Hence g; also vanishes. The terms involved in calculat-
ing the cross sections in the post and prior forms of FBA
and in the post form of the DWBA are given in the Ap-
pendix.

B. Pseudopotentials for rearrangement processes

Consider an N-electron open-shell atom with Z valence
electrons. The general distinction between the valence and
the core electrons is that the valence electrons determine
many of the physical and chemical properties of the atom
while the core electrons are relatively inert. Therefore, in
a moderate-energy collision process it is a fairly good ap-
proximation to assume that the valence (or the outer elec-
trons) take part in the interactions while the core electrons
remain essentially inactive. However, for calculational
purposes one needs to know the wave functions of the
valence as well as the core electrons, that is, the total wave
function of the atom which is antisymmetric with respect
to the interchange of any pair of electrons. In the
Hartree-Fock approximation this wave function is an
N X N determinant of one-electron wave functions which
are orthogonal to each other. In order to avoid the com-
plications associated with the orthogonalization of N
one-electron wave functions, one can utilize either a model
or a pseudopotential approach. In the pseudopotential
procedure the problem of N electrons is simplified by
reducing it to a problem of Z electrons by introducing a
repulsive potential V' (r) along with the ordinary Coulomb
and exchange potentials for the valence electrons. This
repulsive part represents the partially screened nucleus
and simulates the orthogonality condition or Pauli princi-
ple by keeping the valence electrons out of the core. It
may also contain implicitly the correlation between the
valence and the core electrons which is generally ex-
pressed by the polarization potential. In its general form
the radial part of ¥V (r) can be a Hellmann (or Yukawa)
type, a Gaussian type, or a combination of various short-
range potential terms. The difference between this choice
of the potential for the core and the Hartree-Fock poten-
tial is that in the former case there are no energy eigen-
values corresponding to the core electrons, and the
valence-electron wave functions are nodeless for s elec-
trons, have one node for p electrons, etc. Hence the
lowest Z eigenvalues correspond to the energies of the Z
valence electrons.

The concept of the pseudopotential in atomic, molecu-
lar, nuclear, and condensed-matter physics has been
known for quite a long time. Since the independent intro-
ductions of the pseudopotential, semiempirically by
Hellmann,!! and on the basis of the statistical model of
the atom by Gombas,!? the method of pseudopotential
formulations has been developed by many investigators,'3
and several review articles'® on this subject have been
written. We will concentrate on determining the pseudo-
potential parameters for atoms with a single valence
electron—for example, the alkali-metal atoms. Following
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the pseudopotential method as suggested by Hellmann,
the Schrodinger equation for the valence electron (in a.u.)
is

[—3V3+ V,(r)]o(r)=ed(r),
where
Vp(r)=—1/r +(A4/r)exp(—_r) (35)

is the effective potential for the valence electron. A4 and §
are variational parameters, € is the binding energy of the
valence electron, and ¢(r) is the wave function of the
valence electron, not necessarily orthogonal to the wave
functions of the core electrons. Generally, ¢(r) is approx-
imated by a trial wave function of the form

d(r)~ > Ry(rY,, (@), (36)

m,n,l

where the radial part R,;(r) contains one or a few terms
(depending on the atomic state it is representing) of hy-
drogenic functions with some adjustable parameters. The
parameters A and & of the pseudopotential and the adjust-
able parameters of the wave function R,; are varied until
the lowest few eigenvalues, obtained using the Ritz varia-
tional principle, agree as well as possible with the ob-
served energies of the ground and the first few excited
states. This procedure for determining the potential can
fail since on increasing the number of terms in the expan-
sion for R,;(r), the energy eigenvalues ¢ of Eq. (35) con-
tinue to decrease and eventually can become much lower
than the experimental values.

The alternate way to determine the values of the pseu-
dopotential parameters is to solve Eq. (35) by direct nu-
merical integration using the Numerov method. The radi-
al part of the bound state ¢(r) behaves as

R, (r)~r! for r—0,
_ (37)
R, (r)~exp(—V'Fr)/r forr— o ,

where F=2(V, —e). Using the conditions of Eq. (37), the
outward and the inward radial wave functions are gen-
erated and matched at a suitable matching radius. The
first Kato cusp condition!® can be used to start the out-
ward function near the origin. The parameters 4 and §
are varied until both the wave function and its derivative
become continuous at the matching point. For a fixed en-
ergy € of the valence electron a number of sets of parame-
ter values may be obtained which will generate a smooth
wave function for the ground state. Only that set of pa-
rameters is to be chosen which will reproduce as closely as
possible a few low-lying energy levels of the same symme-
try. In Ref. 8, from which the present values of 4 and §
for the valence electron in Li and Na are taken, the pa-
rameters were chosen so that the lowest two energy levels
were reproduced exactly. It is to be noted that a wave
function which closely reproduces an energy eigenvalue
may not necessarily generate expectation values of various
powers of r which would agree with the previously known
values'® of these matrix elements. It is then possible that
the transition matrix elements relevant to collisional pro-
cesses could be affected which, in turn, would affect the
related cross sections.



To illustrate the use of different potentials, the cross
sections for positronium formation from Li by the impact
of positrons have been calculated® using the static poten-
tial of the Li* core in the FBA. The static potential ex-
perienced by the valence electron is obtained by averaging
the instantaneous interaction over the motion of the core
electrons:

Vi(r)= f | &(r,1,) | 2

1 1
lr—1 [ [r—r]

>< _%+ drdr, . (3%
®(ry,r;,) is the antisymmetric Hartree-Fock wave function
of Lit in terms of one-electron Slater-type orbitals given
by Clementi and Roetti.!” Since it is determined by the
exact interaction and the Hartree-Fock functions, the stat-
ic potential can be considered a model potential and not a
pseudopotential. Unlike a pseudopotential, a model po-
tential has bound states which may not correspond in en-
ergy to the observable states of the atom. Hence the
lowest energy eigenvalue of the model Hamiltonian may
not necessarily correspond to the energy of the valence
electron. However, the wave function of the valence elec-
tron has the correct number of nodes, namely, n —/ —1.
The difference between the pseudopotential and the
model-potential approaches has been discussed and ela-
borated on by Peach.!® A six-term trial wave function for
the 2s valence electron of the Li atom, similar to Eq. (31),
which corresponds to an energy value of —0.175867 a.u.
for the valence electron (that is, the second lowest eigen-
value of the Hamiltonian) in the static potential V,(r) of
Lit, is used for the calculations of the cross sections for
positronium formation in FBA. The differential cross
sections are shown in Fig. 2, and the integrated cross sec-
tions are given in Table 1.

III. RESULTS AND DISCUSSION

The differential cross sections (DCS), using the FBA,
for the formation of positronium at positron impact ener-
gies of 100 and 200 eV from Li are shown in Fig. 2, and
the integrated cross sections are presented in Table I. In
these calculations, a static potential has been used to
represent the alkali-metal ion core. The DCS and the in-
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FIG. 2. Differential cross sections for the positronium for-
mation from Li at positron impact energies of 100 and 200 eV
using FBA.

tegrated cross sections using both the FBA and the
DWBA for the formation of positronium from Li and Na
using pseudopotentials for the representation of the
alkali-metal ion cores are also calculated. These DCS
values for a Li target at positron impact energies of 100
and 300 eV are shown in Fig. 3, and for a Na target at
positron impact energies of 75, 200, and 300 eV are shown
in Fig. 4. The corresponding integrated cross sections are
provided in Table I. In order to obtain the energy values
and the wave function parameters for the valence electron
of the alkali-metal atoms in Eq. (13), the variational prin-
ciple as well as direct numerical integration using the
Numerov method is used. The post-prior discrepancy for
both the DCS and the integrated cross sections in the
FBA is negligibly small in all cases. Hence only the post
results in FBA are shown in Figs. 2—4. Some differences
in the values of the cross sections, using the pseudopoten-

TABLE 1. The integrated cross sections using FBA (oggs) and DWBA (opwga) for Ps(1s) forma-
tion from Li and Na by the impact of positrons. The notations p and s following the target atom corre-
spond to the use of pseudopotential and static potential, respectively. Numerical values of the form

a[b] mean a X 10°.

Target Positron impact orpa (units of a2) opwea (units of a3)
atom energy (eV) Post Prior Post
Li(p) 100 8.4317[—2] 8.430[ —2] 2.8105[—1]

300 1.8319[—3] 1.8334[—13] 2.254 65[—3]
Na(p) 75 3.5692 3.5676 1.3882[2]

200 1.7259[—1] 1.7271[—1] 3.7385

300 1.1783[—2] 1.1775[ —2] 1.8342[—1]
Li(s) 50 6.3872[—2] 6.4361[—2]

100 1.9632[—2] 1.9704[ —2]

200 2.5137[—3] 2.5023[—3]




4538 SULTANA N. NAHAR AND J. M. WADEHRA 35

10° g E
- et +Li(2s) —+ Ps(1s)+Li* ]
= 10" : (with pseudopotential) 3
N\o C. 3
= : :
p i 100eV (DWBA) ]
K=l -2
© 10°F e 3
© T 3
3 E T 1
” K e 100eV (FBA) ]
3 N el .
C 10k 3
2 = ;
g :
€ : ]
2 - i
P 10—4 . 300eV (DWBA)—E
E T 300eV (FBA) 1
10‘6 1 1 1 L i ! 1 ' .........

0O 20 40 60 80 100 120 140 160 180
Scattering Angle (deg)
FIG. 3. Differential cross sections for the positronium for-

mation from Li at positron energies of 100 and 300 eV using
both the FBA and the DWBA.

tial and the static potential, are expected since the two po-
tentials representing the Li* core do not correspond ex-
actly to the same energy eigenvalue for the 2s valence
electron. This difference is obvious in the values of Table
I. Not only the values but also the shapes of the
differential-cross-section curves, as shown in Figs. 2 and
3, are different. While with the static potential the DCS
curves show a sharp minimum that moves toward the for-

10°

e*+Na(3s) — Ps(1s)+Na"*
(with pseudopotential)

T T
Ll

76eV (DWBA)

Al lill

Ll

75eV (FBA)

200eV (DWBA)

p

22 |-
L 3006V (DWBA)

Differential Cross Section (a 2/sr)
6—

10°

10“.|.|.|1.|‘1.1.1
(o] 20 40 60 80 100 120 140 160 180

Scattering Angle (deg)

FIG. 4. Differential cross sections for the positronium for-
mation from Na at positron impact energies of 75, 200, and 300
eV using both the FBA and the DWBA.

ward direction with increasing impact energy, with the
pseudopotential these curves show a maximum, prominent
at lower energies, near the forward direction. The total
positron-atom interaction potential has both an attractive
and a repulsive part. In the calculation employing the
static potential, the contribution to the scattering ampli-
tude arising from the repulsive part of the interaction al-
most equals that from the attractive part for a certain an-
gle which results in a minimum in the DCS curve. This
angle depends on the positron impact energy. This
minimum in the DCS curve has also been obtained by
Guha and Saha® (using FBA) and Mazumdar and Ghosh®
(using FBA and the distorted-wave polarized orbital
method). Guha and Saha have used a core model poten-
tial different from the one used here and their results
(evaluated in the post form) for the positronium forma-
tion cross sections are much lower than the present re-
sults. Mazumdar and Ghosh® have used only the static
potential for the Li* ion core. Their calculated positroni-
um formation cross section at 50-eV impact energy, using
FBA, is comparable with the present result but their cross
section at 100-eV impact energy is lower than the present
one.

In the present calculations it is noticed that the contri-
bution from the positron—ion-core interaction to the DCS
values dominates at larger angles in all cases. Also in the
present calculations, using the pseudopotential in DWBA,
it is seen that the distortion contributes significantly to
the positronium formation cross sections, especially for
the Na target. No measured values for the corresponding
cross sections with Li and Na targets are available at this
moment, but such measurements may be feasible in the fu-
ture.!” Only when the experimental results become avail-
able in the future can a better justification for the use of
different potentials be made. In spite of the availability of
good wave functions containing the  Slater-
type orbitals'” of alkali-metal atoms, the static potential
formed by these wave functions does not provide the ener-
gy of the valence electron to a very good approximation.
[See the energy values following Egs. (30) and (38).]
Furthermore, the form of these wave functions (having
many terms) makes them computationally inconvenient
for the evaluation of capture cross sections. In this
respect the pseudopotentials are simpler to use, and the
energy eigenvalues corresponding to these potentials can
be made very close to the measured energy values of the
alkali-metal atoms using adjustable parameters.

It is to be noted that, even though the model static po-
tential and the pseudopotential do not reproduce the
alkali-metal spectrum to the same degree of accuracy, a
comparison between the positronium formation cross sec-
tions using these two potentials is still worthwhile. In the
absence of any experimental information about cross sec-
tions for positronium formation in alkali-metal atoms, we
can compare only with the previous theoretical results for
these cross sections. The majority of these calculations®
exhibited features in the positronium formation cross sec-
tions which were similar to the ones observed in Fig. 2 for
the Ps formation in Li using the model static potential.
We note that this potential did not reproduce the energies
of the alkali-metal ground states very well. On the other
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hand, use of the pseudopotential, which reproduces the
energies of the alkali-metal ground states quite well, in the
present calculations provides Ps formation cross sections
which differ markedly in shapes and magnitudes from the
previous calculations.

In the present calculations terms up to third order in
the potential are kept in the cross-section expression with
the assumption that the higher-order terms contribute less
significantly. The cross-section integrals are simplified by
the fact that the positron mass is much smaller than that
of the alkali-metal ions (¢ =1). Several checks were made
to ensure the correctness of the present computer codes.

(a) Both the FBA and DWBA cross sections for the
process et + H(ls)—Ps(1s)+H™" at a positron impact
energy of 100 eV (Ref. 7) were reproduced.

(b) The DCS values in FBA for the process

* 4+ H(1s)—Ps(1s)+H™ at a positron impact energy of
500 eV (Ref. 20) were reproduced.

(c) The DCS values in FBA for the process
H* + H(ls)—>H(1s)+H™" at a proton impact energy of
700 keV (Ref. 20) were reproduced.

(d The DCS values in FBA for the process
H* + H(ls)->H(1s)+H™ at a proton impact energy of
198.344 keV (Ref. 21) were reproduced.

(e) An attempt to reproduce the DCS values in FBA for
the process e® 4 Li(2s)—Ps(1s)+Li*, as reported by
Guha and co-workers,® did not meet with success. A
small computer program which specifically made use of
the wave function and potential of Guha et al. was writ-
ten. This program reproduced the same values of the dif-
ferential cross section as given by our general program.

Finally, we comment on two aspects of the present cal-
culations for positronium formation from alkali-metal
atoms. First, the shapes of the differential cross sections
for positronium formation depend on the type of interac-
tion potential used in the calculations. This is obvious on
comparing Figs. 2 and 3. It is not yet possible to ascertain
the correctness of either shape due to the absence of corre-
sponding experimental cross sections. The second remark
concerns the significant difference in the values of the
cross sections, both differential and integrated, obtained
by using the FBA and the DWBA. A rather large differ-
ence between the two values seems to suggest that the
higher-order distortion terms in the DWBA may contri-

bute significantly to the cross sections. The importance of
J

1 1 1
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including these terms can only be determined when the
experimentally measured values of the cross sections for
positronium formation become available.
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APPENDIX

In this appendix we present analytical forms for various
terms in the cross sections for positronium formation.
Note that Uy vanishes for the positronium formation.
Various parts of the post form 7-matrix elements, Eq.
(25), using DWBA can be written as

T\=N,+N,, (A1)
where
Ni=—Qm¥? [ FHK -0V, (0¢(—t—Dd’t,  (A2)
N,=2m?*3(K) [ V(g (—t—d* , (A3)
T =L,+L,, (A4)
where
Li=— [ $3(—t—q+Bko)V, () (q)
><$,-(—t—aq+k,)d3td3q , (AS)
L= [ §}(—q+Bkp)V,(LE (@)
X éi(—t—q+kp)d td’q (A6)
In evaluating L, is it assumed that a=1. T and T,

vanish because of the vanishing of gs . In the prior form
of FBA, the T-matrix element (Eq. 28) is given by

T=N;+N3, (A7)
where N, is same as in Eq. (A2) and
N3=—2m)P[K?/(2u,)—e/16 HK)G,(—T) . (A8

In the post form of FBA, the T-matrix element of Eq.
(28) is essentially T'; of Eq. (A1). The integrals involved
in evaluating these terms are of the form

1= fd3p p—A)2 2 (p—B)+b2 pitz2 (A9)

f p p+A 2t+al) p? _IH (A10)
= f fd3pd3q(p—Al)2+a2 (p——Bl)2+b2 pz—vlz—in [(p+q—:))2+d2]2 qzlf (ALD
= v da —1A)2+a2 (p+q—1B)2+b2 pzjltc2 (q—D1)2+d2 qz—vlz—in ' (Aal2)

I1,, is integrated analytically and is given by
2
T 1

P a A2 (A13)

I S S
! +(a +2)?

Using a Feynman identity, as in Ref. 7, the other integrals

[
are reduced as follows:

fo E[FZ E+z) 1’

where
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El=x(1—x)(A—B)?+xa2+(1—x)b?,

F=(A—B)x +B, (A14)
4 1 .
12:% foldx Jy 2s13T+ ss;Tl; ’
where
E?=x(1—x)(A—D)*+xa’+(1—x)d +2)*,
F=(A—D)x +D,
s2=y(1—yF—B)X+yE?+(1—y)b?, (A15)

T=—v2—2ivs +y(E24+ F?)+(1—y)b*+B?),
1
13 =17 fO dx

[, 1
0 yEs[T2+(s—iv)2] ’
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where
El=x(1—x)A—B)?+xa’+(1—x)b?,

F=x(A—-B)+B,

(A16)
s2=y(1—y)(F—D)* 4y (E +c)*+(1—y)d?,

T=yF+(1—y)D.

Now the integrals are evaluated numerically. The one-
dimensional integrals have been integrated using
Simpson’s rule, and the two-dimensional integrals are
evaluated using a 9-point square formula?? with an error
proportional to the sixth power of the stepsize.
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