

ELECTRON-ION RECOMBINATION, PHOTOIONIZATION AND DIELECTRONIC SATELLITE LINES OF Ca XVIII AND Ca XIX USING UNIFIED METHOD

Sultana N. Nahar The Ohio State University

> "APS - DAMOP 2007" Calgary, Canada June 5-10, 2007

Photoionization and Electron-Ion Recombination

 $Ca XVIII + h\nu \rightleftharpoons Ca XIX + \epsilon$ $Ca XIX + h\nu \rightleftharpoons Ca XX + \epsilon$

- These bound-free processes are inverse to each other
- Give rise to dielectronic satellite lines (DES)

These may proceed as:

i) Photoionization (PI) & Radiative Recombination (RR)

$$\mathbf{X}^{+\mathbf{Z}} + \mathbf{h}\nu \rightleftharpoons \mathbf{X}^{+\mathbf{Z}+1} + \epsilon$$

ii) Autoionization (AI) & Dielectronic Recombination (DR)

$$\mathbf{e} + \mathbf{X}^{+\mathbf{Z}} \rightleftharpoons (\mathbf{X}^{+\mathbf{Z}-1})^{**} \rightleftharpoons \begin{cases} e + X^{+Z} & \text{AI} \\ X^{+Z-1} + h\nu & \text{DR} \end{cases}$$

• Doubly excited autoionizing state $/(X^{+Z-1})^{**}/$ introduces resonances

• RR and DR are inseparable in nature

Theory: "UNIFIED METHOD" - (i) includes RR and DR, (ii) providex total electron-ion recombination rates self-consistent to photoionization cross sections, (iii) dielectronic satellite (DES) line strengths and profiles (*new extension*)

• Calculational framework - close coupling approximation and R-matrix method (Nahar & Pradhan, PRL 1992, PRA 1994, PRA 2006)

DIELECTRONIC SATELLITE (DES) LINES

• **DES lines** - common in (e+He-like ion) collision spectra forming 3-electron Li-like ion and are used as diagnostics

• DES lines - form below the excitation threshold of the core. Ex. KLL (1s2l2l') satellite lines are below the core excitation $1s^2({}^{1}S_0) \rightarrow 1s2p({}^{1}P_1^o)$ of w-line

• **DES lines** - produced by radiation damping of doubly excited autoionizing states in dielectronic recombination.

Ex. KLL (1s2l2l') complex introduces 22 DES lines (denoted as a,b,...,v - Gabriel 1972) as autoionizing states 1s2l2l' (1s2p2p, 1s2s², 1s2p²) \rightarrow 1s²2s(²S_{1/2}), 1s²2p(²P^o_{1/2,3/2}) bound states

Theoretical Treatment of DES lines

The earlier treatments

Based on isolated resonance approximation (initiated by Gabriel 1972) where the recombination rate coefficient (Bates & Dalgarno 1962) is given by

$$\alpha_{\mathbf{R}} = \mathbf{a_o^3} \frac{\mathbf{g_i}}{\mathbf{2g_f}} \left[\frac{4\pi}{\mathbf{T}} \right] \mathbf{e}^{-\frac{\epsilon}{\mathbf{kT}}} \frac{\mathbf{A_r A_a}}{\sum_{\mathbf{m}} \mathbf{A_a}(\mathbf{m}) + \sum_{\mathbf{n}} \mathbf{A_r}(\mathbf{n})}$$
(1)

- ϵ is the DES energy
- Satellite lines are obtained at single energy points, ϵ .

The present treatment

Employs detailed photoionization cross sections for recombination cross sections

$$\sigma_{\rm RC} = \sigma_{\rm PI} \frac{\mathbf{g_i}}{\mathbf{g_j}} \frac{\mathbf{h}^2 \omega^2}{4\pi^2 \mathbf{m}^2 \mathbf{c}^2 \mathbf{v}^2}.$$

where σ_{PI} includes autoionizing resonances

- Obtains intensity $\mathbf{I}_{\mathbf{s}} = \alpha_{\mathbf{s}} \frac{\mathbf{n}_{\mathbf{i}}}{\mathbf{n}_{\mathbf{e}}}$, or intensity ratio $\frac{\mathbf{I}_{\mathbf{s}}}{\mathbf{I}_{\mathbf{w}}} = \frac{\alpha_{\mathbf{s}}}{\mathbf{q}_{\mathbf{w}}}$, and resonant line strength $\mathbf{S} = \int_{\epsilon_{\mathbf{i}}}^{\epsilon_{\mathbf{f}}} \sigma_{\mathbf{RC}} d\epsilon$ from the unified $\sigma_{\mathbf{RC}}$ that includes both RR background and DR
- Provides energy profile of the satellite lines instead of a single point line
- Generates entire DES spectrum naturally

THEORY: Close-coupling (CC) R-matrix method

Total wavefunction expansion in CC approximation:

$$\Psi_{\mathbf{E}}(\mathbf{e} + \mathbf{ion}) = \mathbf{A} \sum_{\mathbf{i}}^{\mathbf{N}} \chi_{\mathbf{i}}(\mathbf{ion}) \theta_{\mathbf{i}} + \sum_{\mathbf{j}} \mathbf{c}_{\mathbf{j}} \Phi_{\mathbf{j}}(\mathbf{e} + \mathbf{ion})$$

 $\chi_i \rightarrow \text{target/core ion wavefunction}, \Phi_j \rightarrow \text{correlation functions of (e+ion) system}$ $\theta_i \rightarrow \text{electron (bound or continuum) wavefunction}$ • The complex resonant structures in collisional and radiative processes are included through channel couplings.

The Iron Project - The relativistic Hamiltonian in Breit-Pauli R-matrix (BPRM) approximation:

$$\mathbf{H}_{\mathbf{N+1}}^{\mathrm{BP}} = \mathbf{H}_{\mathbf{N+1}}^{\mathbf{NR}} + \mathbf{H}_{\mathbf{N+1}}^{\mathrm{mass}} + \mathbf{H}_{\mathbf{N+1}}^{\mathrm{Dar}} + \mathbf{H}_{\mathbf{N+1}}^{\mathrm{so}},$$

where the non-relativisitc Hamiltonian is

$$H_{N+1}^{NR} = \sum_{i=1}^{N+1} \left\{ -\nabla_i^2 - \frac{2Z}{r_i} + \sum_{j>i}^{N+1} \frac{2}{r_{ij}} \right\}.$$

 $\begin{array}{l} \mathbf{Mass \ correction \ term \rightarrow \ } \mathbf{H}_{\mathbf{N+1}}^{\mathrm{mass}} = -\frac{\alpha^2}{4} \Sigma_{\mathbf{i}} \, \mathbf{p}_{\mathbf{i}}^4, \, \mathbf{Darwin \ term \rightarrow \ } \mathbf{H}_{\mathbf{N+1}}^{\mathrm{Dar}} = \\ \frac{\mathbf{Z}\alpha^2}{4} \Sigma_{\mathbf{i}} \, \nabla^2(\frac{1}{\mathbf{r}_{\mathbf{i}}}), \, \mathbf{Spin-orbit \ interaction \ term \rightarrow \ } H_{N+1}^{\mathrm{so}} = Z\alpha^2 \, \Sigma_{i} \, \frac{1}{r_{i}^3} \mathbf{l}_{\mathbf{i}}. \mathbf{s}_{\mathbf{i}} \end{array}$

Sovle Schordinger equation: $\mathbf{H}_{N+1}^{\mathbf{BP}} \Psi_E(e+ion) = E \Psi_E(e+ion)$

The channels introduce a set of coupled equations which are solved by R-matrix method

- $\mathbf{E} < \mathbf{0} \rightarrow \mathbf{Bound} \ (\mathbf{e+ion}) \ \mathbf{states} \ \Psi_B$
- $\mathbf{E} \geq \mathbf{0} \rightarrow \mathbf{Continuum \ states} \ \Psi_F$

Photoionization/Recombination Transition Matrix elements: $<\Psi_B ||\mathbf{D}||\Psi_F>$

 $\mathbf{D} = \sum_n r_n \to \operatorname{dipole operator} n = \operatorname{number of electrons}$

The generalized line strength (S)

$$\mathbf{S} = | < \Psi_{\mathbf{j}} || \mathbf{D} || \Psi_{\mathbf{i}} > |^{2} = \left| \left\langle \Psi_{\mathbf{f}} | \sum_{\mathbf{j}=1}^{\mathbf{N}+1} \mathbf{r}_{\mathbf{j}} | \Psi_{\mathbf{i}}
ight
angle
ight|^{2},$$

The photoionization cross section is

$$\sigma_{\rm PI} = \frac{4\pi}{3c} \frac{1}{g_{\rm i}} \omega \mathbf{S},$$

Recombination cross section, $\sigma_{\rm RC}$, is related to $\sigma_{\rm PI}$ as,

$$\sigma_{\rm RC} = \sigma_{\rm PI} \frac{\mathbf{g_i}}{\mathbf{g_j}} \frac{\mathbf{h}^2 \omega^2}{4\pi^2 \mathbf{m}^2 \mathbf{c}^2 \mathbf{v}^2}.$$

The recombination rate coefficient, $\alpha_{\rm RC}$, is obtained as

$$\alpha_{\rm RC}({\bf T}) = \int_0^\infty {\bf v} {\bf f}({\bf v}) \sigma_{\rm RC} {\bf d} {\bf v},$$

f(v) = Maxwellian velocity distribution function

Total $\alpha_{RC} \rightarrow$ Contributions from infinite number of recombined states

 $\sigma_{\rm RC}(\rm Mb)$

Dielectronic Satellites (DES) from the Unified Method

Comparison - DES Intensity ratios I(KLL)/I(w) -Fe XXV (Nahar, Oelgoetz, Pradhan 2007)

solid line – present, dashed line – Bely-Dubau et al. (1982), dotted line – Vainshtein and Safronova (1978)

• Present unified DES line strengths are in good agreement with those in the individual resonance approximation, BUT some significant differences are found in temperature ranges around Log T(K) = 7.2 where the DES lines are most temperature sensitive, below the temperature of maximum abundance at Log T(K) = 7.4 for Fe XXV in coronal equilibrium. Comparison of DES spectra of He-like Fe XXV at $T = 1.47 \times 10^7$ K using the relativistic distorted wave (RDW) data from the Los Alamos codes (black) and the present DES strengths computed using the unified recombination scheme (green) (Nahar, Oelgoetz, Pradhan 2007)

• The first application for Fe XXV spectrum shows excellent agreement with that from Los Alamos data.

Table: The energies (eV) and strengths of DES lines in KLL resonance complex of (e + Ca XIX) from the unified method.

Key	Transition	E(eV)	Peak
0	$1s2s^2(^2S_{1/2}) \to 1s^22p(^2P^o_{3/2})$	2678	4.567E-02
р	$1s2s^2(^2S_{1/2}) \to 1s^22p(^2P_{1/2})$	2678	3.225E-02
V	$1s2p^3P^o2s({}^4P^o_{1/2}) \to 1s^22s({}^2S_{1/2})$	2686	5.171E-05
u	$1s2p^{3}P^{o}2s(^{4}P^{o}_{3/2}) \rightarrow 1s^{2}2s(^{2}S_{1/2})$	2688	3.614E-04
r	$1s2p^1P^o2s(^2P_{1/2}^o) \to 1s^22s(^2S_{1/2})$	2716	2.143E-01
q	$1s2p^1P^o2s(^2P^o_{3/2}) \to 1s^22s(^2S_{1/2})$	2719	3.635E-02
i	$1s2p^2(^4P_{1/2}) \to 1s^22p(^2P_{1/2})$	2726.4	3.110E-04
h	$1s2p^2(^4P_{1/2}) \to 1s^22p(^2P_{3/2})$	2726	2.134E-05
t	$1s2p^3P^o2s({}^2P_{1/2}^o) \to 1s^22s({}^2S_{1/2})$	2729	3.060E-01
f	$1s2p^2(^4P_{3/2}) \rightarrow 1s^22p(^2P^o_{3/2})$	2729	2.616E-04
g	$1s2p^2(^4P_{3/2}) \to 1s^22p(^2P_{1/2})$	2729	3.079E-05
\mathbf{S}	$1s2p^3P^o2s(^2P^o_{3/2}) \to 1s^22s(^2S_{1/2})$	2731	2.033E-01
е	$1s2p^2(^4P_{5/2}) \to 1s^22p(^2P^o_{3/2})$	2732	2.204E-02
k	$1s2p^2(^2D_{3/2}) \to 1s^22p(^2P_{1/2})$	2747	9.738E-01
1	$1s2p^2(^2D_{3/2}) \to 1s^22p(^2P_{3/2})$	2749	9.559E-01
d	$1s2p^2(^2P_{1/2}) \to 1s^22p(^2P_{1/2})$	2751	2.612E-03
с	$1s2p^2(^2P_{1/2}) \to 1s^22p(^2P_{3/2})$	2747	7.312E-01
j	$1s2p^2(^2D_{5/2}) \to 1s^22p(^2P_{3/2})$	2749	2.192E-01
b	$1s2p^2(^2P_{3/2}) \to 1s^22p(^2P_{1/2})$	2756	3.835E-02
a	$1s2p^2(^2P_{3/2}) \to 1s^22p(^2P_{3/2})$	2756	2.323E-01
m	$1s2p^2(^2S_{1/2}) \to 1s^22p(^2P^{o}_{3/2})$	2774	2.320E-01
n	$1s2p^2(^2S_{1/2}) \to 1s^22p(^2P_{1/2})$	2774	3.519E-02

CONCLUSION

- 1. We present results from ab initio unified method for photoionization and recombination of Ca XVIII, Ca XIX
- 2. Results includes total and level specific recombination rates and photoionization cross sections of hundreds of bound levels.
- 3. Total recombination rate coefficients show higher rates at high T compared to previous theoretical results
- 4. Self-consistent sets of atomic data for photoionization, recombination are obtained and should yield more accurate astrophysical photoionization models