

"Abundances of Elements in Nebulae and Chemical Evolution of the Universe"

S.N. Nahar, M. Dance, E. Palay, A.K. Pradhan Astronomy, The Ohio State University Columbus, Ohio Email: nahar@astronomy.ohio-state.edu web: http://www.astronomy.ohio-state.edu/~nahar

APS April Meeting 2013 Denver, Colorado April 13-16, 2013 *Support: DOE, NSF, Ohio Supercomputer Center

INTRODUCTION

• I will discuss about infrared to optical photons from ionized gaseous nebulae

• These nebulae are assoicated with the birth of stars and the end point of stellar evolution

• Their elemental abundances, chemical enrichment are therefore related to chronometer of the life of the universite itself

• Radiation from Ultra-Luminus infrared galaxy (ULIRG) gives the information of the cheimcal evolution of the universe

• Will present stduy of Ne V lines as detected from these objects

<u>Abundance of Elements</u> Orion Nebula -Birthplace of Stars [Composed by images from Spitzer & Hubble]

 $\bullet \sim$ 1500 Lyr away, closest cosmic cloud to us

• Center bright & yellow gas - illuminated ultraviolet (UV) radiation

Images: Spitzer - Infrared (red & orange) C rich molecules - hydrocarbons, Hubble - optical & UV (swirl green) of H, S

- Small dots infant stars; over 1000 young stars
- Shows low ionization lines of C, N, O, Ne, Fe

Abundance of Elements PLANETARY NEBULAE - Endpoint of a Star PNe: Final stage of a Star [PNe K 4-55 below]

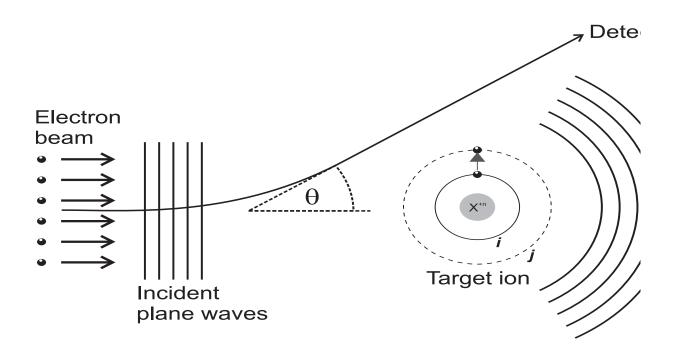
• Condensed central star: very high T \sim 100,000 K (>> T \leq 40,000 K - typical star)

• Envelope: thin gas radiatively ejected & illuminated by central star radiation: red (N), blue (O)

• Lines of low ionization states - low ρ & low T

Ultra Luminus Infrared Galaxy (ULIRG) ULIRG: IRAS-19297-0406

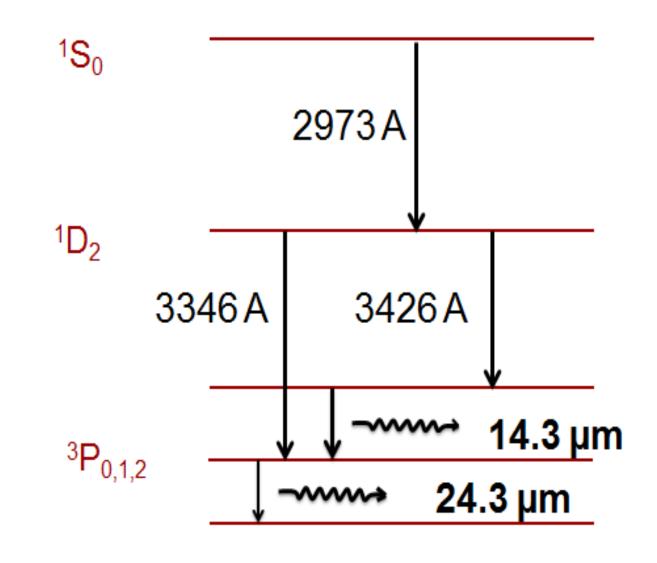
ULIRG - emits more than 10¹¹ solar luminosities in IR (as stars are born), heavily dust obscured
Only far-infrared photons escape from absorption and are observed at high redshift (by SPITZER, HERSCHEL, SOFIA) which provides information on chemical evolution of the galaxy. **ELECTRON-IMPACT EXCITATION (EIE)**


The most common source of these radiation is collsion:

$$\mathbf{e} + \mathbf{X^{+Z}}
ightarrow \mathbf{e'} + \mathbf{X^{+Z*}}
ightarrow \mathbf{e'} + \mathbf{X^{+Z}} + \mathbf{h}
u$$

ii) Via Autoionization (AI) (2-steps):

$$\epsilon + \mathbf{X}^{+\mathbf{Z}} \rightleftharpoons (\mathbf{X}^{+\mathbf{Z}-1})^{**} \rightleftharpoons \begin{cases} \epsilon + \mathbf{X}^{+\mathbf{Z}} & \text{AI} \\ X^{+Z-1} + h\nu & \text{DR} \end{cases}$$


AI state $[(X^{+Z-1})^{**}]$ (10¹⁴/s) results in a resonance

- - A photon emits as the excitation decays
- forms a diagnostic, often forbidden, emission line
- the scattered electron shows features with energy
- Atomic quantity: Collision Strength (Ω)
- Common in low T, low ρ astrophysical plasmas, such as, in Orion Nebula, Planetary Nebulae (PNe)

EIE: Infrared Lines of Ne V

Ne V transitions (forbidden) in the lowest levels of ground configuration: $1s^22s^22p^2$ (${}^{3}P_{0,1,2}, {}^{1}D_2, {}^{1}S_0$)

• Collisionally Excited Lines (CEL): $\mathbf{e} + \mathbf{X}^+ \rightarrow \mathbf{X}^{+*} \rightarrow \mathbf{X}^+ + \mathbf{h}
u$

Determination of Abundance:

• The intensity of a CEL of ion X_i

$$\mathbf{I_{ba}}(\mathbf{X_i}, \lambda_{\mathbf{ba}}) = \left[\frac{\mathbf{n}\nu}{4\pi} \mathbf{n_e} \mathbf{n_{ion}}\right] \mathbf{q_{ba}}$$
(1)

 $\mathbf{q_{ba}}$ - EIE rate coeffcient in $\mathbf{cm}^3/\mathbf{sec.}$

The abundance, $\mathbf{n}(\mathbf{X})/\mathbf{n}(\mathbf{H})$ with respect to \mathbf{H}

$$\mathbf{I}(\mathbf{X_i}, \lambda_{\mathbf{ba}}) = \left[\frac{\mathbf{h}\nu}{4\pi} \mathbf{A_{ba}} \frac{\mathbf{N}(\mathbf{b})}{\sum_{\mathbf{j}} \mathbf{N_j}(\mathbf{X_i})} \frac{\mathbf{n}(\mathbf{X_i})}{\mathbf{n}(\mathbf{X})}\right] \left[\frac{\mathbf{n}(\mathbf{X})}{\mathbf{n}(\mathbf{H})}\right] \mathbf{n}(\mathbf{H})$$

Atomic Astrophysics and Spectroscopy

Anil K. Pradhan and Sultana N. Nahar

CAMBRIDGE

Table of Contents

- 1. Introduction
- 2. Atomic structure
- 3. Atomic processes
- 4. Radiative transitions
- 5. Electron-ion collisions
- 6. Photoionization
- 7. Electron-ion recombination
- 8. Multi-wavelength emission spectra
- 9. Absorption lines and radiative transfer
- 10. Stellar properties and spectra
- 11. Stellar opacity and radiative forces
- 12. Gaseous nebulae and HII regions
- 13. Active galactic nuclei and quasars
- 14. Cosmology
- Appendices
- References
- Index.

THEORY:

Breit-Pauli R-matrix (BPRM) Method

Wave Function in Close-Coupling Approximation is an expansion with excited core states:

$$\Psi_{\mathbf{E}}(\mathbf{e} + \mathbf{ion}) = \mathbf{A} \sum_{\mathbf{i}}^{\mathbf{N}} \chi_{\mathbf{i}}(\mathbf{ion}) \theta_{\mathbf{i}} + \sum_{\mathbf{j}} \mathbf{c}_{\mathbf{j}} \Phi_{\mathbf{j}}(\mathbf{e} + \mathbf{ion})$$

 $\chi_{\mathbf{i}} \rightarrow \text{Target ion wavefunction, } \Phi_{j} \rightarrow \text{correlation functions} \\ \theta_{i} \rightarrow \text{interacting electron wavefunction} \\ (\text{continuum or bound})$

• Resonant Structures - manifested through channel couplings

Table: Levels and energies (E_t) of Ne V in total wave function expansion
Comparison of calculated energies with observed energies in NIST compilation

	Level	J_t	$E_t(\mathbf{Ry})$	$E_t(\mathbf{Ry})$
			NIST	SS
1	$1s^22s^22p^2(^3P)$	0	0.0	0.
2	$1s^22s^22p^2(^3P)$	1	0.003758	0.0030391
3	$1s^22s^22p^2(^3P)$	2	0.010116	0.011366
4	$1s^22s^22p^2(^1D)$	2	0.276036	0.30391
5	$1s^22s^22p^2(^1S)$	2	0.582424	0.57413
6	$1s^22s2p^3(^5S^o)$	2	0.8052	0.71604
7	$1s^22s2p^3(^3D^o)$	3	1.60232	1.62957
8	$1s^22s2p^3(^3D^o)$	2	1.60296	1.62932
9	$1s^22s2p^3(^3D^o)$	1	1.60316	1.62929
10	$1s^22s2p^3(^3P^o)$	2	1.89687	1.92363
11	$1s^22s2p^3(^3P^o)$	1	1.89687	1.92340
12	$1s^22s2p^3(^3P^o)$	0	1.89719	1.92328
13	$1s^22s2p^3(^1D^o)$	2	2.46556	2.59326
14	$1s^22s2p^3(^3S^o)$	1	2.54576	2.64956
15	$1s^22s2p^3(^1P^o)$	1	2.76854	2.88988
16	$1s^22p^4(^3P)$	2	3.76063	3.86076
17	$1s^22p^4(^3P)$	1	3.76778	3.86807
18	$1s^22p^4(^3P)$	0	3.77085	3.87155
19	$1s^22p^4(^1D)$	2		4.13816
20	$1s^22p^4(^1S)$	0		4.74472

Total wave function is obtained solving:
$$\label{eq:HP} \begin{split} H\Psi = E\Psi \end{split}$$

R-matrix method is used to solve the Schrodinger eq.

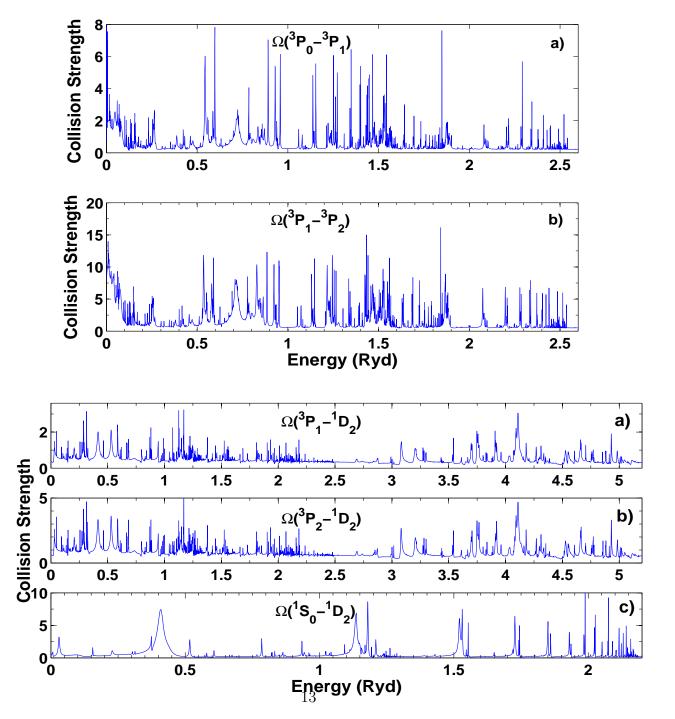
The scattering matrix $\mathbf{S}_{SL\pi}(i, j)$ is obtained from the wave function phase shift. The EIE collision strength is

$$\Omega_{\mathbf{SL}\pi} = \frac{1}{2} (\mathbf{2S} + \mathbf{1}) (\mathbf{2L} + \mathbf{1}) |\mathbf{S}_{\mathbf{SL}\pi}(\mathbf{i}, \mathbf{j})|^2$$

The effective collision strength $\Upsilon(\mathbf{T})$ is the Maxwellian averaged collision strength:

$$\Upsilon(\mathbf{T}) = \int_0^\infty \Omega_{\mathbf{i}\mathbf{j}}(\epsilon_{\mathbf{j}}) \mathbf{e}^{-\epsilon_{\mathbf{j}}/\mathbf{k}\mathbf{T}} \mathbf{d}(\epsilon_{\mathbf{j}}/\mathbf{k}\mathbf{T})$$
(2)

The excitation rate coefficient $q_{ij}(T)$ is

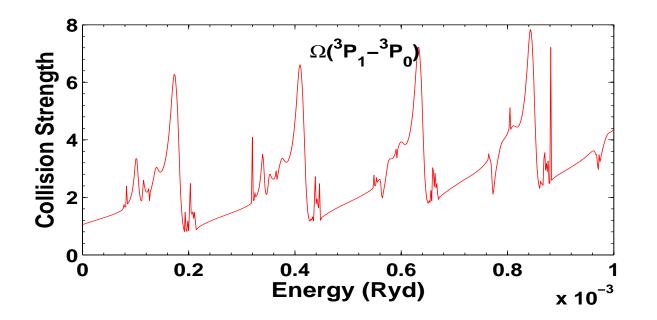

$$q_{ij}(T) = \frac{8.63 \times 10^{-6}}{g_i T^{1/2}} e^{-E_{ij}/kT} \Upsilon(T) \ cm^3 s^{-1}$$
(3)

ELECTRON IMPACT EXCITATIONS (EIE)

Ne V Collision strengths $\Omega(EIE)$ (Dance et al, submitted): Top: Forbidden IR transitions $2p^2({}^3P_0 - {}^3P_1)$ (24 μ m) and $2p^2({}^3P_1 - {}^3P_2)$ (14 μ m),

 $\begin{array}{l} \textbf{Bottom: Forbidden optical transitions $2p^2(^3P_1-^1D_2)$ (3346Å), $2p^2(^3P_2-^1D_2)$ (3426Å), and $2p^2(^1S_0-^1D_2)$ (2973Å)$} \end{array}$

• Resonances at near threshold energy seen for the first time

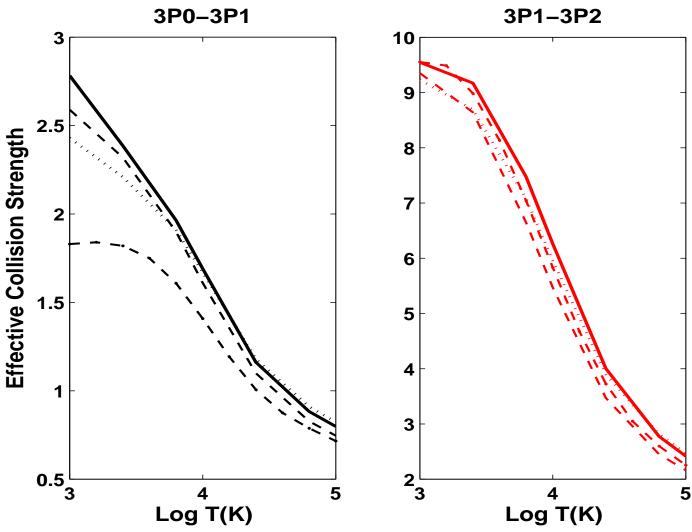


RYDBERG SERIES OF RESONANCES IN EIE

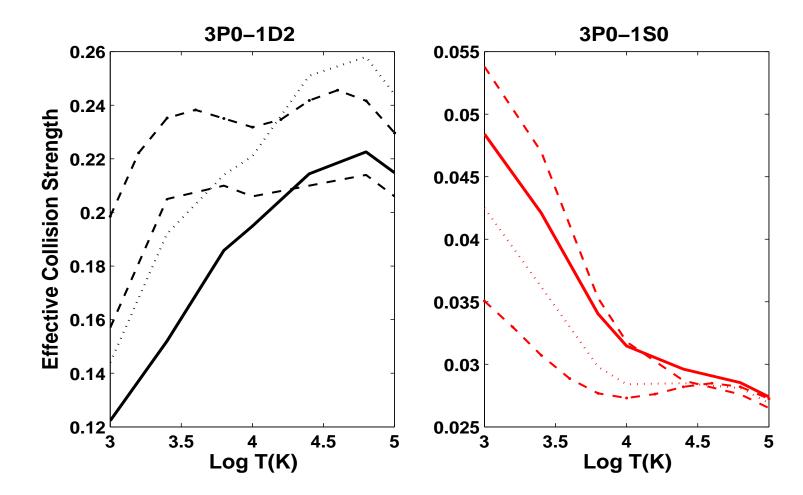
Ne V Collision strengths $\Omega(EIE)$ (Dance et al, submitted):

• Rydberg series of resonances in the near-threshold $\Omega(EIE)$ for $2\mathbf{p}^2({}^3P_0 - {}^3P_1)$ of 24 μ m FIR line. Fully resolved at a fine energy mesh of 10^{-6} Ryd

• Resonant features not seen before



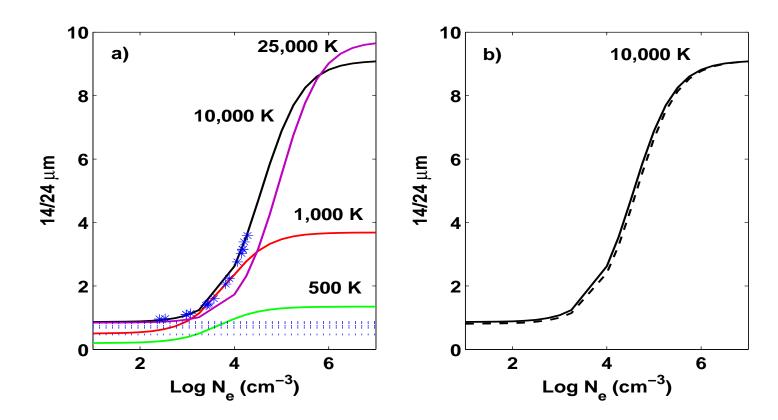
IR: $2p^2(^{3}P_0 - ^{3}P_1)$ (24 μm), $2p^2(^{3}P_1 - ^{3}P_2)$ (14 μm)


• Solid curves (present), dotted curves (nonrelativistic, Lennon & Burke 1994); dash-dot & dashed curves (BPRM and ICFT, Griffin & Badnell 2000), available at $T_e > 1000$ K

• Present enhancements (IR, 20%, 10%) are due to high resolution resonances at near threshold energy

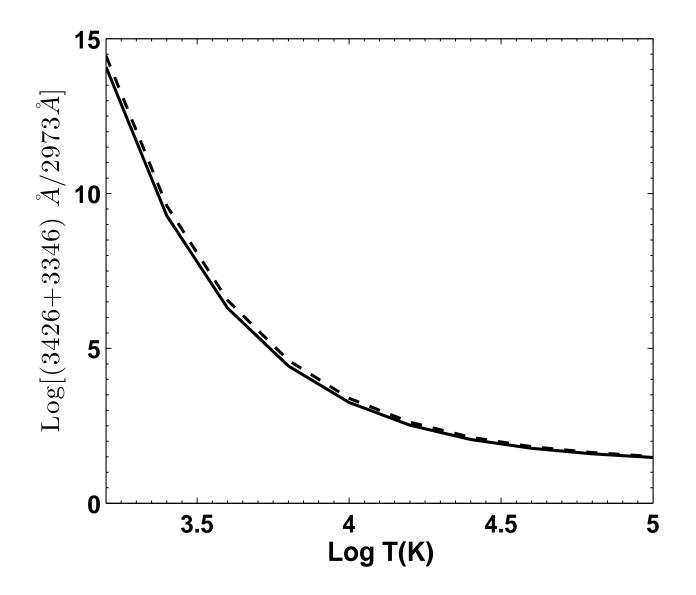
15

EFFECTIVE COLLISION STRENGTHS: Ne V Comparison: Effective collision strengths $\Upsilon(T_e)$: O: $2p^2({}^{3}P_0 - {}^{1}D_2)$ (3301Å), $2p^2({}^{3}P_0 - {}^{1}S_0)$ (1560Å) • Solid curves (present), dotted curves (nonrelativistic, Lennon & Burke 1994); dash-dot & dashed curves (BPRM and ICFT, Griffin & Badnell 2000), available at $T_e > 1000$ K



Ne V LINE RATIOS: NEBULAR ρ & T DIAGNOSTICS

• Comparison: IR 14/24 μ m line emissivity ratios: a) Solid curves (present) at different T, Asterisks (observed from PNe at T = 10,000 K with assigned densities, Rubin 2004), Dotted curves (observed line ratios, outside typical nebular T- ρ range except at low T, Rubin 2004), b) Solid (present), dash (collision stengths, Lennon & Burke 1994)


• Better agreement with observed emissivity ratios at T = 10,000 (10 PNe) and 500 K (anomalously low, 11 PNe)

• Closer agreement due to *systematic* differences in rate coefficients.

Ne V OPTICAL LINE RATIOS AT NEBULAR ρ & T DIAGNOSTICS

• Closer agreement due to *systematic* differences in rate coefficients.

CONCLUSION

- 1. We present collision strength and line ratios of forbidden optical and far-infrared transitions in Ne V in nebular temperature and density diagnostics:
- 2. Find prominent resonant features due to fine structure effects in low energy collision cross section not studied before
- 3. A precise delineation of these resonance structures has a significant effect on the mid-IR 14/24 μ m line emissitivies
- 4. Forbidden optical collision strengths are generally in good agreement with previous works
- 5. New features indicate better agreement with observation, and hence should improve Ne abundance calculations