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”is ALIEN life living in the clouds of Venus”, Sep 2020 news

Venus Surface; T = 900 K, Density = 90 × Earth, CO2, Sulfuric acid,
hostile to living form, upper atmosphere: cooler & high velocity gas.
Fig. R: Spectra of PH3 1-0 in Venus atmosphere, 50 km up, as ob-
served with ICNT (Greaves et al 2020)
Predicted maximum photo-chemical production of PH3 found to be in-
sufficient to explain observations by more than 4 orders of magnitude.
• Discrepancy ∼ Lack of accuracy in underlying science data
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EARTH’S ATMOSPHERE

• Microbes are found 60-70 km above the earth surface.
• Grazing theory: Asteroid carried earth microbes to
Venus (Siraj and Loeb 2020)
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Our of the galaxies, The MILKY WAY, Our Galaxy!

• Milky Way: 200-400 billion stars, including the Sun
• Life is speculated in other stars
• Why do the stars shine? Light or radiation is emitted by
excited or “HOT” atoms, molecules in them
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”EXTRATERRESTRIAL LIFE - ALIENS”:

• All our body elements are found in space - ”we are made
of star dusts”. • Science shows that life on Earth is inti-
mately connected to extraterrestrial processes
• It is natural to expect aliens out there.

5



SEARCH FOR EXTRATERRESTRIAL INTELLIGENCE

• Since started in 1984, SETI (based in California) has not
confirmed the detection of any ETI signals except some -
e.g. of SHGb02+14a in 2004 that needs analysis
• It is searching 20,000 red dwarf stars for signs of intelli-
gent life and hopes to a confirmation by 2040.
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STARS WITH PLANETS AND EXOPLANETS

• L: Solar planets: Planets around our sun
• R: Exoplanets: Planets around a star except the sun. The
first direct picture of an exoplanet, 2M1207b-ESO2004, by
HARPS spectrograph of ESO telescope in Chile in 2004
• 4000 expolanets detected during 1988 - 2020, over 2000
by Kepler (space, NASA) & over a hundred by HARPS
(Chile, ESO), others by HST, Spitzer, KELT, TRAPPIST,
etc

7



The SUN, Our STAR

• Sun is the source of energy for our Earth, its planet
• It is the standard for studying other stars
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FATE OF OUR SUN IN 6-7 BYR: RED GIANT

• Red Giant is a dying expanded star with H fuel gone
• Sun is fusing H to He in the core at 15 MK
• Core becomes hotter and denser as He sinks in. Slowly H fusion will
spread outward until all H burnt out.
• At 300 MK, He fusion will form Be (slow), C, N (slow), O.
• Mostly carbon, mostly in diamond -
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James Webb Space Telescope (JWST): Infrared 0.6 - 28.5 µm

• 18 mirrors combine to create 6.5m - Hubble: 2.4m diam-
eter lens
• Mass: 6500 kg - Launch: March 2021
• One of the objectives: Characterize exoplanets and see
what molecules their atmospheres contain
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BIO-SIGNATURE ELEMENTS
• Biosignatures: H2O, CH4, CO2, CN, H2C6, NO3, NH3
• Basic element of evolution: C, N, O, K, Ca, Fe, .., P
• Phosphorus, a component of DNA, RNA, ATP, cells,
teeth, bone
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PHOSPHORUS CYCLE:
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”OUR COSMIC SELVES”: (NY Times, April 13, 2015)

• Article: Found abundance of bio-elements in space: C,
N, O, Fe, Ca - except P until recently • Does it hold one
critical clue for the search for extra-terrestrial life?
• How do we determine the existence of elements is space
- through spectroscopy
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SUPERNOVA REMNANT CASSIOPEIA A

• Photometric Observation: Spitzer (Infrared - red),
Hubble (Visible - yellow), Chandra (X-ray - green & blue)
• In 2013, astronomers detected phosphorus in Cassiopeia A, which
confirmed that this element is produced in supernovae as a byproduct
of supernova nucleosynthesis. Not all SNe creates P.
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APOGEE project of SDSS: P (red)

• Very little P has been detected. P is abundant in the
solar system but not in others.
• How do we determine the existence of elements is space
- through spectroscopy
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PHOSPHORUS: A HIGHLY REACTIVE ELEMENT

• It glows when exposed to air, highly reactive
• It is used extensively in industries, fertilizers, detergents,
pesticides, plasticizers, etc
• The least studied element - was not seen much in space
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RADIATION FROM HOT ATOMS

]]
• An electron can be excited to higher levels
• When dropping down, depending on excitation it gives out a photon
over a wide wave length range. Only a fraction of radiation is visitable
• Each atom has its own set of colors that form spectral lines
• Energy levels are quantized
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RADIATION FROM ATOMS & SPECTRUM

• Energy levels are quantized
• An electron can be excited to higher levels. While dropping down,
it gives out a photon. Radiation contains photons of many energies
• SPECTRUM: Splitting the radiation in to its colors: Rainbow, C
lines quantum states can broaden the lines.
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ATOMIC PROCESS FOR LINE FORMATION IN PLASMAS
1. PHOTO-EXCITATION & DE-EXCITATION:

X+Z + hν ⇀↽ X+Z∗

• Atomic quantities:
- A21 for Spontaneous Decay or Radiative Decay Rate
- f (Oscillator Strength) or i B12 for Excitation
• Monochromatic opacity (κν) depends on fij

κν(i→ j) =
πe2

mc
Nifijφν

Ni = ion density in state i, φν = profile factor
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Phosphorus spectra from X-ray - FIR (Nahar et al in progress)

Photo-Absorption Spectrum of P XIII-XIV
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P XIII

• We have obtained radiative decay rates of all ionization stages of P,
I - XV. Ex. Spectra: P I,II,III (top) and XIV,XV (bottom)
• λ1500 - 9000 (top) and 0 - 10000, 30000 (bottom), show regions of
dominance from x-ray to far infrared
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Accuracy: Our calculated A-values agree reasonably with exist-
ing ones.

Table 1: Comparison of A-values for different transitions of P-I- XV calculated from SUPERSTRUCTURE
with published values

K KP E1 E2 Transition Ass Others
6 1 0.6141 0 3s23p24s(4P o

1/2) → 3s23p3(4S3/2) 5.666E+07 1.997E+08

7 1 1.4356 0 3s23p24s(4P o
3/2) → 3s23p3(4S3/2) 5.184E+07 2.013E+08

8 1 1.4356 0.9815 3s23p24s(4P o
5/2) → 3s23p3(4S3/2) 4.392E+07 2.043E+08

11 1 2.0653 0 3s3p4(4P o
1/2) → 3s23p3(4S3/2) 2.099E+08 3.568E+05

10 1 2.0653 0 3s3p4(4P o
3/2) → 3s23p3(4S3/2) 2.147E+08 4.332E+05

7 1 0.5825 0 3s3p3(3D1) → 3s23p2(3P o
0 ) 5.654E+05 8.312E+06 (Huang 1985)

11 1 0.6929 0 3s3p3(3P o
1 ) → 3s23p2(3P o

0 ) 5.768E+07 2.853E+07 (Huang 1985)
82 1 1.2644 0 3s3p3(1P o

1 ) → 3s23p2(3P o
0 ) 2.282E+05 3.215E+08 (Huang 1985)

48 1 1.1270 0 3s3p3(3S1) → 3s23p2(3P o
0 ) 1.243E+09 3.113E+09 (Huang 1985)

27 1 0.9383 0 3s23p3d(3P o
1 ) → 3s23p2(3P o

0 ) 1.931E+09 2.413E+09 (Huang 1985)
3 1 0.5087 0 3s3p2(4P o

1/2) → 3s23p(2P o
1/2) 1.111E+04 6.276E+03 (Huang 1986)

8 1 0.9941 0 3s3p2(2S1/2) → 3s23p(2P o
1/2) 1.144E+09 8.164E+08 (Huang 1986)

9 1 1.0334 0 3s3p2(2P o
1/2) → 3s23p(2P o

1/2) 4.693E+09 4.474E+09 (Huang 1986)

4 1 0.5103 0 3s3p2(4P o
3/2) → 3s23p(2P o

1/2) 8.957E+01 4.195E+01 (Huang 1986)

6 1 0.7055 0 3s3p2(2D3/2) → 3s23p(2P o
1/2) 6.267E+07 5.044E+07 (Huang 1986)

4 1 0.6141 0 3s3p(3P o
2 ) → 3s2(1S0) 3.058E-02 2.09E-2 (Ray 1989) / 3.12E-02 (Lin 1978)

6 1 1.4356 0 3p2(1D2) → 3s2(1S0) 2.694E+04 2.422E+04 (Godefroid 1985)
6 5 1.4356 0.9815 3p2(1D2) → 3s3p(1P o

1 ) 8.729E+07 1.01E+08 (Godefroid 1985)
14 1 2.0653 0 3s3d(1D2) → 3s2(1S0) 2.081E+05 1.960E+05 (Godefroid 1985)
14 5 2.0653 0.9815 3s3d(1D2) → 3s3p(1P o

1 ) 9.105E+09 8.38E+09 (Godefroid 1985)
5 1 1.8434 0 2p63d(2D5/2) → 2p63s(2S1/2) 8.643E+04 8.51E+04 (Godefroid 1985)
4 2 1.8428 0.8001 2p63d(2D3/2) → 2p63p(2P o

1/2) 3.247E+09 4.088E+09 (Godefroid 1985)

2 1 0.8001 0 2p63p(2P o
1/2) → 2p63s(2S1/2) 1.221E+09 1.219E+09 (Johnson 1996)

3 1 0.8073 0 2p63p(2P o
3/2) → 2p63s(2S1/2) 1.255E+09 1.253E+09 (Johnson 1996)

6 2 2.4543 0.8001 2p64s(2S1/2) → 2p63p(2P o
1/2) 2.477E+09 2.447E+09 (Johnson 1996)

3 1 9.8291 0 1s22s22p53s(3P o
1 ) → 1s22s22p6(1S0) 1.418E+10 2.830E+10 (Hibbert 1993)

5 1 9.9214 0 1s22s22p53s(1P o
1 ) → 1s22s22p6(1S0) 6.107E+10 1.781E+11 (Hibbert 1993)

17 1 11.8406 0 1s22s22p53d(3P o
1 ) → 1s22s22p6(1S0) 1.204E+09 3.819E+09 (Hibbert 1993)

23 1 11.9808 0 1s22s22p53d(3D1) → 1s22s22p6(1S0) 3.070E+10 1.103E+11 (Hibbert 1993)
27 1 12.1263 0 1s22s22p53d(1P o

1 ) → 1s22s22p6(1S0) 5.525E+11 1.475E+12 (Hibbert 1993)
3 1 5.3016 0 1s22s2p6(2S1/2) → 1s22s22p5(2P o

3/2) 2.658E+10 2.557E+10

4 1 3.8413 0 1s22sp5(4P o
5/2) → 1s22s22p5(2P o

3/2) 3.069E+08 1.797E+08

5 1 5.3016 0 1s22sp5(4P o
3/2) → 1s22s22p5(2P o

3/2) 4.775E+09 2.840E+09

6 1 3.7529 0 1s22sp5(4P o
1/2) → 1s22s22p5(2P o

3/2) 1.956E+07 7.583E+06

7 1 5.3016 0 1s22sp5(2P o
3/2) → 1s22s22p5(2P o

3/2) 1.133E+11 1.114E+11

7 3 5.3016 0.0848 1s22sp5(3P o
1 ) → 1s22s22p4(3P o

0 ) 5.481E+09 6.387E+09
8 2 3.8413 0.0627 1s22sp5(3P o

0 ) → 1s22s22p4(3P o
1 ) 1.727E+10 2.000E+10

7 2 5.3016 0.0627 1s22sp5(3P o
1 ) → 1s22s22p4(3P o

1 ) 4.206E+09 4.886E+09
6 2 3.7529 0.0627 1s22sp5(3P o

2 ) → 1s22s22p4(3P o
1 ) 4.011E+09 4.701E+09

7 1 5.3016 0 1s22sp5(3P o
1 ) → 1s22s22p4(3P o

2 ) 7.404E+09 8.535E+09
8 1 3.2357 0 1s22s2p4(4P o

1/2) → 1s22s22p3(4S3/2) 5.230E+09 5.764E+09

7 1 3.2066 0 1s22s2p4(4P o
3/2) → 1s22s22p3(3P o

2 ) 5.071E+09 5.606E+09

6 1 3.1532 0 1s22s2p4(4P o
5/2) → 1s22s22p3(3P o

0 ) 4.813E+09 5.355E+09

9 1 4.4363 0 1s22s2p4(2D3/2) → 1s22s22p3(3P o
1 ) 6.113E+05 4.588E+05

10 1 4.4394 0 1s22s2p4(2D5/2) → 1s22s22p3(3P o
1 ) 1.478E+05 3.416E+04

6 2 1.4807 0.0411 1s22s2p3(5S2) → 1s22s22p2(3P o
1 ) 1.557E+05 1.040E+05

6 3 1.4807 0.1026 1s22s2p3(5S2) → 1s22s22p2(3P o
2 ) 3.566E+05 2.478E+05

8 1 3.0036 0 1s22s2p3(3D1) → 1s22s22p2(3P o
0 ) 1.993E+09 2.101E+09

8 2 3.0036 0.0411 1s22s2p3(3D1) → 1s22s22p2(3P o
1 ) 1.008E+09 1.131E+09

7 2 3.0027 0.0411 1s22s2p3(3D2) → 1s22s22p2(3P o
1 ) 2.544E+09 2.708E+09

10 9 4.069 4.010 1s22s2p2(2P o
3/2) → 1s22s2p2(2P o

1/2) 2.301 7.717 / 8.184

2 1 0.101 0 1s22s22p2(2P o
3/2) → 1s22s22p(2P o

1/2) 1.228E+01 8.16 / 8.19

3 1 1.596 0 1s22s2p2(4P o
1/2) → 1s22s22p(2P o

1/2) 7.236E+05 5.972E+05

4 1 1.633 0 1s22s2p2(4P o
3/2) → 1s22s22p(2P o

1/2) 1.706E+04 1.311E+04

3 2 1.596 0.101 1s22s2p2(4P o
1/2) → 1s22s22p(2P o

3/2) 5.161E+05 4.123E+05

3 2 1.705 1.669 1s22s2p(3P o
1 ) → 1s22s2p(3P o

0 ) 1.139 5.94E-01
4 3 1.783 1.705 1s22s2p(3P o

2 ) → 1s22s2p(3P o
1 ) 8.431 4.98

5 4 3.346 1.783 1s22s2p(1P o
1 ) → 1s22s2p(3P o

2 ) 1.231E+02 7.04E+01
5 2 3.346 1.669 1s22s2p(1P o

1 ) → 1s22s2p(3P o
0 ) 1.171E+02 6.62E+01 / 8.43E+01

5 3 3.346 1.705 1s22s2p(1P o
1 ) → 1s22s2p(3P o

1 ) 8.719E+01 4.88E+01/5.98E+01
7 6 4.453 4.409 1s22p2(3P o

1 ) → 1s22p2(3P o
0 ) 1.997 1.16/1.14

20 1 156.616 0 1s2s2p(2P o
1/2) → 1s22s(2S1/2) 4.101E+13 14.089E + 13

25 1 157.297 0 1s2s2p(3S)(2P o
1/2) → 1s22s(2S1/2) 6.446E+12 16.828E + 12

17 1 155.139 0 1s2s2p(4P o
1/2) → 1s22s(2S1/2) 1.954E+10 12.754E + 10

21 1 156.670 0 1s2s2p(2P o
3/2) → 1s22s(2S1/2) 4.426E+13 13.141E + 12

18 1 155.166 0 1s2s2p(4P o
3/2) → 1s22s(2S1/2) 5.276E+10 17.394E + 10

7 1 158.200 0 1s2s2p(2P o
1/2) → 1s22s(2S1/2) 5.108E+13 15.022E + 13, 5.018E + 13

5.03E + 13.5.02E + 13.5.021E + 13
4 1 157.295 0 1s2s2p(3S)(2P o

1/2) → 1s22s(2S1/2) 2.614E+11 16.828E + 12

4 2 157.295 156.152 1s2s2p(4P o
1/2) → 1s22s(2S1/2) 1.623E+08 12.754E + 10

3 2 157.273 156.152 1s2s2p(2P o
3/2) → 1s22s(2S1/2) 1.447E+08 13.141E + 12

7 5 158.200 157.365 1s2s2p(4P o
3/2) → 1s22s(2S1/2) 8.494E+07 17.394E + 10

3 1 169.21496 0 2s(2S1/2) → 1s(2S1/2) 1.467E+06 1.4578E + 06
2 1 169.21411 0 2p(2P o

1/2) → 1s(2S1/2) 3.159E+13 3.1778E + 13

4 1 169.38315 0 2p(2P o
3/2) → 1s(2S1/2) 3.160E+13 3.1645E + 13

6 1 200.60096 0 3s(2S1/2) → 1s(2S1/2) 6.803E+05 6.4707E + 05
5 1 200.60075 0 3p(2P o

1/2) → 1s(2S1/2) 8.246E+12 8.4557E + 12

1
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2. PHOTOIONIZATION (PI):

i) Direct Photoionization (background):

X+Z + hν ⇀↽ X+Z+1 + ε

ii) Resonant Photoionization: an intermediate state before
ionization → ”Autoionizing state” → RESONANCE

X+Z + hν ⇀↽ (X+Z)∗∗ ⇀↽ X+Z+1 + ε

• κν depends on photoionization cross section σPI

κν = NiσPI(ν)
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PHOTOIONIZED PLASMAS

• Photoionization occurs with any light source
• Lambda Centauri nebula with radiation sources of stars
• Solar corona: a rarefied atmosphere of super-heated
plasma that blankets the Sun and extends out into space
for millions of kilometers.
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PHOTOIONIZATION OF P II: Experiment (ALS, Berkeley)
(Guillermo et al. 2015

• Synchrotron based Advanced Light Source (ALS) at
BLNB produces high resolution photoionization spectra
• Figure shows combined features of states in target beam
• Needs theoretical spectral analysis for identification of
features and abundance of states
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MEASURED PHOTOIONIZATION CROSS SECTIONS OF P II: BENCH-
MARK WITH R-MATRIX METHOD (Nahar et al 2016)

Photoionization Cross sections of P II at Thresholds
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3. ELECTRON-ION RECOMBINATION

i) Photoionization (PI) & Radiative Recombination (RR):

X+Z+1 + ε ⇀↽ X+Z + hν

ii) Indirect PI & Dielectronic Recombination (DR) with
intermediate autoionizing state → RESONANCE:

X+Z+1 + εX+Z ⇀↽ (X+Z)∗∗ ⇀↽ X+Z + hν
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ELECTRON-RECOMBINATION IS COMMON IN ALL AS-
TRONOMICAL OBJECTS

• Crab nebula with stars radiating the plasma - photoion-
ization and electron ion recombination
• Intergalactic region with no light source - recombination
- Even in dark, cold space there are electrons and ions
which go through recombination process
• Unified Method of Nahar and Pradhan → total recombi-
nation
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Recombination Cross Sections and Collision Strength of P II
(Nahar 2017)
• TOP - Recombination Cross Sections σRC of P II
• BOTTOM - Recombination Rates αRC with EPE

• ARROWS: Enhancement due to DR at dipole excitations of the core
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FEATURES OF THE LEVEL-SPECIFIC RRC OF P II
(Nahar 2017)
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FEATURES OF THE TOTAL RRC OF P II (Nahar 2017)
• Curve around T = 330 K (arrow) due to low energy resonances
• Shoulder around T = 6700 K (arrow) due to interference
between RR & DR,
• High T DR bump around T = 105 K (arrow)
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4. ELECTRON-IMPACT EXCITATION (EIE)

e + X+Z→ e′ + X+Z∗→ e′ + X+Z + hν

• Light is emitted as the excitation decays
- seen as most common lines in astrophysical spectra
- mostly diagnostic forbidden lines
• Scattered electron shows features with energy & can have
autoionizing resonances
• Atomic quantity: Collision Strength (Ω)
Fig. Excitation by electron impact:
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Example study: Ultra Luminous Infrared Galaxy (ULIRG)

ULIRG: IRAS-19297-0406

• ULIRG - emits more than 1011 solar luminosities in IR
(as stars are born), heavily dust obscured
• Only far-infrared photons, produced from EIE, can es-
cape from absorption, and can be observed at high redshift
(by SPITZER, HERSCHEL, SOFIA). They provide infor-
mation on chemical evolution of the galaxy.
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Ω EIE OF P III (Naghma, Nahar, Pradhan, MNRAS Lett 2018)

• The collision strength, from the lowest excitation, shows
resonances, contribute importantly to collision rates, qij,

and lines: Iij(Xi, λij) =
[
hν
4πnenion

]
qij
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EIE EXCITATION RATE OF P III (Naghma, Nahar, Pradhan,
MNRAS Lett 2018)

• The Maxwellian averaged effective collision strength for the FIR 17.9
µm transition shows a factor 3 temperature variation broadly peaking
at typical nebular temperatures. Its theoretical emissivity with solar
phosphorus abundance computed relative to Hβ found to be similar to
observed intensities from planetary nebulae
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The OPACITY Project, The IRON Project

DISCREPANCY IN STUDY OF PULSATIONS OF CEPHEID
VARIABLES (RS PUPPIS) (1983 -
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The OPACITY Project (OP) & The IRON Project (IP)

AIM: Accurate Study of Atoms & Ions, Applications to
Astronomy

• International Collaborations: France, Germany, U.K., U.S.,
Venezuela, Canada, Belgium
• Solve and Study underlying science for astrophysical spectroscopy
• Solve and Solved many astrophysical problems
• Found new physics in photoionization
• Unified method for electron-ion was introduced
• Study included large sets of atomic data (n ≤ 10)

• Developed Atomic & Opacity Databases
• TOPbase (OP) at CDS:
http://cdsweb.u-strasbg.fr/topbase/topbase.html
- Energy levels, Oscillator Strengths, Photoionization Cross Sections
• TIPbase (IP) at CDS:
http://cdsweb.u-strasbg.fr/tipbase/home.html
- Data for Collisional Excitations, and Radiative Processes
- Includes fine structure effects
• OPserver for monochromatic opacities and program for mixtures at
the OSC: http://opacities.osc.edu/

• NORAD-Atomic-Data for the latest radiative data (including
electron-ion recombination) at OSU:
http://norad.astronomy.ohio-state.edu
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Bridge between Atomic Physics and Astronomy
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Invite to APS membership:

AMERICAN PHYSICAL SOCIETY

Membership (free) info:

Contact: Sultana Nahar

Email: nahar.1@osu.edu

Website for details:
http://www.astronomy.ohio-state.edu/ ∼nahar/fip.html

After becoming member, become a member of
- Get your web account
- become a member of your division &
- FIP: Forum of International Physics - unit of APS - Post
your resume
- Sign up for job alerts
- Check many other activities and benefits
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