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Abstract 

RMATRX 1 is a general program to calculate atomic continuum processes using the R-matrix method, including electron- 
atom and electron-ion scattering, and radiative processes such as bound-bound transitions, photoionization and polarizabili- 
ties. Calculations can be either in LS-coupling, or in an intermediate-coupling scheme by including terms of the Breit-Pauli 
Hamiltonian. This version supersedes all previous versions, is well-optimised, and contains many new and improved features. 

Keywords: Atomic; Electron atom scattering; Electron ion scattering; Photoionization; Polarizability; R-matrix 

N E W  VERSION SUMMARY Operating systems under which the new version has been tested: 
UNIX (1 to 3), VMS (4), extended DOS (5) 

litle of program: RMATRX1 Programming language used in the new version: FORTRAN 77 

Catalogue number: ADCP 

Program obtainable from: CPC Program Library, Queen's Univer- 
sity of Belfast, N. Ireland (see application form in this issue) 

Reference to previous versions: Comput. Phys. Commun. 8 (1974) 
149-198; 14 (1978) 367-412; 25 (1982) 347-387 (N.B.: the new 
version has more features than these). 

Does the new version supersede the original program?: Yes 

Licensing provisions: none 

Computer for which the new version is designed and others on 
which it has been tested: 
1. Cray Y-MP EL, Queen's University Belfast 
2. Cray Y-MP 1/8128, Rutherford Appleton Laboratory 
3. HP apollo 700, Queen's University Belfast 
4. VAX 9000, Queen's University Belfast 
5. Dell 450L, Queen's University Belfast 

Memory required to execute with typical data: 2 MWords mini- 
mum. Since the dimensions can be preprocessed it is possible to 
run small calculations in less memory. 

No. of bits in a word: 64 

No. ofprocessorsused: 1 

Has the code been vectorised?: Yes. Time-critical loops have been 
written in vectorisable form: this is particularly true in program 
modules STGI and STGH. In addition, routine MDIAG (matrix 
diagonalization) in STGH contains parallelisation (Cray micro- 
tasking) options - see listing for further details. 

Peripherals used: scratch disk store; permanent disk store 

No. of lines in distributed program, including test data, etc.: 49896 

CPC Program Library subprograms used: none (they are incor- 
porated into the present package) 

0010-4655/95/$09.50 (~) 1995 Elsevier Science B.V. All fights reserved 
S S D I 0 0 1 0 - 4 6 5 5 ( 9 5 ) 0 0 1 2 3 - 9  



K.A. Berrington et al./Computer Physics Communications 92 (1995) 290-420 291 

Keywords: atomic, electron atom scattering, electron ion scatter- 
ing, photoionization, polarizability, R-matrix 

Nature of physical problem 
This program uses the R-matrix method to calculate electron-atom 
and electron-ion collision processes, with options to calculate ra- 
diative data, photoionization etc. Calculations can be either in 
LS-coupling or in an intermediate-coupling scheme. 

The program is based on two earlier CPC programs [ 1,7], with 
extensions by the Opacity Project [2,8] and the Iron Project team 

161. 

Method of solution 
The R-matrix method is used [3,4,5]. The code is written for 
an LS-coupling scheme, with options to include Breit-Panli terms 
in the Hamiltonian and recouple the matrices to an intermediate- 
coupling scheme. 

Reasons for new version, and summary of revisions 
• incorporate new sections for calculating radiative data 
• merge the LS-coupling and Breit-Pauli versions 
• implement new algorithms, better numerical procedures, etc. 
• improve optimisation (e.g. vectorisation, reducing I /O) 
• upgrade to FORTRAN 77 
• allow preprocessing of arrays 

Restrictions on the complexity of the problem 
The main purpose of the present publication is to publish the inter- 
nal region modules. The external region module (STG4) is rather 
inefficient and should be replaced in production runs. 

Typical running time 
The test runs take about 2 minutes on a Cray Y-MP EL. However 
this is a small atypical calculation. 

The running time in a realistic calculation tends to be domi- 
nated by three processes: 
(a) calculating angular integrals in STG2, particularly for open 
d-shell targets; 
(b) diagonalizing large Hamiltonian matrices in STGH, an n 3 pro- 
cess, where n is the size of  the Hamiltonian and is proportional 
to the number of  channels and basis terms. 
(c) solving the coupled equations in the external region, depends 
on the number of scattering energies required as well as the num- 
ber of  channels. 

Unusual features of the program 
Dimensions can be reset by preprocessing. 
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1. Introduction 

1.1. Background 

We are concerned here with model l ing the interaction of  electrons and photons with isolated atoms and their 
ions. 

There is a continuing demand for a large variety of  high quality atomic data to understand and predict 
laboratory or astrophysical  processes. This is due in part to the ever greater precision of  modern experimental 
and observational facilities; in part to the desire for greater understanding of  plasma properties,  and of  the 
results o f  sophisticated experiments. It appears that very little of  the relevant data can be provided in controlled 
laboratory conditions.  This gives a tremendous motivation to exploit  powerful computational methods, such as 
the R-matrix method, and supercomputers to provide such data. There is also the satisfaction of  being able 
to solve in an ab initio way the quantum mechanical equations underlying natural phenomena, in order to 
understand these very basic interactions. 

As will be seen, an important  advantage of  the R-matrix method is that it provides an excellent basis for 
describing many types of  atomic process. 

The atomic R-matrix programs described here have a long history. In order to give some idea of  the evolution 
and application of  these programs, let us outline some of  the publication milestones. 

1974 First  publicat ion of  R-matrix package (LS-coupl ing version) by Berrington et al. [ 12], based on theory 
developed by Burke and Seaton [23] ,  Burke, Hibbert and Robb [27] ,  Burke and Robb [22] .  These three 
references are essential reading for the beginner; the latter reference being particularly readable. 

1978 Modified R-matrix package published by Berrington et al. [ 13]. 
1982 Publication of  Breit-Pauli version of  R-matrix programs by Scott and Taylor [73] ,  based on theory 

developed by Scott and Burke [71] .  
1987 First  publicat ions from the international Opacity Project by Seaton [78] and Berrington et al. [11] ,  

which describe extensions to the 1978 version for calculating radiative data for stellar opacities. The Project 
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was reviewed in a book by the Opacity Project team [64], containing an introduction, 21 key papers, and 
tables of energy levels and oscillator strengths. 

1993 First publication from the international Iron Project by Hummer et al. [54], describing extensive modifi- 
cations for calculating excitation data for the iron group of atoms and ions. 

1993 The publication of a comprehensive review of the R-matrix method and its applications in a book 
edited by Burke and Berrington [21], which contains introductory material, a bibliography of 547 R-matrix 
publications, with 27 of the key papers reprinted. 

It is clear that some time has elapsed since the programs themselves were last published. Many changes have 
been made since then, the most major of which have been 
• the writing of new sections for calculating radiative data, 
• the merging of the LS-coupling and Breit-Pauli versions, 
• the implementation of new algorithms. 
There is thus a consistent and general atomic R-matrix computer package. Countless minor modifications have 
been made: to improve the numerical procedures, minimise use of intermediate disk files, improve optimisation 
on vector supercomputers, upgrade to FORTRAN 77, allow preprocessing of array dimensions, etc . .  A degree 
of stability has now been achieved, moreover these programs are in use by workers world-wide; it is therefore 
timely to produce a new write-up and publish the current package, known as RMATRX1. 

It should be emphasised that program development has been continuous over time, with many people involved. 
Although the three authors of this paper have been involved in these developments, and have put together this 
write-up, we wish to acknowledge the contribution of others. In particular we mention Professors Phil Burke 
and Mike Seaton, who have played a major role in developing the R-matrix method. 

The remainder of this section summarises the atomic processes which can be treated in the present computer 
codes, and introduces some notation and the choice of units. Section 1.2 discusses the non-relativistic formulation 
of R-matrix theory, with particular emphasis on electron collisions; Section 1.3 discusses radiative processes; 
Section 1.4 discusses extensions to include relativistic effects; Section 1.5 discusses using a model potential; 
and Section 1.6 describes program layout and some programming details. 

Each module in RMATRX1 (STG1, STG2, RECUPD, STGH, STG4 and STGLIB) is then described in 
detail in Sections 2-7, while Section 8 describes the preprocessing of dimensions; Section 9 presents a glossary; 
Section 10 summarises additional programs which interface with the present codes; Section 11 describes the 
test runs. 

1.1.1. Processes 
This document describes the computational implementation of the atomic R-matrix method for the following 

processes (A refers to an atom or ion, Ai its initial state, Af its final state): 
• elastic and inelastic electron scattering from atoms and ions 

e- + A i - - ~ e - + A /  

• photoionization of atoms and ions 

h v + A - - , e -  +A  + 

l)  

(2) 

• properties of the ( e -  + A) system 
e.g. resonances, bound state energies, oscillator strengths and polarizabilities. 
Let N be the number of electrons in Ai and Ay in Eq. ( 1 ). This is our atomic or ionic target. Less obviously, 

in a photoionization calculation, we use the word 'target' when referring to the final state (A + in Eq. (2 ) ) ,  
or the N-electron core in a bound-state or polarizability calculation. The initial state in Eq. (2) is of course a 
bound state of the ( N + 1 )-electron system. 
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At low energies, the probability of a collision process can be dominated by transitions involving the temporary 
capture of the colliding electron, followed by autoionization, e.g. 

e -  -k-Ai--r ( A - ) *  ~ e -  W A y  

where the asterix indicates (N + 1)-electron resonance states. It is the description of such processes that arises 
so naturally from using R-matrix techniques. 

1.1.2. Notation and choice of  units 
Let us first review some notation, and define our units. 
A configuration of an atom or ion specifies a particular distribution of the electrons among atomic orbitals. 

Light atoms and ions are well described by Russell-Saunders (LS) coupling, where the orbital (L) and spin 
(S) angular momenta are assumed to be separately conserved, as is the parity (~) .  Thus an LS-term is a 
specific SLur target state. Introducing the spin-orbit interaction, necessary for an accurate description of heavier 
atoms and ions, splits the LS-term energies into fine-structure levels of symmetry J~r, where J is the total 
angular momentum. 

The equations are expressed in atomic units (a.u.) as introduced by Hartree [49]. 
The unit of length is the Bohr radius a0 = 5.29177 x 10 - l l  m 
The unit of energy is the Hartree energy Eh = 4.35975 x 10-18J 
Energies are often expressed in Rydbergs (Ry) or electron-volts (eV) where 

Eh = 2Ry ~ 27.2114eV 

Using Ry the energy levels of the hydrogen atom are En = - 1 / n  2 and the energy of a free electron is k 2 where 
k is the wavenumber in a.u. .  Boltzmann's constant, ks, is such that, for a temperature T in K, 

kBT ~ (T/157890) Ry 

In a.u. the speed of light c takes the value of 137.036 (the reciprocal of Sommerfeld's 'fine-structure constant' 
a ) .  

Cross sections have units of area, and are sometimes quoted in units of 7ra 2 ~ 88 x 10 -22 m 2. Photoionization 
cross sections are traditionally quoted in Megabarns (1Mb -- 10-22m2). 

The values of physical constants are taken from CODATA [35]. 

1.2. Non-relativistic R-matrix theory 

In this section we review R-matrix theory with particular emphasis on non-relativistic electron scattering 
from atoms and ions. 

1.2.1. Equation of  motion 
The scattering system consists of an atomic target with N electrons and an additional colliding electron. It is 

assumed that the behaviour of this system is determined solely by the electromagnetic interaction between the 
charged particles. In quantum mechanics, all information on the system is contained in the wavefunction. 

We therefore seek solutions 9t, with appropriate boundary conditions, for the time independent Schrrdinger 
equation 

HN+l~ = E9 t (3) 

where E is the total energy. 
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For light atoms and ions, where relativistic effects can be neglected, the (N + 1)-electron Hamiltonian (in 
a.u.) is given by 

HN+I E 1 2 __Z + 
= - ~ V , ,  r. 

tl=l t?l~// 

(4) 

where r,  is an electronic radius vector drawn from the atomic nucleus with atomic number Z and r,m = I r , -  rm I 
an inter-electronic distance. It is assumed that the nucleus is infinitely heavy and is a point charge. 

The first two terms on the right-hand side of Eq. (4) are a sum over the electron kinetic energy and electron- 
nucleus Coulomb attraction: the so-called one-electron terms. The final term on the right is a summation over 
the Coulomb repulsion between pairs of electrons: the so-called two-electron term. 

In the calculation of matrix elements, we will be expanding 1/r~m in terms of spherical harmonics: 

1 Z 47r /.t* ^ = (2-T-4"[) V;(~'m) ra< - -  Y,( ( rn ) ra>+ 1 
rnm At# 

(5) 

where r< & r> = min & max (rn,rm),  and the angular integrals are evaluated using standard techniques 
including the Wigner-Eckart theorem. 

Solutions ~ of Eq. (3) are constructed as products of one-electron functions in spherical polar coordinates 
- -  which makes configuration mixing a requirement. Later we shall see that such coordinates reduce Eq. (3) 
to Hartree-Fock type radial equations. 

1.2.2. Target states 
Before considering the full (N + 1)-electron system, let us first examine techniques for establishing a 

wavefunction for the N-electron target. 
We introduce a set of target states, and possibly pseudo-states, q0i and their corresponding energies E~ by 

the equation 

(¢i I H N I e j )  = E~6ij (5) 

where we use the bra and ket notation, implying an integration over all electronic coordinates over all space. 
Here H u is the target Hamiltonian defined by Eq. (4) with N + l  replaced by N. These are antisymmetric LSrr 
states. 

These states are usually written as a configuration-interaction (CI) expansion in terms of some basis config- 
urations Oi by 

qbi(Xl . . .  XN)  = E bik (~k (Xl . . .  XN) ( 7 )  
k 

where xv -- rvo-~ = rv ~., o-v stands for the spatial position and spin of the vth electron, and the configuration 
mixing coefficients bik are determined by diagonalizing the target Hamiltonian in the representation of Eq. (7). 

The configurations t~i a re  constructed from a bound orbital basis usually consisting of self consistent field 
(SCF) orbitals plus some additional pseudo-orbitals included to model electron correlation effects. For a 
given ¢i these one-electron orbitals O,tm~(X,,) are coupled together to give a function which is completely 
antisymmetric with respect to the interchange of the space and spin coordinates of any two electrons: 

(~k ( X l . . . X N ) = ( N !  ) - l  /E evl...v~Ol ( Xvl ) OE ( Xv2 ) . . . ON( XuN ) 

where N! is the number of permutations and e the permutation symbol. 
Each one-electron orbital is a product of a radial function, a spherical harmonic, and a spin function: 
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Onlm,(r, ms) = 1pnl(r)y tmt(o,q~)X(ms)  

The orbitals form an orthonormal set 

(8) 

(Onilimtl ] Onfljmlj ) = 6ninj 81,lj ~mtimtj ~msim,j 

In particular the radial parts of these orbitals, P,a(r), satisfy the orthonormality relations, 

o o  

Pnfl) = /Pnd(r)Pnj t (r)  dr = 8nini (9) (end I 
0 

The Phi(r) radial functions are input to the R-matrix programs, and are obtained from tabulations such 
as Clementi and Roetti [34], or from atomic structure packages such as CIV3 (Hibbert [52] ) and SUPER- 
STRUCTURE (Eissner et al. [43] ). 

The target functions usually die off exponentially at large distances from the atom; the physical interpretation 
being that the probability of finding any of the N target electrons significantly outside the atom is small, at 
least at low energies. The localisation of target electrons is crucial to the R-matrix method and is used to define 
the radius of the sphere r = a delineating the internal region. 

1.2.3. Scattering channels 
Now let us examine some of the constraints involved in combining the scattering electron with the target. 
• Conservation of angular momentum and parity. 

The orbital angular momenta of the scattering electron li and of the target state may couple vectorially in several 
different ways to yield the same total L. For example the 2p state of hydrogen can couple with an electron 
of either li = 0 o r  I i = 2 to yield a total angular momentum of L = 1 (odd parity). These are the so-called 
scattering electron 'channels', normally indicated by index i. 

• Conservation of energy. 
E is the total energy and E/U the energy of the target state coupled to the ith channel, in a.u. The channel 
energy of the scattering electron k/2, in Ry, is therefore: 

k/2= 2 ( E -  E/u) 

Note that: 

k 2 > 0 for open channels 

< 0 for closed channels 

= 0 at the threshold energy 

If E~ v+l is the energy of the initial state in a photoionization calculation in a.u., then the electron channel 
energy k/2 is related to the incident photon energy to in Ry by 

to + - E /U)  

1.2.4. Partition of configuration space 
R-matrix theory starts by partitioning configuration space into two regions by a sphere of radius a centred 

on the target nucleus (cf. Wigner and Eisenbud [83] ). 
• In the internal region r _< a, where r is the relative coordinate of the scattered electron and the target nucleus, 

electron exchange and correlation between the scattered electron and the N-electron target are important and 
the ( N +  1 )-electron collision complex behaves in a similar way to a bound state. Consequently a configuration 
interaction (CI) expansion of this complex, analogous to that used in bound state calculations is adopted. 
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• In the external region, r > a, electron exchange between the scattered electron and the target can be neglected 
if the radius a is chosen large enough so that the charge distribution of the target is contained within the 
sphere. The scattered electron then moves in the long-range multipole potential of the target. This potential is 
local and the solution in this region can be obtained using an asymptotic expansion or by using perturbation 
theory. 
The two regions are linked by the R-matrix on the boundary. 
Implied in the above discussion is that the N-electron target orbitals of Eq. (8) must become vanishingly 

small in the external region. In practice the boundary radius a is chosen such that 

I P , t ( r  = a)  l< 8 

for all bound orbitals included in the calculation, where 8 is some suitably small number. 

(11) 

1.2.5. Internal region 
In the internal region the (N + 1)th electron must be considered in quantum mechanics as being indistin- 

guishable from the N target electrons. A CI expansion of the wavefunction, as in the bound state problem 
discussed in Section 1.2.2, is therefore appropriate in this region. 

In order to determine the solution of Eq. (3) in the internal region, we introduce energy-independent basis 
states ¢'k in the internal region, which are expanded in the form 

Iflk(Xl • X N + I  ) ,A Z Cijk-.~i(x I XN;~.N+IO,.N+I ) 1 . . . . . .  - -  Uij(rN+l) 
ij rN+l 

+ Z djk X j ( X l  . . . X N + t )  (12) 
J 

where .,4 is the antisymmetrisation operator which accounts for electron exchange between the target electrons 
and the free electron. 

The channel functions Oi are obtained by coupling the target states Oi, defined by Eq. (6) and Eq. (7),  
with the angular and spin functions of the scattered electron to form states of the total angular momentum and 
parity. 

The quadratically integrable (L 2) functions Xi, which vanish at the surface of the internal region, are formed 
from the bound orbitals and are included to ensure completeness of the total wavefunction. 

The continuum orbitals u O, which represent the motion of the scattered electron, are the only terms in Eq. 
(12) to be non-zero on the surface of the internal region. We will examine these functions in more detail in 
the next subsection. 

The coefficients Cijk and dik in Eq. (12) are determined by diagonalizing 

(~k I HN+I I ~k ' )  = Ek~kk' (13) 

where we introduce round brackets in place of the bra and ket notation to indicate the finite range of integration 
from r = 0 to r = a. The (N + 1)-electron Hamiltonian operator H u+l in this and later equations is projected 
onto the space of functions ~0k. To evaluate this, let ~oA denote collectively the basis functions and the Vka 
denote collectively the coefficients COk and djk in Eq. (12), which we can rewrite in a more convenient form: 

A 

Then define Hamiltonian matrix elements 

H a A ' = ( q~ ,~ ] H N + I [ ~P,v) (14) 
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Clearly, the evaluation of these matrix elements proceeds in exactly the same way as in Eq. (6), except that 
now all radial integrals involving continuum orbitals are taken over the finite range of r. We are therefore able 
to use the same computer codes. The diagonalization of this matrix yields the eigenvectors Vka (i.e. the cijk and 
djk coefficients in Eq. (12)) ,  together with the eigenvalues Ek in Eq. (13). 

We will see later (Section 1.2.7) how we can use this as a basis to expand the total wavefunction in the 
internal region for any energy. 

1.2.6. Continuum orbitals 
The choice of the continuum orbitals uij in Eq. (12) is important. In principle members of any complete set 

of functions satisfying appropriate boundary conditions at r = 0 and r = a can be used. However a careful choice 
will enable the convergence of the expansion in Eq. (12) to be more rapid. In the work of Burke et al. [27] 
numerical continuum orbitals satisfying homogeneous boundary conditions were adopted. This approach gives 
accurate results provided that a correction proposed by Buttle [30], to allow for the truncated expansion, is 
included. 

The continuum orbitals I uij(r) in Eq. (12) for each angular momentum li are normally obtained by solving 
the model single-channel scattering problem 

(~ r r  262 l i ( l i+l)r  ~ 2.) + Vo(r) + k uij(r) = Za i jnPn t i ( r )  (15) 
n 

subject to the fixed boundary conditions 

\ d r  ]r=a = b (16) 

* The Lagrange multipliers Aijn ensure that the continuum orbitals are orthogonal to bound orbitals Pnt,(r) of 
the same angular symmetry, though Schmidt orthogonalisation can be used as an alternative. 

• Vo(r) is a zero-order potential which near the nucleus behaves like 2Z/r. It is normally chosen to be the 
static potential of  the target. 

• k/~ are the eigenvalues in Ry. 
• a is the radius of  the sphere defining the internal region. 
• The constant b is arbitrary, and is normally set to zero. 

The orbitals defined by Eq. (15) are orthogonal both to themselves and to the bound orbitals: 

a 

f u(i(r)uij,(r) dr =- [ = (uij uij, ) 
o 

(ui j lP. l , )  = 0  (17) 

where again we have introduced round brackets to indicate the finite range of integration. It follows from this 
and Eq. (9) that the orbitals 

Pnminb . . . . .  Pnm~l, , U i l  , U t 2  . . . .  with nmin = li -4- 1 (18) 

form a complete set of functions over the range r = 0 to r = a for each li. 
Note that the bound and continuum orbitals defined in this way, as well as the ~Pk basis expansion in Eq. 

(12), are all independent of the total (N + 1)-electron energy. 

l The index i labels the angular momentum. For a given i there is a discrete set of solutions which are labelled by index j. 
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1.2.7. R-matrix 
We are now in a position to establish the total wavefunction ~ in the inner region, and the R-matrix on the 

boundary, for any total (N + 1 )-electron energy E. (The following theory is from Burke et al. [ 27] and Burke 
and Robb [22].) 

We assume that the states ~'k form a basis for the expansion of the total wavefunction ~/' for any energy E 
in the region where all electron coordinates r < a. We can therefore write 

"= Z AEk~k (19) 
k 

Note that the energy dependence is carried through the Aek coefficients, the ~/'k basis being energy independent. 
In order to determine the Aek we start from the relation 

I H u ÷ l  I ' e )  - ( ' e l H  N÷l I¢ ' k )  = 

which follows from Eq. (3),  Eq. (13) and Eq. (19). Only the kinetic energy operator contributes to the left 
hand side of this equation and so we obtain 

- ± ( N + 2  l) [ (¢ ,k lV~+, l  ~ ) - ( ~ ' [ v ~ + , l ~ )  ] =(E--Ek)(e ,  k l~ ' )  

We can simplify this equation by noting that the only non-zero contribution occurs when the operator ~72N+1 
acts on the continuum orbitals. Using Eq. (19) we obtain 

-5- ~ AEk' [(-~,wit~(rN+l) IV  2 N+l [ ¢jWjk,(rN+l) ) -- (q~jWjk,(rN+l) V2N+j I'~iWik(rN+l) )] 
ilk ~ 

= ( E -  Ek)(,Pk I 'P') 

where wik is defined by 

1 ~wik(r) = r ~--~cijkuij(r) = (~il~0k) (20) 
J 

Define the reduced radial wavefunction of the scattered electron in channel i at energy E: 

~Fi(r) = ~ Z AEkWik(r) = (~;1~) (21) 
k 

In Eq. (20) and Eq. (21) the integration is carried out over all electron space and spin coordinates except the 
radial coordinate r of the scattered electron. Using the orthonormality of the ~i, we obtain 

--2 . (Wik I ~r  2 I Fi) - (Fi [ ~r 2 I Wik) = ( E  - Ek)AEk  

Applying Green's theorem and noting the boundary conditions of Eq. (16), we obtain 

J Z (dFi b Fi ) = ( E - E k ) A e k  
--5 Wik(a) dr a 

i r=a 

This allows us to extract the Aek coefficients: 

1 E)-I Z Wik(a) (a dFi ) aEk = ~aa( Ek - i \ ~ - bFi r=a 

Multiplying by wjk and summing over k we obtain, using Eq. (21), 

(22) 
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(a dFj - bFj) Fi(a) = ~ Rij(E) \ -~r 
j r=a 

where we have introduced the R-matrix, whose elements are defined by 

(23) 

1 ~ k  wik(a)wjk(a) R u ( E )  = (24) 

Eq.(23) and Eq. (24) are the basic equations describing the solution of the electron-target scattering problem 
in the internal region. The surface amplitudes W i k ( a )  and the poles Ek of the R-matrix are obtained directly 
from the eigenvectors and eigenvalues of the Hamiltonian matrix defined by Eq. (13). We see that the R-matrix 
is obtained for all energies by diagonalizing H u+l once for each set of conserved quantum numbers LS and 
parity ~" of the electron-target system. 

The logarithmic derivative of the reduced radial wavefunction of the scattered electron on the boundary of 
the internal region is given by Eq. (23), and is to be matched across the boundary to the external region. 

1.2.8. Buttle correction 
The most important source of error in this method is the truncation of the expansion in Eq. (24) to a 

finite number of terms. The distant, neglected terms can play an important role in the diagonal elements of 
the R-matrix where they add coherently. We can include these terms in Eq. (24) by solving the differential 
equation 

d li( li q- 1 ) ) 
~r 2 r------ T -  + Vo(r) + k2i u°(r) = Z AijkPk(r) 

k 

This is the same as Eq. (15) but is solved here at the channel energies k] without applying the boundary 
condition Eq. (16) at r = a. Suppose the R-matrix is calculated from the first N" terms in the continuum 
expansion. The correction R °. to the diagonal elements of the R-matrix at the energy k 2 is then given, using the 
formula discussed by Buttle [30], by 

( X )  

RC-(J~,k/2) ~ - ~ uq(a)2  
a kij -- k i j=.A/'+ 1 

[ a :du0  ] 
= ~ ~,drJr=a - b  - a  = i--.~--7.2 kij - k i 

(25) 

where uo(r) and kij refer to the jth eigensolution of Eq. (15) satisfying the boundary conditions of Eq. (16), 
and u ° is the solution for channel energy k/2 Ry. We therefore use the Buttle corrected R-matrix in place of Eq. 
(24): 

1 ~ wik(a)wjk(a) c k2)(3ij 
Rij( f) = ~a "-~k U - E  "~- Rii('/~f' (26) 

For k] < k 2, RiC(Af, k 2) is a continuous and monotonic function of k 2 and in practice it is often required for 
a large number of energy values. An efficient procedure then is to calculate Rc(.A:, k 2) for some small number 
of energies k 2 and to fit to a convenient functional form. Fitting to a quadratic in k 2 has been used but this 
fails to give a good fit over an extended range of k 2, particularly for negative energies. Instead we normally 
use Seaton's [77] fitting procedure for the Buttle correction. 
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1.2.9. External region 
The next step in the calculation is to solve the electron-target scattering problem in the external region. In 

this region the colliding electron is outside the atom, and can be considered distinct from the N target electrons. 
The total wavefunction is expanded in the form 

• XN+I) -~ Z - ~ i ( X l  • • .XN;~'N+IOrN+I) ~ Fi(rN+l)  (27)  ~g(Xl .. 
rN.l-I 

i 

where the ~i are the same set of channel functions used in Eq. (12), but now no antisymmetrisation is required. 
Substituting Eq. (27) into Eq. (3) and projecting onto the channel functions yields a set of coupled differential 
equations satisfied by the reduced radial wavefunctions Fi(r) of the form 

~r 2 r ~  + - -  + k Fi(r) = 2 V i j ( r ) F j ( r )  i= l ,n (r >_ a) (28) 
r j=l 

Here n is the number of channel functions retained in the expansions of Eq. (12) and Eq. (27), li and k 2 are 
the channel angular momenta and energies, and the potential matrix V/j is given by 

N 
= r -1 v,.j(r) (~,1~'~ .,.N+,I~j) 

m =  1 

N 

(~,1 Z Z 4~" l = (~-z-r) V('(~m)Ya~(~N+')r*,,l~') ra+l 
m=l A/z 

where we have expanded r -1 using Eq. (5) with r,, < rN+l =- r. Defining the long-range potential m,N+l 
coefficients a/~ in terms of Legendre polynomials as: 

N 

a a = <-~i I Z ra'Pa(c°sOm,N+l) I~J) (29) 
m=l 

and noting that a ° = N~ij because of the orthonormality of the ~i, the differential equations Eq. (28) reduce 
to 

( d  2 li(li+ l) +--+k2Z ~) ~am~x , ai )a 
d r  2 r 2 Fi (r )  = 2 ~'~ - -  ~ ra+l Fj(r) (30) 

r A=I j=l 

where z = Z - N is the residual target charge. 
Eq.(30) can be integrated outwards subject to the R-matrix boundary conditions of Eq. (23) at r = a and 

then fitting to an asymptotic expansion. The external region problem is common to all atomic and molecular 
close-coupling calculations, and the same computer packages can be used. 

The boundary conditions at infinity are (see e.g. Berrington et al. [ 11 ] ) 

f kT1/2(sinOi6ij  + cosOiKi)) open channels  
~ j ( r )  (31) 

r ~  I, exp (--q~i) ~ij closed channels 

where the second index j on Fij distinguishes the na linearly independent solutions of Eq. (30), n, is the 
number of open channels, and 



302 K.A. Berrington et al./ Computer Physics Communications 92 (1995)290-420 

Oi = kir - ½ liTr - 7]i In 2kir + arg F ( li + 1 + it/ i)  ( 3 2 )  

z 
7]i -- -- ki 

z ln(2 Jkilr) ~i  -~ ]ki[ r - ~ i l  

Thus we can, in principle, calculate the wavefunction in the external region. However, the solution is not fully 
determined until we have found the reactance matrix K in Eq. (31). To do this we need to use our knowledge 
of the wavefunction at r = a. 

1.2.10. Matching o f  solutions - with open channels 
We have specified the wavefunction in the internal region (Section 1.2.7) and in the external region (Sec- 

tion 1.2.9). Let us now link these two regions to complete the solution. 
The internal region wavefunction Eq. (23) becomes, in matrix formulation, with a dot ( ') to denote d/dr:  

F = a R .  ~ ' -  b R .  F (r  < a) (33) 

To relate the n x n dimensional R-matrix with the na x n a K-matrix defined in Eq. (31), we introduce n + na 
linearly independent solutions s i j (r)  and cij(r)  of Eq. (30) satisfying the boundary conditions 

Sij(r) I { s inOi~i j  i = l , n j = l , n a  
Cij(F)  ~ COSOi~i,j-na i -~ 1,n j = l ,na (34) 
co(r  ) r--,oo exp(_qbi) ~i,j_n. i = l , n  j = na + l , n  

where Oi and ~bi are given by Eq. (32). A number of computer packages are available for obtaining these 
solutions, for example Crees [ 37 ] 2. We expand the reduced radial wavefunction F/j (r)  as a linear combination 
of these asymptotic solutions: 

F = s + cK (r  > a) (35) 

Differentiating: 

F =s  + c K  

Substituting this into Eq. (33), to match the internal and external region solutions on the boundary and so 
eliminate F and/7: 

s + c K  = a R ( s  + ~K)  - b R ( s  + cK) 

Solving for K, let: 

A = - s  + a R ( s -  b s ) ,  
a 

then 

B =  + c  - aR(  d - bc )  
a 

which completes the evaluation of the reactance matrix K. The K-matrix is real and symmetric, and represents 
the asymptotic form of the entire wavefunction, containing information from both internal and external regions. 

2 We note in passing that in the case of no long-range coupling (a/~ = 0), so(r ) and cij(r) are diagonal matrices for all r; the analysis 

in Sections 1.2.10 and 1.3.1 however remains the same. 

B K = A  or K = B - I A  (36) 
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1.2.11. Electron collision cross section 
Scattering observables may be calculated from the reactance matrix K. Define the na x na S-matrix and 

T-matrix by the matrix equations 

S = ( 1 -  i K ) - l  ( l + iK) ,  T = S - 1  (37) 

We label the S- and T-matrix by the total angular momenta and parity, LSrr. 
The partial collision strength for a transition from an initial target state denoted by oLiLiS i tO a final target 

state denoted by oejLjSj, where oL i and a j  represent the additional quantum numbers necessary to completely 
define the target states, is given by 

S2(:'~ = -g ~ I T/j 12 (38) 
': 2 

lilj 

where the summation is over the channels coupled to the initial and final states, and 3 

( 2 L +  l ) ( 2 S +  1) for LS-coupling 

g = 2J  + 1 for intermediate-coupling 

The total collision strength is given by 

f2ij = ~ ~LSrr 

LSrr 

which is symmetric in i and j .  
The total cross section for this transition is given by 

rra02 
O'i--+j "~ k2g i ~ij  

Note that while the R-matrix is determined by a single diagonalization in the internal region, the coupled 
equations Eq. (30) must be solved for r _> a to yield the solutions F/j and hence the K-matrix and cross section 
for each energy of interest. 

1.3. Radiative processes 

In this section we consider the interaction of a single photon, of frequency w, with an atomic system. We 
follow the notation of Burke and Taylor [25], Seaton [78] and Berrington et al. [11]. 

We are particularly concerned in this section in calculations of radiative data for the bound (N + 1 )-electron 
system. We therefore consider first the matching of internal/external region solutions when all channels are 
closed (cf. Section 1.2.10). We then give expressions for the dipole matrix, and show how oscillator strength 
and photoionization calculations proceed. 

1.3.1. Matching o f  solutions - all channels closed 

The internal region wavefunction and the external region equations for closed channels are exactly as 
described in Sections 1.2.7 and 1.2.9. However, in the bound state problem, the wavefunction satisfies different 
asymptotic boundary conditions from the free-state solutions discussed in Section 1.2.10, and this leads to a 
different matching condition. 

3 In the case of intermediate-coupling a target state is labelled by etiJi where Ji is the total angular momentum. 
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When all of the channels are closed we can define n linearly independent solutions of the external-region 
Eq. (30). These satisfy the boundary conditions (cf. Eq. (34)) :  

cij(r)  ~ exp(-~bi) 6ij i=  1,n j = 1,n (39) 
r ---.* OO 

where ~bi is given by Eq. (32). We can expand the required solution in terms of these solutions (cf. Eq. (35)) :  

n 

cx = Z c i j ( r ) x j  i = 1,n (r >_ a) (40) Fi(r)  
j = l  

The coefficients xj can then be determined by substituting this expression for Ft- into Eq. (33) which leads to 
the following n homogeneous equations (cf. Eq. (36)):  

cx = aRdx  - bRcx  (41) 

Solving for x, let 

B = c - a R ( c  - b - c )  
a 

n 

B x  = 0 = ~ Bijxj i = 1, n (42) 
j = l  

we see that these equations have only nontrivial solutions at the negative energy eigenvalues corresponding to 
bound states of the electron-atom system. The condition for a solution is 

det B = 0 

An iterative procedure for the energy has to be adopted to achieve this matching which involves the use of 
a special technique to carry out the calculation in the vicinity of R-matrix poles (Burke and Seaton [24], 
Seaton [ 75 ] ). 

1.3.2. Dipole matrices 
Properties associated with the interaction of a photon with an atomic system can be deduced from the dipole 

matrix involving the initial and final state wavefunctions. Define the dipole length and velocity operators: 

D L = Z r  n and D v = - Z V n  (43) 
n n 

where the summation is over all the electrons. 
The reduced dipole matrix (a I I D l[ b) between states a and b is defined (using the convention of Fano and 

Racah [45]) as 

(2La + 1) 1/2 
(La I[ Dl [[ Lb) = C(LblLa;ML~IZ) (LaMLo ] D~ I LbML~) (44) 

/z identifies a component of the dipole vector. When/x = 0, the operator on the right-hand side of this equation 
is either the dipole length or the dipole velocity operator appearing in Eq. (43). 

Bound state wavefunctions are normalised to (b] b) 2 = 1. 
Free state wavefunctions are normalised per unit Ry: ( E " f  I E ' f )  = 8(E '  - E") .  
The reduced dipole matrix element is the sum of two contributions 
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D(a,b)  = (a II O 11 b) = O  "~ + O  <°~ (45) 

D (l~ from the internal region r <_ a and D (°~ from the external region r _> a. 
• D(~), the internal region contribution. 

Let two physical states qta and ~b have expansion coefficients Aak and Abk, in Eq. (19). The internal region 
contribution to Eq. (45) is 

V(1)(a,b) = (~'a 11V (t) [1 ~b) (46) 

= E AakM(k, k~)Abk , 
k,M 

where 

M(k ,k ' )  = (¢k [[ V (t) II ¢~,) (47) 

the round brackets as usual indicating the finite range of the radial integrations. 
To evaluate this, let ~oa denote collectively the basis functions and the Vka denote collectively the coefficients 
ci./k and djk in Eq. (12). Then define a reduced matrix D with elements 

Daa, = (q~a II o(l)  II ~oa,) (48) 

Eq.(47) can thus be written in the following matrix form: 

M(k,  k I) T = VkDVk, (49) 

The AEk coefficients in Eq. (46) are given by Eq. (22), which, with b = 0 (its usual value in practice), can 
be written as 

AE~ = ½(Ek -- E ) - '  E wik(a) \ ~" ] r = a  (50) 
i 

I (E~ - E) - IwTR-1F =2a 

where we have used Eq. (23), and where the w and R matrices are given by Eq. (20) and Eq. (26). Defining 
diagonal matrices G~ and Go with diagonal elements 

GEk = ~ ( E k  -- E) -1 

then Eq. (46) becomes 

D (1) (a, b) = F*TRalWaGa M GbW~Rb 1Fb (51 ) 

The F matrices are given by Eq. (35) or Eq. (40) depending on whether free states or bound states are 
involved, and will be considered in more detail in the next subsections. 

• D (°), the external region contribution. 
In the external region antisymmetrisation can be neglected and, considering the case of the length operator, 
we can put 

D = R + r  

where R is the operator for a transition in the target and r that for a transition by the outer electron. We then 
have 
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D(°)(a,b) = Z [ O l i i , ( F i a  I Fi,b) + ~ii,(Fia ] r [Feb)] 
iF 

where 

(52) 

Olii' ---- (~'"/ II R II ~ i ' ) ,  t~ii  ' = ( ~  II ~ II ~ i , )  (53) 

and where t~ i are  the functions in expansion Eq. (12). 
The coefficient OliF is non-zero only if there is an optically-allowed transition between the target states 
belonging to channels i and F, and if li  = l i , .  

The coefficient flii' is purely algebraic and is non-zero only if the channels i and F belong to the same target 
state, and if l i = ( l  i, 4- 1 ).  

The methods used to evaluate the integrals in Eq. (52) are described by Seaton [76]. 

1.3.3. Oscillator strengths 
Having calculated the dipole matrix, we can now define the line-strength for a dipole transition between two 

states a and b of energy (in Ry) E~ and Eb in the length and velocity formulations: 

SL(b;a) =[ (b II DL II a) [2 (54) 

Sv(b;o) =4 (Eb - Ea )  -2  I (b II Ov II a) [z 

The oscillator strength is the dimensionless quantity f (b ,  a) defined by 

g~f(b,a) = ½(Eb -- E~)S(b;a) (55) 

where ga is the statistical weight or degeneracy of the initial state: (2Sa + 1 ) (2L~ + 1 ) or (2Ja + 1 ), depending 
on the coupling scheme. The reduced dipole matrix elements in Eq. (54) are determined as in the previous 
subsection, using a wavefunction satisfying the bound-state asymptotic boundary conditions of Eq. (39). 

Use of exact functions would give SL = SV. With approximate functions the differences between SL and Sv 
give an indication of the accuracy achieved. 

1.3.4. Photoionization cross section 
Again, using the dipole matrix, we can define a generalised line-strength similar to Eq. (54) for a transition 

from an initial bound state i of energy Ei to a final free state f of energy Ey = Ei + to, where to is the photon 
energy in Ry: 

SL(Ef;i)  = Z ]  (LlyE/ I] DL II i) [ 2 (56) 
Ll/ 

Sv(Ef; i )  =4 t o - 2 Z l ( t l f E  / II Ov [I i)12 
Ll£ 

The photoionization cross section is usually expressed (in either the dipole length form or the dipole velocity 
form) as 

4 2 2 to or = ~Tr a0~ ~ S (57) 

where g is the statistical weight of the initial bound state, and the generalised line-strength is calculated using 
final-state wavefunctions normalised per Ry. The constant in Eq. (57) is 4~r2a2tr = 2.689...Mb. 

Let ~i and ~ f ( k )  be the wavefunctions representing the initial bound state A; of the target atom and the 
final scattering state (e-  + A}) of the ejected electron plus residual ion. The boundary conditions satisfied by 



K.A. Berrington et al./Computer Physics Communications 92 (1995) 290-420 307 

q~i correspond to decaying waves in all channels, while those satisfied by g ' y ( k )  correspond to a plane wave 

in the direction of the ejected electron momentum k and ingoing waves in all open channels. 
Both g'i and ~ f ( k )  are now expanded in terms of the R-matrix basis in the internal region defined by Eq. 

(12). The appropriate expansions follow from Eq. (19) giving 

~i=ZO;~Aki and ~';(l:)=Z~bkAkf(k) (58) 
k k 

The coefficients Aki and A ~ f ( k )  are determined by solving the differential equations in the external region, 
subject to the bound state and free state boundary conditions discussed above, and matching to the R-matrix 
boundary condition at r = a as in Eq. (50). Note that the energy dependence is carried through the AEk 
coefficients; the energy independent d/k basis functions are the same in both the bound and the free state. 

The generalised line strength used for photoionization calculations is expressed in terms of the reduced dipole 
matrix D (l) ( f ,  i) defined by Eq. (51 ) using the functions 

F .  ~ ( F - ) * = F  ÷ 

for the final state, where 

F -  = - i F ( 1  - iK) -1 

and the F ( r )  are functions with K-matrix asymptotic forms Eq. (31). 
Thus, using R-matrix theory, we can calculate the photoionization cross section of Eq. (57) as well as other 

observables, such as the differential cross section and B asymmetry parameter (Burke and Robb [22] ). 

1.3.5. Other processes 
The above discussion can be extended to enable free-free transitions to be calculated (Bell [ 10] ). In this case 

both the initial and final states in the matrix elements in Eq. (44) are scattering states subject to appropriate 
ingoing and outgoing wave boundary conditions. 

Allison [2] and Shorer [80] showed that the frequency dependent polarizability a (w)  can be written in terms 
of an expansion in R-matrix basis functions. This follows immediately from the above theory using the well 
known result that the imaginary part of the polarizability a( to)  is proportional to the total photoionization cross 
section. Shorer also extended this theory to enable two photon photoionization cross sections to be calculated. 

The R-matrix defined by Eq. (24) is a meromorphic function of energy with poles occurring only on the 
real energy axis. The branch cuts in the S-matrix which occur at each of the thresholds arise from the solution 
of the problem in the external region. If Eq. (30) contains only the long-range Coulomb potential, one can use 
R-matrix theory to derive Seaton's multichannel quantum defect theory (MQDT) (Seaton [74] ). This close 
link between R-matrix theory and multichannel quantum defect theory has been emphasised by Lane [57], and 
has been the basis of extensive calculations by Greene and Aymar [48] and collaborators who have combined 
MQDT and R-matrix techniques to describe the spectrum of the alkaline-earth atoms. 

1.4. Relativistic R-matrix theory 

As the charge Z on the nucleus increases, relativistic effects both in the target wavefunction and in the 
wavefunction representing the scattered electron become important even for low energy electron scattering. 

For electrons with kinetic energies far below the rest energy mc 2 = 511 keV the Breit-Pauli Hamiltonian 

= /-4 N + I  H~p I HN+I + **REL 
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discussed by Bethe and Salpeter [ 16] for the case of one- and two-electrons suffices as an equation of motion. 
H is the non-relativistic Hamiltonian given by Eq. (4). HREL gives rise to perturbative contributions whose 
relative magnitudes are low powers of a. 

The non-relativistic R-matrix method has been extended to include relativistic terms from the Breit-Pauli 
Hamiltonian by Scott and Burke [71]. In the current code we explicitly retain only the one-electron terms 
resulting from the reduction of the Dirac equation to Breit-Pauli form up to order a2Z 4, i.e. the mass-correction 
term, the one-electron Darwin term and the spin-orbit term; implicitly accounted for are fine-structure two- 
electron contributions from closed subshells as outlined in Section 2 on STG1. 

The low-Z Breit-Pauli Hamiltonian for an (N + 1)-electron system is taken to be 

HBN; l =  H N+I -~- HNm+~ -]- HN? . "~- HNg I (59) 

Each of the one-electron Breit-Pauli terms can optionally be included: 

HN+I = N+~ ol 2 
mass -- -~- _ _  V4~ ( mass-correction ) (60) 

n=l 

- x7 n ~ (Darwin) (61) 
n=l 

o t 2 Z ~ l n ' S n  HN+I 
so = 2 n=l r~3 (spin-orbit) (62) 

Note that the non-fine-structure part of the Hamiltonian 

Hn~+l= H N+I + HNm+] + H N+I (63) 

commutes with L 2, S 2, Lz, Sz and parity, whereas H~Vff I and Hg +1 only commute with j2, Jz and parity. 
If the spin-orbit interaction is included, the (N + 1)-electron R-matrix basis functions are defined as in Eq. 

(12), but for each total angular momentum J and parity. A pair-coupling scheme 

1 
Ji + 1 = K and K + ~ = J (64) 

is used to evaluate the matrix elements (Racah [65], Scott and Burke [71]) ,  where Ji is the total angular 
momentum of the target state, l the orbital angular momentum of the incident electron and ½ is the spin of the 
incident electron. 

In this approach, Hamiltonian matrices (and dipole matrices) are first calculated in LS-coupling, and then 
transformed using a unitary transformation to pair-coupling. This is described in more detail in Section 4 on 
RECUPD. The corresponding Hamiltonian matrix analogous to Eq. (13) in the non-relativistic case is now 
much larger, and there are more coupled channels in the external region Eq. (28), requiring a considerable 
increase in computational effort. 

Providing the intermediate-coupling scheme of Eq. (64) is adhered to, the analysis of Sections 1.2 and 1.3 
can be followed allowing electron scattering and photoionization to be computed with relativistic effects. This 
is implemented in RMATRX1. 

1.5. Model potentials 

In targets which contain a large number of electrons an appreciable saving of computational effort can be 
achieved by replacing the interaction of the valence and continuum electrons with the closed shell core by a 
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model potential. This allows the calculation to proceed solely in terms of the valence and continuum electrons. 
Consider the case of an N-electron atom. If  there are N¢-electrons in the closed shell core then there are 

M = N - Nc valence electrons. The Hamiltonian Eq. (4) becomes 

HM+I ~ 1 2 = - ~  V .  + V(rn) + 
t/=l nl>n 

where V ( r )  is the model potential. Its specific form is left to the user with the proviso that it has the tbllowing 
limiting forms 

Z z 
V ( r )  ~ and V ( r )  

r~O r r---~oo r 

where Z is the nuclear charge and z = Z - N is the residual target charge. The model potential is read in 
from a file by module STG1 where it is stored numerically at a set of mesh points. If desired it may be 
angular momentum dependent. The basis states ~bk of Eq. (12) are now (M + 1 )-electron functions where the 
q~ are built from the valence orbitals. However, it should be noted that for the purpose of orthogonalisation, 
in the determination of the continuum orbitals, the complete set of one-electron bound orbitals (including core 
functions) are required to be read into STG1. 

1.6. Programming details 

1.6.1. Structure o f  RMATRX1 

The program modules are run sequentially as outlined in Fig. 1. Calculations can be in LS-coupling, or in 
intermediate-coupling using the optional route through RECUPD. 

Disk files are produced at each stage, again outlined in Fig. 1; these intermediate files are normally deleted 
after use. The most useful output files are the H and D files produced at the end of STGH: these contain 
the diagonalized Hamiltonian matrices and any dipole matrices respectively, and contain all the data from the 
internal region required for the external region codes. 

1.6.2. Comment  on module STG4 

The purpose of this write-up is to publish the internal-region modules, STG1, STG2, RECUPD, STGH and 
STGLIB. For completeness it was decided to include an external region module STG4 which provides for most 
of the observables. It is however based on the differential equation solver of Crees [ 37], which is not the fastest 
program available. It is however very general. For more specific purposes there are better programs, but for 
various reasons these cannot be published here. The user is therefore recommended to investigate the programs 
mentioned in Section 10 before starting serious production runs. 

1.6.3. Language and precision 
RMATRX1 is written in FORTRAN 77. It is designed to be transportable and has been implemented on a 

number of computers with comparative ease. The code can be preprocessed for dimensions. This has been kept 
simple and if necessary could be carried out with a text editor. 

The programs use double precision. This is appropriate for Unix workstation, VAX, IBM and similar com- 
pilers. 

Compilation on the Cray can be made using the - d p  option. 
VAX compilation should be made using the/G_FLOAT option to avoid overflows and underflows. 
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CIV3/SUPERSTRUCTURE e t c .  

I 
f 
] 

STG1 

I 
f 

(RK.DAT) I (STGI.DAT) 

f 
I 

STG2+STGLIB 

I 
(STG2H.DAT) I (STG2D.DAT) 

I ................ 

I 
] RECUPD+STGLIB 

I 
[ (RECUPH.DAT) (RECUPD.DAT) 

I 
I ................ 

I 
STGH 

I 
I 

(H.DAT) I (Dnn.DAT) 

I 
I 

STG4+STGLIB etc. 

Fig. I. Structure of  RMATRX1. Notation: vertical lines joining the modules indicate the sequential execution of the package, from top to 
bottom; a dotted line indicates the optional path through RECUPD. Note that module STGLIB is not an executable module on its own, it 
contains a library of routines. (Files used to transfer data from one module to another are indicated in brackets). 

1.6.4. Before you start using RMATRX1 
You will need a good target description. This can be obtained from an atomic structure package such as 

CIV3 [52] or SUPERSTRUCTURE [43]. 
Time spent at this stage is vital. There is a limit to the number of configurations that you can reasonably use 

with present day resources. Careful consideration of the target will save time later. 

1.6.5. Using RMATRX1 
You should always run through the programs with a small (a single electron+target symmetry) calculation 

first. This is just to gauge the size of the problem that you are attempting and check the input. 
Before a large scale calculation : 

1. Check that the R-matrix boundary is correct. 
2. Check that the radial mesh is adequate. Be conservative and pick a mesh with a small step-size. The program 

does this automatically but you should still check. You should have sufficient mesh points (say 15) between 
the nodes of each orbital. It is a good idea to examine the overlap integrals in STG1 (NBUG5=I) and the 
bound-bound one-electron integrals (NBUG8=I). 

3. Check that the target potential is correct. You might consider plotting the potential and the bound orbitals. 
4. Check that the number of continuum orbitals per angular momentum (variable NRANG2) is adequate. It 

should be at least 20 for heavy atoms. This is partly determined by the energy range over which you wish 
to calculate cross-sections. Again this emphasizes the importance of a small preliminary calculation. 

5. Check that the STG2 and RECUPD target energies are consistent with the target energies originally 
calculated by the atomic structure program. 
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6. Check that LAHAX allows for all the couplings that you wish to include. 

311 

1.6.6. 1/0 
Input data is read from unit number IREAD which is set to 5. The input file is opened internally and has 

the name f i l e .  INP where f i l e  would be STG1, STG2, RECUPD, STGH or STG4. If the input file does not 
exist then the program terminates with an error message. 

Formatted output is written to unit number IWRITE which is set to 6. This output file is opened internally 
and has the name f i l e .  OUT where f i l e  would again be STG1, STG2, RECUPD, STGH or STG4. If a file 
with this name already exists then it is overwritten. 

Most of the files used in the program are opened with STA'rUS set to UNYd'4OWN. This means that if the 
file already exists, then it will be overwritten. It is important that you rename files that you wish to keep. 

The unit numbers and file names are set internally. Although the input data requests unit numbers these are 
generally not used. This redundancy in the input data has been retained to maintain input compatibility with 
earlier versions of the programs. Occasionally an input unit number is used as an option flag. 

2. Module STG1 

This module is the first stage in RMAq'P, X1. It calculates the orbital basis and all radial integrals in the 
inner-region. 

Figs. 2-5 displays a flow diagram for the routines in STG1. 
There are three main computational sections in STG1 (the controlling routines are named in brackets): 

• initialisation and reading input files (BLOCK DATA, STG1Pd), ISTG1 ); 
• evaluating the continuum orbitals (BASORB, WRITAP) ; 
• calculating multipole, one- and two-electron radial integrals (GENINT). 
Notation: 

In the following description, we use the symbol Uj(r )  to denote any radial orbital from the set of bound 
orbitals: 

Phi (r )  for n = I + 1, MAXNHF(I + 1 ) and I + 1 = 1, LRANG1 

and continuum orbitals 

uij (r)  for j = 1, NKANG2 and li + 1 = 1, Lt~NG2 

(cf. Eq. (18)) .  Note that these orbitals have all absorbed a factor r in their definition. 
All orbitals Uj(r )  are tabulated on the internal-region r mesh, (0,RA), and stored in STGI in the O J ( r , j )  

array; bound orbitals being in the first j = 1, NBOUND locations. 
An address array provides the index to any bound or continuum orbital: 

U J ( r , j )  for j = I P O S ( n , l + l )  

2. I. Routines 

MNSTG 1 
is the program routine and contains all COMMON blocks used in STGI. It sets the /MEMORY/ pointers, and 
calls AASTG1. 
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1 MNSTG1AASTG1BASORB .... 

13 GENINT .... 

37 ISTGI EVALUE ABNORM 

38 CORECT 
39 POTF 
40 TABORB 
41 SHRIEK 

42 STGIRD .... 

52 WRITAP 

1.1 .DATA. 

Fig. 2. Calling tree for module STGl. The routines are given in alphabetical order within each branch not the order in which they are 
actually called. 

1 BASORB ABNORM 

2 EVAL CORECT 

3 FINDER BASFUN DERFUN 

4 DEVGL 

5 MAOIA 

6 ROOT 
7 NEWBUTBASFUN > 3 
8 BUTFIT 

9 LSQ MAOIA 

10 PHASE 

11 RECOV2 

12 SCHMDT 

DERFUN 

Fig. 3. Calling tree for module STG1, BASORB section. 

13 GENINT DA2 
14 GENIBB ONEELE 
15 RDAR 
16 RNASS 
17 SPNORB RS DERINT CORECT 
18 GENIBC ONEELE 
19 RDAR 
20 RMASS 

21 SPNORB RS DERINT CORECT 

22 GENICC 0NEELE 

23 REAR 
24 RMASS 

25 SPNORB RS DERINT CORECT 

26 GENBB RS DERINT CORECT 
27 GENBC RS DERINT COllECT 

28 GENCC RS DERINT CORECT 

29 GENMBB DERINT CORECT 

30 RADINT 

31 GENMBC DERINT CORECT 

32 RADINT 

33 GENMCC ABNORM 

34 DERINT CORECT 

35 RADINT 

36 RECOV2 

Fig. 4. Calling tree for module STGI, GENINT section. 
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42 STGIRD MESH 

43 NAME 

44 

45 

46 

47 

48 

49 RECOV2 

50 STO 

51 

RECOV2 

CIV3 

RECOV2 
SS 

ORNO 

RECOV2 

CALORB CALEXO COEFF MAOIA 

ORNO 

ORNO 

ABNORM 

RECOV2 
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Fig. 5. Calling tree for module STG1, STG1RD section. 

AASTG 1 
is called by MNSTGI and controls the STG1 computation, invoking the three main computational sections as 
summarised above. 

ABNORM 
calculates numerically the overlap integral 

RA 
/ *  

= / d r  Ui(r)Uj(r) 1 

o 

As in all the other routines involving numerical integration, Simpson's rule is used. 

BASFUN 
generates an R-matrix continuum function uij(r), for r in the range (0, RA), as the solution of the differential 
equations Eq. (15): 

( d2 1(1+1)  ) 
dr 2 r ~  +Vo(r) + k  2 u(r) =ZAnP n t ( r )  (65) 

n 

u(0) = 0 

The logarithmic derivative on the boundary is 

(d;r) 
r =P.d~ 

The potential Vo(r) is input tabulated on the mesh and half-mesh points in array POVALU, as are the bound 
orbitals in array BNDORB. The continuum function is output on the mesh points in array ORB, and the Lagrange 
multipliers A,, chosen to enforce orthogonality between the continuum and the bound orbitals as in Eq. (17), 
are output in RLAMDA. 

There are two modes of operation, controlled by the argument ETA. 
ETA> 10-8: input the value of BST0 and the number of nodes to obtain a function satisfying logarithmic 

derivative boundary conditions, and return the eigenvalue k 2 to an accuracy of ETA (used in evaluating 
continuum functions) ; 

ETA= 0: input the value of k 2 to obtain a function and its logarithmic derivative on the boundary (used in 
evaluating Buttle corrections). 
BASFUN is a modified version of the program originally published by Robb [ 66] and modified by Berring- 

ton et al. [ 12,13]. De Vogelaere's integration method is used to solve the differential equations Eq. (65) at a 
set of mesh points also input to BASFUN. Both forward and backward integration is used with matching at 
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some intermediate value of r. The eigenvalue is found by Newton's iteration method. The method appears to 
be stable for all but highly bound functions with large negative eigenvalues. 

BASORB 
is the controlling routine for the evaluation of the bound and continuum orbitals used in the R-matrix expansion 
of Eq. (12). Within the routine there is an outer loop over the angular momentum I = LP - 1, where LP = 
1, max(LRANG1, LRk, NG2). The continuum orbitals are solutions of the differential equations Eq. (15) subject 
to logarithmic derivative boundary conditions as in Eq. (16), solved by routine BASFUN via a call to FINDER 
for each j = 1, NRANG2. 

MAXNHF(LP),LP = 1,LRANG1 defines the maximum principal quantum number of all bound orbitals for 
l = LP - 1, and MAXNLG(LP) the maximum principal quantum number of the bound orbitals to which the 
continuum orbitals are to be Lagrange orthogonalised in the BASFUN package. BASFUN requires these latter 
bound orbitals to be tabulated in the P array at the radial mesh and half mesh points, and this is done by 
calling routines EVALUE or EVAL, for bound orbitals input to STG1 in Slater-type form or in numerical form 
respectively; routine EVALUE also stores the bound orbitals on the mesh points in the UJ array. 

The summation over principal quantum numbers n in Eq. (15) normally goes over spectroscopic target 
orbitals occurring in the expansion of the atomic states for each angular momentum li = LP - 1. The Aij n are 
Lagrange multipliers chosen to ensure orthogonalisation of the uij ( r )  for all j with these HAXNLG(LP) bound 
orbitals as in Eq. (17). Any remaining bound orbitals (e.g. correlation orbitals) are Schmidt orthogonalised to 
the continuum basis for each li in routine SCHMDT. 

The choice of BST0 -- b in Eq. (16) is in principle arbitrary; normally BST0 = 0. In order to alleviate the 
constraint of a fixed slope at RA the diagonal elements of the R-matrix will be Buttle corrected, and a call to 
NEWBUT establishes the Buttle fit. 

The continuum orbitals j for a given orbital value 1 are held in UJ ( i , j )  4 in locations with j > NBOUND, and 
their eigenvalues and boundary amplitudes are stored in the EIGENS and ENDS arrays. 

For use in Breit-Pauli routines RDAR and RMASS further information is needed. At the origin we have 

lim uj ( r ) = a j r  TM + b j r  t+ 2 + . . .  (66) 
r---*O 

The Taylor coefficient aj  is stored in location U J ( 1 , j )  after being transferred from routine BASFUN through 
0RB( 1 ), as this array element would otherwise hold the trivial value 0.0 (the same convention applies to the 
first j = NBOUND functions UJ( i , j ) ,  which are used for storing Pnjtj ( r i ) ) .  Similarly the normalised Lagrange 
multipliers Aij are passed through ALAHDA(1), 1 = 1, NBT and stored in array RLAMDA. The code makes use of 
RLAMDA when evaluating the one-electron integrals that arise from the mass-correction and one-electron Darwin 
terms. 

In the case of neutral targets the function PHASE is called to calculate the zero order phase, which is printed 
out alongside each eigenvalue for l = 0, 1 and 2. 

Options exist (NBUG5 > 1) for writing out the tabulated orbitals, overlap integrals and any Schmidt coeffi- 
cients. 

BLOCK DATA 
defines the data in common b lock /CONSTS/ .  This contains frequently used constants. 

BUTFIT 
is the default Buttle-correction routine, called by NEWBUT if BST0 = 0, parametrically fitting the Buttle 
correction of Eq. (25) over the energy range Emin. • .Emax to solutions from a model Hamiltonian (Seaton [77] ): 

RC (NRANG2, k 2) ~ orB(y ,  f l  + U) (67) 

4 Here the index i runs over the radial mesh. 
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where a and/3 are the fitting parameters, and 

M 
B ( M , U )  = tan(K)K - - 2 Z ( U m -  U ) - I  

m--'0 

where 

U = K  2 

K = a k  
Um = K, 2, 

= ( m +  

M = int( ½ + ak,~aNG2/1r) 

The fitting is done separately for each channel angular momenta li. 
After returning to NEWBUT the coefficients COEFF( 1, L) = a and COEFF(2, L) = /3 are stored, while the 

assignment C0EFF(3, L) = - 1 0 0 0 .  y serves as a convenient flag - -  to distinguish such data from LSQ output, 
as explained in the description of that routine. 

CALEXO 
is called from routine CALORB to read radial functions for excited and pseudo-orbitals from the program 
CIV3 [52] input data file; it returns orbital data in common b lock /RADIAL/ .  

CALORB 
is called from routine CIV3 to read radial functions for Hartree-Fock orbitals from the program CIV3 [152] 
input data file; it returns orbital data in common b lock /RADIAL/ .  

CIV3 
is called from NAME, but only if the user has specified to process target input in CIV3 [52] format rather 
than the standard (STO) input as in Eq. (70). This option is invoked by setting the first four characters on 
the first record of the input data file as 'CIV3'.  CALORB and CALEXO are called to read Hartree-Fock and 
correlation orbitals. 

COEFF 
is called from CALEXO in the CIV3 input option, to determine the coefficients of the radial functions of a 
correlation orbital from orthonormality conditions. 

CORECT 
is called by EVALUE and also by DERINT when tabulating Slater-type orbitals and their derivatives. It evaluates 
the correction to be applied to each bound orbital to generate a new function 

P(r )  ~ P( r )  - c e  -(r-r°)2/°~ (68) 

This correction is chosen so that it is negligible everywhere except near the boundary, and that its value and 
logarithmic derivative cancel out the original orbital P(r )  at r = I~A. The parameters r0, o- and c are calculated 
from the amplitude and logarithmic derivative of the original orbital on the boundary, and from the condition 
that the Gaussian falls to exp ( - s  2) of its maximum value at r = 0.9RA. The quantity s is given the value 1.5 
in CORECT. 

DA2 
is used to write output file 'RK.DAT' (on unit number 3DISCl) for use in module STG2. 

This routine is called to open, write, or read a binary direct access file for both temporary and permanent 
storage of the contents of a large array. The record length is data-independent and fixed at LKEC words. Because 



316 K.A. Berrington et al. / Computer Physics Communications 92 (1995) 290-420  

a given call may read or write an array spanning more than one record in the file, the argument IIq.EC is input 
to specify the starting record number for the current call; IREC is then incremented to return the next available 
record number. 

Routine DA2 assumes a word length LWORD = 8; this PARAMETER may be reduced in the code when 
running the program on machines with shorter word length if disk resources are scarce; it must be increased if 
longer words are chosen. 

DERFUN 
is called by BASFUN. It evaluates the second derivative of u(r). 

DEILINT 
evaluates the dipole velocity radial integral 

Iv(i , j )  = dr Ui(r) ~ + Uj(r) (69) 

o 

using Simpson's rule and 

= ~ [j  if li = l j  - -  1 
OL [ - l j  - 1  i f l i = l j + l  

If  both U/(r) and Uj(r) are continuum orbitals the first derivative is evaluated numerically. Otherwise it is 
evaluated analytically by reversing the orbitals if necessary (and the sign of Iv)  to ensure the right-hand orbital 
U, flj(r) is bound. 

DEVGL 
is called by BASFUN. It propagates solutions u(r) one step using de Vogelaere's method. 

EVAL 
is a variant of  EVALUE for dealing with numerically supplied orbitals held in UJ. It evaluates the midpoint 
values of user-supplied NBOUND target orbitals and stores them in P o f / B N D O R B / .  

EVPd_.UE 
is called by BASORB and evaluates bound functions from Slater-type orbital (STO) parameters, 

NC0 

UJ(1, K) = P,l(r) = ~ C(J)  * r raAD(J) • e -z~(J)*r (70) 
J=l 

where K = I P 0 S ( n , / +  1) < NBOUND. The functions are tabulated at radial points r - XR(1) between 
XR(2) = HINT and XR(NPTS) = RA. The IPOS address array is also defined. As in the context of continuum 
functions as in Eq. (66) it is convenient to assign 

P.l(r) 
UJ(1 ,K)  = l i m - -  (71) 

r---*O r l + l 

It is also convenient to store 

( d2 l ( l + l )  2Z)pnt (r )  (72) 
DUJ(1, K) = Qnl(r) =- --~r 2 + r -----5--~ r 

readily derived analytically from F_x t. (70), for radial points rt. In DUJ( 1, K) special quantities are held for 
RMASS. The tail of STOs and their radial derivatives is modified according to COPO~CT. 
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In addition spectroscopic orbitals in the range I = 2, NPTS and at the 2 • NPTS - 2 midpoints are stored in P 
for use by routine BASFUN for a particular value of orbital l at a time. 

FINDER 
is called by BASORB and in turn calls BASFUN. It selects solutions with the required number of nodes. 
Routine ROOT is called to improve the estimate of the continuum orbital energy. 

GEN 1BB 
controls the computation of all bound-bound one-electron integrals by calling ONEELE, i.e. with bound orbitals 
Pn,t~ and Pn2t2; also calls RMASS, RDAR and SPNORB for Breit-Pauli corrections. The outer loop is over 
angular momentum (I1 = 12 for a nonzero integral) Note that because of the symmetry condition on the 
principal quantum numbers, only those integrals for which n2 _< nl are evaluated. The loops are arranged so 
that n2 varies the most rapidly, so the lower triangle of the matrix of integrals defined by (nl , n2) are stored 
consecutively by rows in array 0NEST1 with pointers in array IST1 for each angular momentum. 

GEN1BC 
is the same as GEN1BB but in this case one radial function is of type 'continuum'. In this case no symmetry 
relations can be exploited to reduce their number; the matrix of integrals are stored consecutively by rows in 
array 0NEST2 with pointers in array IST2 for each angular momentum. 

GEN 1 C C 
is the same as GEN1BB but in this case both radial functions are of type 'continuum', i.e. involving continuum 
orbitais uij and bli,j,. GEN1CC is called separately for each angular momentum. Again because of the symmetry 
condition, only those integrals for which j '  < j are evaluated, so the lower triangle of the matrix of integrals 
are stored consecutively by rows in array 0NEST3. 

GENBB 
controls the computation of two-electron integrals when all four radial functions are of type 'bound'.  Routine 
RS is called. These integrals are defined by 

RA KA 

Rk(nlll,n212,n313, n414) dr ds Un,lt(r) < = Un2t 2 (s )  _-T77 Unsls ( r )  Un,14 (s)  
F> 

0 0 

(73) 

where r< and r> are the lesser and greater of r and s respectively. The following symmetry properties, imposed 
on the quantum numbers in the integral, allow a considerable saving in the number of integrals evaluated: 

I 11 -- 13 1--< k < 11 + 13 

I 12 - I4 [_< k < 12 + 14 

I I -]- 12 + 13 q- 14 = an even integer 

( 7 4 )  

(75) 

(76) 

l l  _< 12, ll <_ /3, 12 _< 14 

if l l  = 12 then nl >_ n2 

if l l  = 13 then nl >_ n3 

if lj = 14 then n2 >_ n4 

The loops are arranged so that n4 varies most rapidly, n 3 varies next most rapidly, etc. over their allowed ranges. 
Thus the integrals defined by (nln2n3n4) are stored consecutively by rows in array RKST01, with pointers to 
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the (11121314) combinations stored in array ICTBB, and pointers corresponding to the k in array ISTBB2 (the k 
values are stored in array ISTBB1). 

GENBC 
controls the computation of two-electron integrals for which one radial function is of type 'continuum'. Routine 
RS is called. In this case the quantum numbers n414 in Eq. (73) correspond to the continuum function, while 
the other nl quantum numbers correspond to bound functions. Symmetry conditions in Eqs.(74-76) apply, but 
because the continuum orbital must always remain in the position n414, only the following further conditions 
apply: 

II ~13  

i f l j  = 13 then nl > n3 

The loops are arranged so that n4 varies most rapidly, n3 varies next most rapidly, etc. over their allowed ranges. 
Thus the integrals defined by (nln2n3n4) are stored consecutively by rows in array RKST02, with pointers to 
the (lll21314) combinations stored in array ICTBC, and pointers corresponding to the k in array ISTBC2 (the k 
values are stored in array ISTBC). 

GENCC 
controls the computation of two-electron integrals for which two radial functions are of type 'continuum'. 
Routine RS is called. GENCC is called for specific continuum angular momenta L and LP. There are two 
distinct cases of direct and exchange integrals to be considered. 
• Direct integrals. 

The continuum functions always have the positions n212 and n414 in Eq. (73), i.e. L = 12 and LP = 14. 
Symmetry conditions in Eqs.(74-76) apply, with the following further conditions: 

lj < l  3, 12 ~_14 

if Ii = 13 then nl _> n3 

if Ii = 14 then n2 _> n4 

The loops are arranged so that n4 varies most rapidly, so that the integrals defined by (nln2n3n4) are stored 
consecutively by rows in array RKST02, with pointers to the (lll3k) combinations stored in array ICTCCD. 

• Exchange integrals. 
The continuum functions always have the positions n212 and n313 in Eq. (73), i.e. L --- 12 and LP = 13. 
Symmetry conditions in Eqs.(74-76) apply, with the following further conditions: 

12 ~_ 13 

if 12 = 13 then n2 _> n3 

The loops are arranged so that n3 varies most rapidly, so that the integrals defined by (nln4n2n3) are stored 
consecutively by rows in array RKST02, with pointers to the (lllak) combinations stored in array ICTCCE. 
A problem arises for high k ( >  20) when the integral increases unexpectedly with k. This is due to inherent 
instability in the algorithm in routine RS (i.e. , it is not affected by the radial mesh). In practice this only 
affects exchange integrals at high l which should vanish anyway. A test is made for this problem and if it is 
detected the exchange integrals are set to zero. 
There is a facility in GENCC for dealing with array overflow of the RKSTI32 array. If  this array gets full, 

control is returned to the calling routine GENINT which dumps the contents of the array onto the output file 
'RK.DAT'; the variable IRK2, which is the number of integrals in RKST02, is set negative and stored as JRK2 
on output file ITAPE3. GENCC is then re-called to continue integral evaluation, re-using the RKST02 array. 
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GENINT 
is in overall control of the computation of the multipole, one- and two-electron radial integrals. 

GENMBB 
generates all the bound-bound multipole length and dipole velocity integrals including Buttle correction type 
dipole integrals. For the dipole integrals involving a given pair of orbitals, routines RADINT and DERINT 
are called consecutively to calculate the length and velocity forms respectively; for higher multipoles, only 
RADINT is called for the length form. 

GENMBC 
is the same as GENMBB but in this case one radial function is of type 'continuum'. 

GENMCC 
is the same as GENMBB but in this case both radial functions are of type 'continuum'. 

ISTG 1 
is called once from AASTG1 for initialisation. 
• Defines mesh parameters: the radial mesh points (array XR) and the number of mesh points (NPTS). Also 

defines step-lengths (array STEP), and Simpson's rule weights (array WT), such that a finite integral over an 
arbitrary function f(r) can be evaluated numerically as a weighted sum: 

RA NPTS 

f drf(r) ~ E WT(1) * f (XR(1))  
0 I=1 

• Defines powers of the radial mesh points required for many of the integral evaluations: 

RK(1, K) = XR(1) • . K  = r K 

for integer K in the range ( - L 1 2  - 2, L12) where 

LI2 = LRANGI + max(LRANGI, LRANG2) - 2 

• Tabulates the analytic bound orbitals Pnl (r) on the radial mesh by calling EVALUE. 
• Tabulates the zero-order potential Vo(r) by calling POTF. 

LSQ 
is called by NEWBUT if BST0 4: 0. It matches the Buttle amplitude in a least squares quadratic fit for each 
continuum orbital l = L - 1 and returns the 3 coefficients ci for storing in C0EFF(i, L). Since the curvature 
coefficient c3 is small and positive, LSQ returns a result that can be readily distinguished from that of BUTFIT. 
The method used in BUTFIT is preferred. 

MA01A 
is a linear equations solver. It is called by BASFUN, COEFF and LSQ. 

MESH 
generates the internal region radial mesh parameters NIX, IRX, IHX and HINT in / INIT/  as a function of Z and 
NRANG2. The mesh is used to tabulate all bound and continuum radial orbitals and is suitable for Simpson's 
rule integrations. 

The mesh r = 0 to r = RA is divided into a small number (NIX) of intervals; the mesh points are equally 
spaced within each interval. The mesh is finest near r = 0. Using the criterion that the 1 s bound orbital is the 
most rapidly varying near the origin, the first interval has a step length 

hmin = HINT ~ 0.025/Z 
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The mesh is coarsest near r = RA and is taken to provide at least 16 mesh points between nodes. Using the 
criterion that the highest continuum orbital is the most rapidly varying near the boundary, the final interval has 
a step length 

hmax = HINT x IHX(NIX) ~ RA/NCORSE 

where NCORSE = NRANG2 x 16 normally, since the separation between nodes of the highest continuum orbital 
tends to rr/krm~Nc2 with km~aG2 = ~" x NRANG2/RA, assuming a sin kr behaviour and a zero derivative condition 
at r = RA. However, in the case of large angular momentum I, the continuum orbital nodes are more tightly 
packed towards the boundary and the eigenvalue increases with krm~Q2 ~ ~r(NRANG2 + I/2)/RA, assuming a 
sin(kr - 17r/2) behaviour, so NCORSE is modified accordingly for large LRANG2. 

Each interval is made up of 16 steps or a small multiple thereof, and the step length IHX doubles from one 
interval to the next: 

NIX 

RA = ~ Nt * HINT * IHX(1) (77) 
I=1 

where the number of points in the Ith interval is NI = IRX(1) - IRX(I - 1) with N1 = IRX(1); and where 
InX( l )  = 2 .  IHX(I - 1) with IHX(1) = 1. 

The program aborts in MESH if this procedure leads to more than g~NPT tabulation points. In this case one 
may reprocess - -  or run the program with a reduced number NRANG2 of continuum orbitals if this is satisfactory. 

MESH is not called if the user supplies radial orbitals in option TITLE(1) = 'S.  S . ' ;  the radial grid supplied 
alongside is used instead, in expanded form as described in routine SS if necessary. 

NAME 
is called by STG1RD if TITLE(l)  equals 'CIV3', ' S . S . '  or 'ST0- ' .  After reading at least the 3 compulsory 
input parameters in NAMELIST format it calls CIV3, SS or returns, according to the value of TITLE(1), so 
as to read and process user-supplied target orbital input. 

NEWBUT 
controls the fit of the Buttle correction of Eq. (25) over an energy range between EK2MIN ~ - Z 2 / n  2 (where n 
is the smallest principal quantum number likely to occur for a given value NELC) and the highest collision energy 
EK2HAX, which is conventionally set to ~ k2m~t~G2/2. While steering clear of poles it selects up to IMAX = 6 
fairly equidistantly spaced points for each continuum orbital set l and parametrises the Buttle correction, as 
discussed in Seaton [77]. If  BST0 is exactly zero NEWBUT calls BUTFIT, otherwise LSQ, and it stores the 
resulting 3 parameters of the energy fit in array COEFF for each l. A message is printed if EK2HAX is too small 
to support at least 3 function values for interpolation. 

ONEELE 
computes the non-relativistic one-electron integrals for all combinations of bound and continuum functions 
using Simpson's rule. Note that the integral is zero unless the angular momenta of the two functions involved 
are equal. Also the integral is unchanged on reversal of the two functions. The routine employs a number of 
strategies to avoid calculating second derivatives numerically. 
• Bound-bound and bound-continuum integrals. 

For the non-relativistic one-electron operator 

d 2 I(1+ 1) 2Z 
h = -d-~r 2 + r2 r 

we note that bound orbital functions Qj(ri) = hPj(ri), defined in Eq. (72), have been written into DUJ(i, k) 
(k _< NBOUND) by EVALUE or SS, so that if there is at least one bound orbital P,t involved in the integral: 
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P& 

Q(m, n) = ½ f dr U,,(r) h P,t(r) 
0 
NPTS 

l = ~ ~ WT(I) * UJ ( l ,m)  * DUJ(I,n) 
1=2 
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(78) 

where WT(I) are the Simpson weights at radial mesh points O. 
• Continuum-continuum integrals. 

If  both orbitals are of type continuum a different procedure is adopted, evaluating huij (r) from the knowledge 
that uij(r) satisfies the second-order differential equations Eq. (15). 
Let M = MAXNHF(/i + 1) - HAXNLG(/i + 1). 
For M--0 we have Lagrange orthogonalisation to all bound orbitals and Eq. (78) can be rewritten using Eq. 
(15): 

RA 

' /  l Q(i, j )  = - 3  dr ui(r) - -  - Vo(r) uj(r) - 
0 

k 2 is available in array EIGENS from routine BASORB and [2Z/r - V0(r)] in PX from P(YFF or SS (or is 
calculated from POTHAM and P0VALU in the case of a user-supplied core potential, when IPSEUD v~ 0). 

It For M > 0 we have Schmidt orthogonalisation to M bound orbitals. It is then the new set of functions uj 
generated in the SCHMDT routine that appear in Eq. (78); using Eq. (15): 

Q(i, j )  = -~  
1~ min(i,j) 

f a r  u,'(r) [2~Z r - Vo(r)]u~'(r)+ 1 Z BjjBijk2 
0 J=M+ 1 

j M RA 

Z Z BjKBjKk2 / dr Pxt(r)uK(r) 
J=M+I K=I 0 

M P& ZBj./druJ'(r)(h+[:Z-vo(r)])P.,(r) 
J=l 0 

where the Schmidt coefficient matrix B has been evaluated in routine SCHMDT, and the overlap contributions 
of bound orbital functions P,t(r) with the continuum functions uj (r) before Schmidt orthogonalisation have 
been stored in array 0VRLAP. 

O R N O  

is a function routine. It analytically evaluates the overlap integral of a pair of STOs. 

PHASE 
evaluates zero-order s-, p- and d-wave phases for electron-atom scattering. 

POTF 
calculates the zero-order potential function Vo(r) used in Eq. (65) for evaluating continuum functions and 
stores it in POVALU. Its operation mode is controlled by NPOT. There are three modes of operation. 
NPOT= O: 

this is the default if STOs have been specified for the target orbitals. POVALU = Vo(r) is then calculated as 
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the static central potential of an N-electron ground state from such orbitals. An array PX = [2Z/r - Vo(r)] 
is also defined, for use in the one-electron routine ONEELE. 

NPOT> 0: 
user-specified potential, with data supplied according to Section 2.3: 

NPOT 

Vo(r) = ~ CPOT(1) * r IPOT(I) * e - x P o r ( l ) * r  (79) 

I=1 

I f  numerical orbitals rather than STO coefficients are used then NAME sets NPOT = 2 and POTF is called 
with parameters such that 

2Ne  - 'Ui" 2 ( Z  - N) Vo(r) = + (80) 
r r 

For a neutral atom the equation obviously reduces to the case of NPOT = 1. 
We note in passing that input generated by routine TABORB (NPOT = 0) in a previous calculation will 
conveniently lead to Eq. (80) both with NPOT = 0 and -1 .  

NPOT< 0: 
along with S.S. type numerical input one may specify NPOT = -I, when POTF yields 

Vo(r) 2 { ( Z ~ ( r ) - z ) .  N } = r  N-"~-I +Z ( 8 1 )  

where zSM(r)  is the effective ( N -  1)-electron charge read by SS; rescaling according to Eq. (81) is 
modelled on the behaviour of Eq. (80). The option Eq. (81) is very appealing for medium to heavy positive 
ions. 

RADINT 
computes radial multipole integrals of order k < LAM for radiative transitions: 

RA 

l~(i,j) = / d r  Ui(r) r k U j ( r )  (82) 

0 

NPTS 

=Z WT(1) * UJ(I,i) * UJ(I,j) * XR(1) **k 
1=2 

RDAR 
evaluates Darwin term radial coefficients if IRELOP(2) = 1; such a contact contribution to the one-electron 
Breit-Pauli interaction arises for pairs of s-orbital functions (i.e. I i = li, = 0 ) :  

1D'(i'i')=--Z°~----~28 (i I <~) 

Zot 2 Ui(r) Ui,(r) 
'=  lim - -  • lim - -  

8 r---*O r r--,O r 
Z a  2 

= g OJ(1 ,K)  * UJ(1,Kt)  

where K = IPOS(i, 1) and K'  = IPOS(i',  1). 



K.A. Berrington et al./Computer Physics Communications 92 (1995) 290-420 323 

RECOV2 
is called from various routines when encountering insufficient array space. A message is printed enabling the 
user to recompile with larger preprocessor parameters. Abortion is deferred if more such checks can be made. 
This depends on the value of the input parameter IPLACE. 

RMASS 
computes radial integrals associated with the mass-correction Breit-Pauli term if IRELOP(1) = 1. The radial 
integral is 

P~ 

l • .t ~2 f mass(J,J ) = - -~ -  dr S j ( r )  ~ 4 g j , ( r )  

o 

a 2 f ( d 2 1 j ( l j  +l ) )  ( 62 
= - - g  dr ~r-r2 r2 uj(r) ~rr2 

0 

lj,(lj, + 1)'~ , 
r2 ) uj(r) 

(84) 

Because the operator is purely radial such integrals only arise if l j ,  = lj (=l). Expression Eq. (84) is valid 
for bound and continuum orbitals U(r). For bound orbitals, the second derivative is available in array UDP; for 
continuum orbitals, the second derivative is available from Eq. (65), i.e. 

/ ( / +  1 ) )  r2 u j ( r )  = - -  (Vo(r) + k~)uj(r) + Z anPnt(r) 
n 

d2U (r)) 
The integrand does not vanish at r -- 0 if I = 0, but it is readily computed. For STOs the quantity ~ r~0 

can be evaluated analytically from Eq. (70), giving 

r~01im ~ - 2 C(J) Z C(J) * ZE(J) 
IRAD(J)=2 II~D(J)=I 

where the summations run over those STO terms in Eq. (70) containing powers of r and r 2 respectively. This 
is supplied by EVALUE through DO J( 1, K), where K is the bound orbital index IP0S(n, l + 1). 

All the other types of orbital functions Uj(r) =__ (_]j(r)r l+1 which we consider satisfy the cusp condition 

limUj(r)=rl+, {Oj(O) ( 1 Zr ) } r~o l + l  +O(r2)  

so that 

iimd2 (r)U, _ 2 * Z * U J ( I , K )  i f / = 0  
r~0 dr 2 

Also UJ(1,K) = f/j(0),  see Eq. (66) and Eq. (71). 

ROOT 
is called by FINDER. It is an efficient algorithm for obtaining the zero of a non-linear equation (Shampine and 
Gordon [79] ). 

RS 
has two modes of operation: 
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MODE= 0 (called from routines GENBB, GENBC, GENCC). 
Computes the two-electron integral of Eq. (73) over four radial orbitals for given multipolarity k: 

RA P& 

R k ( a b c d ) = f d r / d s U a ( r ) U b ( s ) ~ U c ( r ) U a ( s )  
0 0 

= f d s  Ub(S)y~(ac; s) Ua(s) 
0 

with the multipole potential functions given by 

yk(ac; S) = ~ dr Ua(r)r k Uc(r) + s t dr Ua(r) Uc(r) 
0 s 

We save the current yk(ac; s) in an array YK of /YSTOR/,  because the looped calls to RS are suitably 
arranged so that this array can be re-used. 

MODE= +1 or - 1  (called from routine SPNORB). 
Computes magnetic integrals of type N k and V k respectively: 

i~, RA 

Nk(abcd) = drr 2 ds s2 Ra(r)Rb(s) ~ Rc(r)Ra(s) e ( r -  s) (85) 
r> 

o o 

RA P~ 

Vk(abcd) = f d r r 2 / d s s 2 R a ( r ) R b ( s )  r~< S~rRc(r)Rd(s ) 

0 0 

with the usual conventions; in particular e ( r -  s) is the Heaviside step function and R a pure radial function 
- -  unlike U, which has absorbed a factor r from the volume element r2dr. The derivative 

dR 1 dU v 
dr r dr r-r 

is obtained on calling DERINT with argument ni = O, when it returns ~ in YK. 
RS (with MODE = 0) is the routine in which much of the STG1 computer time is spent. 

SCHMDT 
orthogonalises continuum orbitals uis (r) with respect to those target orbitals P.tl (r) for which n > MAXNLG(l + 
1 ), i.e. those target orbitals not included in the Lagrange orthogonalisation in BASFUN. 

Let M = MAXNHF(I + I) - MAXNLG(I + I). 

A new set of mutually orthogonal functions u~l(r), j = I, M + NKANG2, is generated from the set of bound 
Pj(r), j = 1, M and continuum uj(r), j = 1, NRANG2 orbitals as follows: 

u'.'~(r) = Pro(r) m = l, M 

u~(r) = E BmjPj(r) + Bmjuj(r) r e = M +  1,M + NI~NG2 
j= 1 j f M +  1 

/! The Schmidt coefficients Bmj and the new functions u m are generated as follows, 
for m = M + 1, M + NI~NG2: 



/ 
U m "~ 

N i l  I 

Bmj  = 

B?11m ~ 

I I  
lit m = 
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m -  1 

Z [-(u°, + Um 
j=l  

(u', l u ' )  :/2 
m-- 1 

N,,~-~[-(u~'lum)] Bt j j = l , m - 1  
k=l 

g m  

u '  m Nm 
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where round brackets indicate the finite integral from r = 0 to I~.  It is these u~'(r) functions which are stored 
in the UJ array and used in all the integration routines in STG1. The Schmidt coefficients Bmj are stored for 
later use in evaluating the one-electron integrals in routine ONEELE. 

Numerical instability due to potential overcompleteness of the basis set can occur if Nt~NG2 is too large. It 
is therefore sensible to check for signs of numerical instability by looking at the debug printout of the overlap 

urn(r)) (which should resemble a unit matrix) and the Schmidt coefficients Bmj (which integrals (u~'(r) ] " 
should not get too big). If  the program thinks NI~NG2 is too large, SCHMDT aborts returning a reduced value 
for Nt~N62 that might enable the calling routine BASORB to restart the case more successfully - -  after printing 
a message. 

SHRIEK 
computes the factorial n! = GAMMA(n + 1) in common b lock/FACT/ .  

SPNORB 
is called if IRELOP(3) = I. It computes the spin-orbit parameter 

RA / z 
(o,j t = a 2 drUi(r) -~ Uj(r) 

0 

or rather the integral 

Zoo2 NPTS 

lso(i , j)  = 2 ~ w-r(l) • uJ (1 , i )  • U J ( I , j ) / X R ( I )  . . 3  (86) 
/=2 

for bound and continuum orbitals 1 > 0. 
The program computes closed-shell effects on ~" associated with both outer target and continuum orbitals, 

unless told not to by setting IZESP > 0 (user supplies factors ZESP(I)) or IZESP = - 1  (no screening). The 
interaction of an electron outside a closed shell nl through mutual spin-orbit effects behaves like an effective 
one-electron spin-orbit potential, reducing the 'naked' ~-0. As no specific configuration C = H~(n~l~)q, can be 
considered at this stage it follows that not all the mutual spin-orbit terms with this behaviour according to 
Blume and Watson [18] are included in the procedure, rather only those common to all configurations for a 
given core. Thus if IZESP = 0 and NELC > 2 then screening of ~,0 by ls 2 - -  and by L-, M- etc. shells if NELC 
is sufficiently large - -  is accounted for. Routine RS is called with argument MODE = 4-1 to obtain the magnetic 
integrals V k and N k of Eq. (85), and the code follows Jones [55] for the associated algebraic coefficients in 
the summations over closed-shell electrons and - -  in the exchange portion - -  multipolarities k. 

Blume-Watson screened effective spin-orbit parameters ~" should also be computed when pseudo-potentials 
are supplied (option IPSEUD = + l ) ,  as inner shell orbital functions are normally supplied alongside POTHAM 
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through routine SS. But an option IPSEUD = - 1  has been implemented to compute the parameters ~ for both 
valence and continuum orbitals as expectation values of the operator 

1 dV Z ( r )  1 d Z  
r dr r 3 r 2 dr 

where Z z ( r l )  = POTHAM(I, L) is a very smooth function. For orbital quantum numbers l > L - 1 the routine 
uses the last supplied POTHAM(I, L). Of course the option IPSEUD = - 1  cannot account properly for exchange. 

SS 
is called by NAME. It reads and processes target orbital input supplied in numerical form in COLALG/IMPACT 
format - -  see [38,42]. Radial points rt are stored into XR(1) of /SIMP/  and the statistical model electric 
charge zSM(rt )  of Eq. (81) is temporarily saved in PX(1) o f /POTVAL/  for use by routines TABORB and 
POTF. Numerical target orbital values Pnt(rl) and the associated Qnt(r) of Eq. (70) and Eq. (72) are read 
into UJ(1, K) and DUJ(I ,K) o f / O R B T L S / ,  while also setting up the address array IPOS(n,I  + 1) = K. A 
blank or a KEY = - 5  record terminates reading from unit INDATA. 

Target orbitals are tabulated at points sufficient to support atomic structure calculations. This may not be 
good enough for collisional work, especially at higher energies, as the number of oscillations over a given 
radial stretch increases with the wave number k. Because the grid read by routine SS will be used as integration 
mesh for the continuum basis it is sometimes necessary to insert extra mesh points. This is controlled by the 
maximum collision energy MAXE, a compulsory input parameter. Starting with the outermost interval midpoints 
are inserted, and at these points Zeff(r) is quadratically approximated and P and Q are interpolated as a 4-point 
Lagrange series; if necessary this procedure will be repeated until there are only two tabulation intervals left. 
23 points over one period of the continuum function with the largest number ( ~  2 ,  NRANG2) of nodes secures 
16 points for a wave associated with the largest channel energy and thus at least 8 points in any integrand over 
one half-period. 

It is not necessary to supply the wavefunctions far beyond a point ric where the effective charge has dropped 
to its residual value 

Z e ~ ( r > r i c ) = z  = Z - ( N - l )  from Ze f f (O)=Z  

When supplying such truncated input one must specify RA as an input parameter. The program extrapolates P 
and Q between rb and a mesh point nearest to IRAI as a Whittaker series: 

(e_: .  r" :,.,,,r> ) 
Phi(r)  = ~k r~ f ( l . ' , l ; rb )  

where 

KK 

f ( v ,  l; r) = 
a__.kk 
r k 

k=O 

is an asymptotically convergent series with coefficients 

( l ( l +  l ) - ( v - k ) ( v - k +  l ) )  
ak = 2k--x/~" ak- , 

with a0 = 1 and as usual 

Z 
P ~ n - - t Z l -  
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is the effective quantum number. All the quantities required can be extracted from P and Q at two tabulation 
points rb, rb-I > rtc. The program chooses the last two tabulation points but one, which allows for a ready- 
made test: at the last point the supplied function value P(r)  is printed against its value computed from Eq. 
(87) for comparison - -  they must be virtually identical. Also printed are computed quantities such as KK, IC, 
E = enl, and A(K) = aK for 1 _< K <_ KK; E may be checked against the eigenvalue Ent on the KEY = - 7  header 
record, which precedes the P/Q records KEY = -6 .  The code exploits the identity 

Qnl(r) = (Enl  - -  2 "  D/r) Phi(r) if r > ric 

and D is also printed. This value, normally an integer equal to the number of screening electrons, becomes a 
fractional value for 'PJS' type correlation functions satisfying a wave equation 

d l ( I+  1) 2Zeff(r) ) 
-dr 2 r - - T - - -  + - - r  + ent Phi(r) = 0 

with 

ZerdS (r)  = Z [e-Zr/2 + Anl ( 1 -  e-Zr/2)] 

On the header record such orbital s are flagged as having 'scaling factors' - (  100n + Ant). 
We note that Eq. (87) supposes an exponential decay of Pnt(r) controlled by a single eigenvalue Enl. As this 

excludes single-particle wavefunctions that have been Schmidt-orthogonalised in advance against other orbitals 
the user may supply a non-orthogonal set; SS will Schmidt-orthogonalise after extrapolating. Conversely a 
positive value in the position for ent on the KEY = - 7  header record would be interpreted as a flag not to 
Whittaker-extrapolate. 

Three more points in conclusion: 
1. To minimise numerical errors the input range is extended to the next full oscillation amplitude beyond rlc 

unless, of course, the exponentially decaying tail has already started. 
2. Specify a sufficiently large negative value RA when unsure, as SS will then automatically reduce RA to a 

value at which the most diffuse orbital has decayed to relative order TINORB = 0.001 - -  see DATA in SS. 
3. For numerical reasons (restricted exponential range of real numbers) the extrapolation procedure simplifies 

once [Pnt (r)] < 10 -30 has been reached, which is typical for closed-shell I s-electrons. Then S S extrapolates 
linearly to 0.0 at I~, with some safeguards for Qnt(r). Detailed printout on the right hand boundary of 
the three regions tells at a glance which of the two extrapolation ranges may eventually have collapsed to 
length zero. 

In the special case of IPSEUD 4= 0 the routine SS will accept more than one set KEY = - 8  (preceded 
as usual by a KEY = - 9  header record); the sets 2(r i )  are stored in successive orbital positions l of array 
POTHAM(i, l + 1). 

STGIRD 
reads and verifies all the input data described in Section 2.3, with the exception of alternative user-supplied 
radial orbital data, which are handled through a call to NAME (Section 2.4). For verification it prints the basic 
log file information and it sets secondary parameters. The choice of RA is made so that exchange between the 
scattering electron and the atomic target is negligible when the scattering electron coordinate r > RA as in Eq. 
(11). 

STO 
called by STG1RD to check the orthonormality of the bound Slater-type basis orbitals, and aborts with an error 
message if not acceptable. 
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TABORB 
creates a target orbital output file in SUPERSTRUCTURE COLALG/IMPACT format [ 3 8 ]  - -  the inverse to the 
task of SS; the file is printed on unit number IPIB~CH if NBUG5 = 2. The KEY = - 9 . . .  KEY = - 6  convention 
applies - -  see Section 2.4.2. One feature expected on the records of type KEY = - 8  along with the radial grid 
may not be readily available: unless supplied in S.S. type input the effective Coulomb charge Zeff(r) seen by 
a target electron is therefore estimated using the (N-1)-electron analogue of Eq. (80). 

WRITAP 
writes basic information onto the permanent output file ITAPE3 for processing by STG2 or passing through 
STG2 on to STGH. 

2.2. Data files 

The following is a summary of the data files required by STG1. The unit numbers and file names are defined 
within the program. Although the variables are part of the input data (for consistency with earlier versions of 
RMATRX) you need only supply dummy values i.e. set them to 0. The exception is ITAPE1 which should be 
set > 0 in the input data if you wish to read from 'STG1.POT'. 

IRF_~D = 5 - -  'STGI. INP'  
File type: formatted sequential input. 
Written or assembled by the user. 
Read by routine STG1RD. 
Description: N-electron and (N + 1 )-electron radial function data (see Section 2.3 for details) 

IWRITE = 6 - -  'STG1.OUT' 
File type: formatted sequential output. 
Written throughout STG1. 
Read by user. 
Description: line-printer or .job output - -  the log file. 

IPUNCH = 7 (only used if NBUG5 = 2) - -  'ORBITAL.OUT' 
File type: formatted sequential output. 
Written by routine TABORB. 
Read by routine SS or programs SUPERSTRUCTURE or COLALG. 
Description: bound orbitals tabulated in S.S. format. 

IDISCI = 0 NOT USED 

IDISC2 = 0 NOT USED 

IDISC3 = 0 NOT USED 

ITAPEa = I (not normally used, i.e. if IPSEUD=0: input as 0) -- 'STGI.POT' 

File type: binary sequential input. 
Written by model potential program. 
Read by routine STG1RD. 
Description: model potential 
(see Section 2.5 for details). 

ITAPE2 = 0 NOT USED 
ITAPE3 = 3 - -  'STG1.DAT' 

File type: binary sequential output. 
Written by routines WR/TAP and GENINT. 
Read by module STG2. 
Description: basic information, multipole, one-electron and bound-bound two-electron integrals (see Sec- 
tion 2.7 for details). 
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ITAPE4 = 0 NOT USED 
JDISC1 = 21 - -  'RK.DAT' 
File type: direct access output, record length 512 (8-byte) words. 
Written by routine GENINT via DA2. 
Read by module STG2 via DA2. 
Description: bound-continuum and continuum-continuum two-electron integrals 
(see Section 2.8 for details). 

JDISC2 = 0 NOT USED 
INDATA = 10 (used only for S.S. input - -  'ORBITAL.INP' 
File type: formatted input. 
Written by routine TABORB or programs SUPERSTRUCTURE or COLALG. 
Read by routines SS. 
Description: bound orbitals tabulated in S.S. format (see Section 2.4.2 for details). 
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2.3. Input  data on IREAD 

The user-supplied input data is read in routine STG1RD on input unit number IREAD. Free format is used, 
with one exception: 
• FORMAT(18A4) for reading text into array TITLE. 

If  TITLE(1) = 'S.  S . '  or 'CIV3' or 'ST0- ' ,  then NAMELIST and alternative radial orbital input file options 
are invoked; see Section 2.4. 

Summary of the data records (the variable names are described in the glossary in Section 9): 
1. (TITLE(K),K=I,18) 

I /O  units, described in Section 2.2: 
2. IPUNCH, IDISCI, IDISC2, IDISC3, IDISC4, 

ITAPEI, ITAPE2, ITAPE3, ITAPE4, JDISCI 
Debug parameters, described in Section 2.6: 

3. NBUGI, NBUG2, NBUG3, NBUG4, NBUG5, NBUG6, NBUG7, NBUG8, NBUG9 
Basic information: 

4. ICOPY, ITOTAL, IPSEUD, (IRELOP(K) , K = l , 3 ) ,  IZESP 
5. If IZESP > 0: 

a. (ZESP( I ) ,  I=1 ,  IZESP) 
6. NELC, NZ, LRANGI, LRANG2, NRANG2, LAMAX, LAM, IBC, NPOT, LCB 
7. (MAXNHF (L), L=I, LRANGI) 
8. (MAXNLG (L), L=I, LRANGI) 
9. Radial orbitals, as in Eq. (70): 

a. NCO 
b. (IRAD(J), J=I,NCO) 
c. (ZE(J), J=I,NCO) 
d. (C(J),J=I,NCO) 
repeat records a-d for L=I, LRANGI and N=L,MAXNHF (L). 

I0. If IBC v~ 0 then read boundary conditions: 
a. RA, BST0 

I I. If IIBCI = 2 then read integration mesh, as in Eq. (77): 
a. NIX 
b. (IHX(1) ,I=I,NIX) (only if NIX > O) 
c. (IRX(I) ,I=i,NIX) (only if NIX > 0) 
d. X, DELTA, ETA (HINT=XifNIX>0) 
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12. I f  NPOT > 0 then read zero-order potential function (NPOT < 6), as in Eq. (79): 
a. ( I P O T ( I ) ,  I=I,NPOT) 
b. (CPOT(1), I=I,NPOT) 

c. (XPOT(1), I=I,NPOT) 
13. If IPSEUD > 0 and ITAPEI > 0: 

a. L, (MAXNC(I),I=I,L) 
14. If NPOT = 0 then the following card is read in routine POTF, provided NBUG6 = 1 or NELCOR > MAXELC = 18: 

a. (NSHELL(I), LSHELL(I), I=I,13) 

Important note 
Records 5 and 10-14 are optional; the inexperienced user is recommended not to invoke them. 

2.4. Option: alternative inputs NAMELIST and S.S. 

TITLE contains 72 characters of text and is printed out on unit IWRITE as a heading for the calculation. If 
the first four characters are: 

S.S. then radial orbital input is read in the format described by Crees et al. [38] and generated by routine 
RADIAL of the SUPERSTRUCTURE code [43]; 

CIV3 then radial orbital data in CIV3 format [52] is expected; 
STO- then radial orbital data in STG1 format is expected. 

In each of these cases the NAMELIST format is invoked and this section replaces the descriptions given in 
Section 2.3. The NAMELIST option is described first, followed by the S.S. option. 

Some basic parameters as described in Section 2.3 do not have to be explicitly input in the NAMELIST 
mode, as they can be derived from the radial orbital input. For example, NZ or Z is picked up as Zef~(0) from 
the S.S orbital input, and NELC = N as Z - •eff(rmax) + 1. 
Similarly, the orbital input also determines LKANG1 and the default values for RA and the integration mesh 
parameters NIX, IHX, IRX, HINT. 

The variable names are described in the glossary in Section 9. 

2.4.1. NAMELIST option 
Summary of the data records: 

1. (TITLE(K),K=I,18) 
2. CIV3 input on unit INDATA. The CIV3 input is described in [52]. 
3. NAMELIST /STG1/ (the first three parameters are compulsory, the rest are optional): 

MAXLS, MAXPW, MAXE, 
lOUT, IOUTDA, INDATA, IPSEUD, 
NBUGI, NBUG2, NBUG3, NBUG4, NBUG5, NBUG6, NBUG7, NBUG8, NBUG9, 
KRELOP, LAM, LAMAX, MAXC, IBC, NPOT, LCB, ISMIT(L) 

4. If IBC ~ 0 then read boundary conditions: 
a. RA, BSTO 

5. If  IIBC I = 2 then read integration mesh, as in Eq. (77): 
a.  NIX 
b. (IHX(I),I=I,NIX) (only if NIX > O) 
c. (IKX(I),I=I,NIX) (only if NiX > O) 
d.X, DELTA, ETA (HINT = X if NIX > O) 

6. If  NPOT > 0 then read zero-order potential function (NPOT _< 6), as in Eq. (79): 
a. (IPOT(1), I=I,NPOT) 



b. 
C. 

7. S 
8. If 

a. 

9. If 
a. 

10. If 
a. 
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(CPOT(I),  I=I,NPOT) 
(XPOT(I), I=I,NPOT) 

.S. input on unit INDATA. The S.S. option is described in the nextsection. 
IZESP > 0: 
(ZESP(I),I=I,IZESP) 

IPSEUD> 0 and ITAPEI > 0: 
L, (MAXNC(I),I=I,L) 

NPOT = 0thenthefollowingcardisreadinroutine POTF, provided NBUG6 = I or NELCOR > MAXELC = 18: 
(NSHELL(I), LSHELL(I), I=I,13) 

Important note 
Records 4-6, 8-10 are optional; the inexperienced user is recommended not to invoke them. 

2.4.2. Input of radial orbitals in S.S. format 
The radial orbital input is read in the format described by Crees et al. [38] and generated by routine 

RADIAL of the SUPERSTRUCTURE code [43]. It can also be generated from Slater-type orbitals as an 
option by routine TABORB in STG1. 

Summary of the S.S. data records on unit INDATA: 
Tabulation header, 
format(15,I5,A13,I5,I4,I4,A24) : 
a. KEY=-9, NBOUND, LSTK, NPTS, NELC, NZ, TEXT; 
Radial mesh and potential, 
format (I5,2 (I4,E 14.7,E 14.7),A11 ): 
b. KEY=-8, I ,  XR(I) ,  PX(I ) ,  I + l ,  XR(I+I) ,  PX( I+I ) ,  TEXT; 
repeat record b for I = 1, NPTS, 2; 
Orbital header, 
format(15,I5,I5,I3,A62) : 
c. KEY=-'/, K, NS, LS, TEXT; 
Orbital tabulation, 
format (I5,2 (I4,E 14.7,E 14.7),A11 ): 
d. KEY=-6, I ,  U J ( I , K ) ,  DUJ(I ,K) ,  I + l ,  U J ( I + I , K ) ,  DUJ(I+I ,K) ,  TEXT; 
repeat record d for I = 1, NPTS, 2; 
repeat records c-d for K = 1, NBOUND. 

2.5. Input of model potential on ITAPEI 

This occurs when IPSEUD> 0 and ITAPEI > 0. 
a. LRANGI,LRANG2, (MAXNC(I),I=I,LRANGI) 

b. HINT,NIX, (IHX(I),I=i,NIX), (IRX(I),I=I,NIX) 

c. LPOT, (LP0SX(I),I=I,LRANG2) 
d. (POTHAM(J,I),J=I,NPTS) 

where NPTS=IRX(NIX) and record d is repemedfor I=I,LPOT. 

2.6. Debug prints 

Debugging prints are under the control of the NBUG parameters, specified in record 3 of the input data, or in 
the /NAMELIST/. Set these to zero in production runs, otherwise a large amount of output can be printed. 

NBUG1 > 0 for debug printout from BASFUN. The intermediate integrations and energies are output. 
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NBUG2 = 0 NOT USED. 
NBUG3 > 0 for debug printout from BASFUN. The arrays for the determination of the mismatch are output. 
NBUG4 > 0 for tracing iterations in FINDER. 
NBUG5 

> 0 for a printout of overlap integrals, any Schmidt coefficients, and all orbitals at NBUG5 points of the 
integration mesh from BASORB; 
= 1 for debugging bound orbital corrections in EVALUE and to write out RVAL from MESH (checks that 
the generated radial mesh gives the correct boundary radius RA); 
> I for debugging the potential array POVALU from POTF; 
= 2 for bound orbital printout to unit IPUNCH in S.S. format from TABORB. 

NBUG6 is used in routine POTF to allow the reordering of the shells which determine the potential when 
NPOT = 0. The default ordering is Is, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s and 4f. If  you wish to read in 
the arrays NSHELL and LSHELL which will change this ordering then you should set NBUG6 = 1. 

NBUG7 = 1 for a dummy run to test that the input data does not exceed array sizes. The program jumps round 
all the calculations, so the run is very short, but goes through all the loops and prints out the required space 
and the current length of the arrays. 

NBUG8 
= 1 for printout of all bound-bound integrals from GENINT; 
= 2 for printout as 1, plus bound-continuum integrals; 
= 3 for printout as 2, plus continuum-continuum integrals. 

NBUG9 = 1 for debug printout from SPNORB of the spin-orbit integrals. 
For debugging purposes, LRANG2 may be set to 0, and computation is reduced to the requirements of 

target structure - -  a useful feature when running the Breit-Pauli code merely in order to obtain term-coupling 
coefficients (Saraph [69] ) in module RECUPD. And within STG1 it may be chosen for fast preliminary runs 
to find an economical value of RA, as the program readily prints the relative magnitude of the most diffuse 
orbital. 

2 .Z  Output  on I T A P E 3  

The variable names are described in the glossary in Section 9. 
Basic data from routine WRITAP: 

1. NELC, NZ, LRANGI, LRANG2, NRANG2, LAMAX, ICODE, LAM, IZESP, 
(IRELOP (K), K= i, 3); 

2. (MAXPN(L) ,L=I,LRANGI), (MAXNLG(L) ,L=I,LRANGI), 
(MAXNC (L), L= i, LRANG 1 ) ; 

3. (EIGENS (N, L), N=I, NRANG2) ; 
4. (ENDS (N, L), N=I, NRANG2+I) ; 

repeat records 3-4 for L=I,LRANG2; 
5. RA, BST0, H, DELTA, ETA, NIX; 
6. ( (C0EFF(I ,L), 1=1,3) ,L=I ,LRANG2). 

Multipole integrals Eq. (82) and Eq. (69) from routine GENINT: 
7. IRK8, JRK8, IBBI; 
8. ( ( (IBBPOL (I, J ,K), I=i, LRANGI), J=l, LRANGI) ,K=I ,LAMIND), 

( ( (IBCPOL (I, J, K), I= I, LRANG i), J= i, LRANG2), K= I, LAMIND), 
( ( (ICCPOL (I, J, K), I= i, LRANG2), J= i, LRANG2), K= i, LAMIND), 
(RKST02 (I), I=i, IRKS) ; 

9. ( (JBCPOL(I, J), I=i, LRANGI), J=l ,LRANG2), 
( (JCCPOL (I, J), I= i, LRANG2), J= i, LRANG2), 
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(SKST02 ( J ) ,  J= l ,  JPd48), (BNORM ( J ) ,  J= l ,  LRANG2). 
One-electron integrals Eq. (78) and optionally Breit-Pauli integrals from routine GENINT: 

10. IRK5; 
II. (ISTI(1),I=I,LKANGI), (0NESTI(1),I=I,IRK5); 

a. (RMASSI(I) ,I=I,IRK5) (only if IRELOP(1) > 0); 
b. (RSPORI(I) ,I=I,IRK5) (only if IRELOP(3) > 0); 
c. IRK9 (only if IRELOP(2) > 0); 
d. (RDARI(I), I=I,IRK9) (only if IRELOP(2)> 0); 

12. IRK6; 
13. (IST2(1),I=I,LRANGI), (0NEST2(I ) , I=I , IRK6) ;  

a. (RMASS2(1) ,I=I,IRK6) (only if IRELOP(1) > 0); 
b. (RSPOR2(1) ,I=I,IRK6) (only if IRELOP(3) > 0); 
c. IRK10 (only if IRELOP(2) > 0); 
d. (RDAR2(1) ,I=I,IRKI0) (only if IRELOP(2) > 0); 

14. IRK7; 
15. (0NESTS ( I ,  L) ,  I = l ,  IKKT) ; 

a. (RMASSS(I,L) , I=I , IRKT) (only if IREL0P(1) > 0); 
b. (RSPORS(I,L) , I=I , IRK7)  (only if IKELOP(3) > 0 and L > 1); 
c. (RDARS(I) , I=I , IRK7)  (only if IRELOP(2) > 0 and L=  1); 
repeat records 14-15 for l + 1 =L=I,LKANG2. 
Two-electron integrals Eq. (73) from routine GENINT: 

16. IRKi, IRK4; 
17. ( ( (ICTBB (I, J,K), I=i, LRANGI), J=l, LRANGI) ,K=I, Ii), 

(ISTBBI (I), I=i, IRE4), (ISTBB2 (I), I=i, IRK4), (REST01 (I), I=i, IRE1) ; 
( with I I=LRANGI*LRANGI); 

18. IRK2, IBX3; 
19. ( ((ICTBC (I, J,K), I=i ,LRANGI), J=l, LRANGI) ,K=l, II), 

(ISTBCI (I), I=I, IRKS), (ISTBC2 (I), I=i, IRKS) ; 
( with I l=min (LRANGI*LRANG2, LRANGI* ((LRANGI-i) .3+1) ); 

20. JRK2, L, LP; 
repeat record 20 if JRK2 is negative: 

21. ( I C T ( I ) ,  I = l ,  (II+I2)*LKANGI*LRANG1); 
(with I l=min (2*LKANG1-1, L+LP+I) ; I2=min (LRANGI+L, LRANGI+LP) ) 
repeat records 20-21 for LP = L, LKANG2, 
repeat records 20-21 for L = 1, LRANG2. 

2.8. Output o f  two-electron radial integrals on JDISCl 

A direct access file 'RK.DAT' is used to store all the bound-continuum and continuum-continuum two- 
electron radial integrals generated in STG1, for use in module STG2. The direct access file is written and read 
by a call to routine DA2, which blocks a large array automatically into fixed record lengths, under the control 
of pointers. DA2 is called by routines GENINT in STG1, and RDINT in STG2. 

The variable names are described in the glossary in Section 9. 
Bound-continuum two-electron integrals Eq. (73): 

I. (RKST02(I), I=l, IKK2). 

Continuum-continuum two-electron integrals for each continuum L, LP combination: 
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I MNSTG2 STG2 AIJS .... 

8 BOUND .... 

33 DMEL .... 

79 ISTG2 FACTT(*) 

80 RECOV2 

81 RME(*) 

82 SHRIEK 

83 SETMXI DA2 

84 MATANS > 9 

85 NJLJOD 

86 PNTBG2 > 31 
87 RDINT DA2 

88 SJIONT 

89 SETMXR MATANS > 9 

90 NJLJOD 

91 PNTBG2 > 31 
92 RDINT > 87 

93 SJIQNT 

94 SETUP DMCON > 36 

95 RECOV2 

96 SETCUP RECOV2 

97 STG2RD .... 

105 WRITAP 

Fig. 6. Calling tree for module STG2. The routines are given in alphabetical order within each branch not the order in which they are 
actually called. The routines marked with (*) are in module STGLIB. 

2. (RKST02 (I), I=l, abs (JRK2)); 
(repeat record 2 by setting JR/~2 negative if the number of integrals for a given L, LP combination exceeds 
the dimension of ILKST02); 
repeat record 2 for LP = L, LRANG2; 
repeat record 2 for L = 1, LRANG2. 

3. Module  STG2 

This module is the second stage in RMATRX1. It calculates LS-coupling matrix elements in the inner-region 
as in Eq. (14) and Eq. (48). 

STG2 must be linked with STGLIB in order to form an executable program. Routines CG, CHOP, DRACAH, 
FACTT, FANO, HOWTS, HSLDR, INTACT, MEKEST, ORTHOG, REDUCE, RME, SETM, SETUPE, TEN- 
SOR and TRITST plus routines which they call are obtained from STGLIB. 

Fig. 6-10 displays a flow diagram for the routines in STG2. 
There are five main computational sections in STG2 (the controlling routines are named in brackets) : 

• initialisation and reading input files (STG2RD,ISTG2,WRITAP); 
• solving the target-state (N-electron) problem (BOUND); 
• setting up the (N 4- 1 )-electron Hamiltonian matrix (SETUP, SETMX1,SETMXR); 
• evaluating the long-range potential coefficients (AIJS); 
• setting up the (N + 1 )-electron dipole matrix (DMEL). 

3.1. Routines 

MNSTG2 
is the program routine and contains all COMMON blocks used in STG2. It sets /MEMORY/ pointers, and 



K.A. BerringWn etal./Compu~r Physics Communicafions 92 (1995)290-420 

1 AIJS ALDAIJ DRACAH(*) 

2 RME(*) 
3 TRITST(*) 
4 REDRAD FINMNT 

5 RME(*) 

6 SETUPE(*) 
7 TENSOR(*) 

335 

Fig. 7. Calling tree for module STG2, AIJS section. 

8 BOUND HSLDR(*) 

9 MATANS MATRX CHOP(*) 

i0 DHO FINIBB 

Ii FINIC 

12 HOWTS(*) 
13 ODHO FINIBB 
14 FINIBC 

15 FINIC 

16 ORTHOG(*) 
17 RKWTS FANO(*) 

18 MEKEST(*) 

19 PRNTWTFINBB INTECH 

20 FINBC INTECH 

21 FINCCI FINBB > 19 

22 INTECH 

23 FINCC2 FINCCI > 21 

24 INTECH 

25 REDUCE(*) 
26 SETM(*) 

27 USEEAV FANO(*) 

28 INTACT(*) 

29 PRNTWT > 19 

30 NJLJOD 

31 PNTBG2 VIJOUT 

32 SJ2QNT 

Fig. 8. Calling tree for module STG2, BOUND section. 

calls AASTG2. 

AASTG2 
is called by MNSTG2 and controls the STG2 computation, invoking the five main computational sections as 
summarised above. 

There is a loop over the (N + 1)-electron system LSTr symmetries to calculate Hamiltonian matrices and 
potential coefficients, which is completed before entering the dipole matrix routine DMEL. 

AIJS 
is the controlling routine for the evaluation and output to file ITAPE3 of the long-range potential coefficients 
coupling two channel eigenstates ~i from Eq. (29): 

CF(i,j, A) = 2a/~ 

N 

= 2 ( ~ i ( x , . . .  XN, ~'N+,O'N+,) [ E raPa (c°s O,.N+l ) I - ~ j ( x l . . .  XN, ~'N+,erN+, )) 
n=l 

(88) 
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33 DMEL CG(*) 

34 CHEKTP DA2 

35 RECOV2 

36 DMCON DA2 
37 DMELBB FINMNT 

38 RME(*) 

39 SETUPE(*) 

40 TENSOR(*) 

41 DMELBC RME(*) 

42 SETINI 

43 SETUPE(*) 

44 TENSOR(*) 

45 DMELBD RME(*) 

46 SETINI 
47 SETUPE(*) 
48 TENSOR(*) 

49 DMELCBRME(*) 

50 SETFIN 

51 SETUPE(*) 

52 TENSOR(*) 

53 DMELCC FINMNT 

54 RME(*) 

55 SETFIN 

56 SETINI 

57 SETUPE(*) 

58 TENSOR(*) 

59 DMELCD RME(*) 

60 SETFIN 

61 SETINI 

62 SETUPE(*) 

63 TENSOR(*) 

64 DMELDB RME(*) 

65 SETFIN 

66 SETUPE(*) 

67 TENSOR(*) 

68 DMELDC RME(*) 

69 SETFIN 

70 SETINI 

71 SETUPE(*) 

72 TENSOR(*) 

73 DMELDD FINMNT 

74 RME(*) 

75 SETFIN 

76 SETINI 

77 SETUPE(*) 

78 TENSOR(*) 

Fig. 9. Calling tree for module STG2, DMEL section. 

for i, j = 1, NCHAN and h = 1, LAMAX (the highest multipole order  LAMAX is input f rom modu le  S T G 1 ) ,  where  

COSOn,N+I = ;'n " ~N+I. 
The  express ion is evaluated by first wri t ing it in tensor  notat ion as 

a~j = <oliZiSilil ; L M L S M s  [ M a . C a  [ ~jZySjlj½; L M L S M s )  

where  



97 
98 
99 

100 
101 CONST0 > 98 
102 R.ECOV2 
103 COPYTP RECOV2 
104 RECOV2 
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STG2RD CHEKTP > 34 
CONFIG CONPED CONQN CONSH CONST0 CONTST 

RECOV2 

Fig. 10. Calling uee for module STG2, STG2RD section. 

CONTST 

337 

M~= ~_,rAnY~(~',) and C ; =  Y~(~N+l) 
n=l 

Using Eq. (15.6) of Fano and Racah [45] this can be reduced to 

@j = (--1)L+L~+U2(A- l i -  lj) (21i+ I) 1/2 C(liAlj;O0) W(LiLjlilj;AL) x CFADD (89) 

Note that CFADD does not depend directly on the li and l j  channel angular momenta, but on the target states 
themselves (Li and L j). Since the N-electron states are in general multi-configurational, CFADD is calculated 
as a weighted sum of contributions from each configuration in the expansion of Eq. (7): 

N'rCON (i) NTCON(j) 

CFADD= ~ b/k ~ bjk, (akLi I[ Mx I[ °tk'Lj) 
k=l k' =l 

where in this and in later equations the reduced matrix elements are defined by 

(aiLiML, I M~ ] ajLjMLj ) = C(LjALi;MLJbe) (otiLi II Mx II ajLj) 
(2Li + l )  1/2 

The summations over the atomic configurations involved in the reduced matrix element are carried out in this 
routine. REDRAD is called to retrieve the multipole radial integrals to evaluate the reduced matrix element, and 
SETUPE and TENSOR are called to evaluate the angular and spin factors. Thus CFADD is passed to ALDAIJ 
to complete the evaluation of Eq. (89). 

ALDAIJ 
is called from AIJS for a given pair of target states. It takes as input the reduced matrix element CFADD. It 
loops over channels li and l I coupled to the two target states (since CFADD is independent of li and lj). It then 
calls function RME for the Clebsch-Gordan (C) and DRACAH for the Racah (W) coefficients in Eq. (89) 
(these coefficients are independent of the target configuration sum) to form CF(i, j, A) = 2a~, which is returned 
to AIJS. 

BOUND 
is the controlling routine for solving the target-state problem in LS-coupling by calculating the N-electron 
Hamiltonian (H/v) matrix elements involving the target basis in Eq. (7): 

Hkk, = (¢k(Xl ...X/V) I H/V I e k ' ( x l . . . x N ) >  

which is evaluated by calling MATANS using the radial integrals transferred from module STG1. There are 
then three modes of operation, depending on the value of JRELOP(3) read from the user input to STG2. 

JRELUP(3) = 0. In LS-coupling runs the configuration mixing coefficients bij in Eq. (7) and energy levels 
E, N are then obtained by diagonalizing the N-electron Hamiltonian matrix as in Eq. (6) by calling HSLDR: 
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(qbi I HN I (lbi') = ~ii' Ei N 

The routine will automatically locate all states of the same SLy" symmetry and assign a different eigenvector 
in turn to each of these states, starting with the lowest eigenva]ue. The target states do not need to be input 
in any particular order in STG2, and the original ordering is preserved here; module STGH will eventually 
reorder the states in ascending energy order. 

JRELOP(3) = 1. In Breit-Pauli runs these matrix elements are written to the STG2 output file ITAPE3 for 
module RECUPD, and routine BOUND is terminated at this point. 

JRELOP(3)= - 1 .  This is a special option for term-coupling coefficients only, and should not be used for 
production runs. Both the above options are invoked, so that the output to 1TAPE3 contains both the 
eigenvalues and eigenvectors in LS-coupling and the matrix elements themselves, for diagonalizing in the 
intermediate-coupling scheme in module RECUPD. This will enable term-coupling coefficients to be obtained 
from RECUPD. 

CHEKTP 
reads basic data together with the multipole, one- and two-electron radial integrals produced in module STG1 
from files ITAPE1 and JDISC1. Most of the data, including all bound-bound integrals, are stored in common 
block arrays for use in STG2. However, the number of integrals involving continuum orbitals can be very large, 
so CHEKTP uses the following strategy for their storage. 

Multipole integrals. Although the bound-bound multipole integrals are stored in / INSTO5/  (they are required 
in routine AIJS), the remaining multipole integrals on ITAPE1 are not needed until the execution of routine 
DMEL, so CHEKTP is called again from there to re-read these integrals. 

Bound-continuum and continuum-continuum two-electron integrals. These are stored on the JDISC1 file 
(RK.DAT) from module STG1. CHEKTP would like to store the entire contents of the file in the first 
locations o f /MEMORY/ ,  if there is enough space (kMEM). Any integrals not so stored have to be accessed 
from the JDISC1 file during execution of STG2, with possible degradation of performance due to the I /O 
overhead. It should not affect the results though. Pointers ITAPBC and ITAPST are set to enable integrals to 
be retrieved from /MEMORY/ (pointers positive) or file (pointers negative). 

CONFIG 
is the controlling routine for generation of configurations and associated coupling scheme data for states with 
given total angular momentum, spin and parity. CONFIG is called by STG2RD both for the target N-electron 
configurations ~bk in Eq. (7) and for the ( N +  1)-electron configurations Xj in Eq. (12). The user can constrain 
the choice of the configurations by specifying the minimum and maximum number of electrons required in 
each shell, and the number of electron excitations allowed from given basic configurations; this is specified in 
the STG2 input data read in STG2RD. CONFIG loops over all possible distributions of electrons within the 
available shells, calls CONPED and returns coupling schemes for the valid configurations. 

Because of a restriction on the coupling scheme arrays (imposed because of a limitation on fractional 
parentage coefficients in STG2), the CONP'IG package does not produce configurations with more than 2 
electrons in shells with orbital angular momenta l > 3. 

CONPED 
is part of the CONFIG package. It is called by CONFIG for a given electron distribution, tests whether this is 
consistent with the constraints imposed by the user, calls CONQN and returns coupling schemes for the valid 
configurations. 

CONQN 
is part of the CONFIG package. It is called by CONPED for a given electron distribution, loops over allowed 
quantum numbers for each shell, calls CONSH and returns coupling schemes. 
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CONSH 
is part of the CONFIG package. It is called by CONQN for a given set of shell quantum numbers, determines 
the coupling between the shells, calls CONSTO and returns coupling schemes. 

CONSTO 
is part of the CONFIG package. It is called by CONSH, or can be called directly by CONFIG, for a given 
coupling scheme, which is stored in the appropriate STG2 arrays on return. Further options in CONSTO 
include: the printing out of configuration data under the control of a debug parameter (IBUG7); the output 
of data to file (IPUNCH); the reading of data from a prepared input file (JREAD); the deletion of specified 
configurations (ICUT). More detail on these options can be found in the description of the relevant STG2 input 
data parameters (in brackets above) in Section 3.3. 

CONTST 
is part of the CONFIG package. It is called by CONSTO for a given coupling scheme only if configuration data 
has already been pre-prepared, and returns 0K=.TRUE. only if the configuration has the correct total angular 
momentum and spin. 

COPYTP 
positions the binary input file (ITAPE2), containing Hamiltonian matrices and asymptotic coefficients written 
to file (ITAPE3) by a previous run of STG2, in preparation for a restart. 

DA2 
is used to read input file 'RK.DAT' (JDISC1) created in module STGI. It is also used to write/read the scratch 
file IDISCi. See the description of this routine in Section 2. 

DH0 
is called by MATRX to calculate the one-electron matrix element when the configurations q~j are identical; i.e. 
for the diagonal elements of the Hamiltonian matrix, returned in HOMAT in common block /CONMX/.  The 
integral is evaluated as explained in the description of MATRX by multiplying the angular and radial parts and 
summing over the interacting shells: 

I Un,,t~ I° ' ( I° '+1)]  / 1 d 2 Z + Un,~t~ 
[ I ~ ~--" ,H0,q~j =z... ~ x(o ' ,o ' )  2dr2 r 2r 2 

O" 

where H0 is the one-electron operator, x(o-, o-) is just the number of electrons and Unit,, the radial orbital 
for the shell labelled or. The radial one-electron integral is found by calling the FINI . . .  routines, with the 
mass-correction and Darwin terms included if required. 

If an N-electron target configuration ~k from Eq. (7) is being considered, the result is returned as a single 
element in HOMAT( 1, 1). 

If the (N + 1)-electron basis of Eq. (12) is involved, the matrix elements are returned in ((HOMAT(j, j ' ) ,  j = 
I , I L I M I T ) , f  = 1, JLIMIT), where: 

ILIMIT=JLIMIT=I for bound-bound; 
ILIMIT=JLIMIT=NRANG2 for continuum-continuum. 

In the latter case, only the diagonal elements are defined in DH0. 

DMCON 
is called by SETUP to store (when KEY = 2), and by DMEL to retrieve (when KEY = 1), (N + 1)-electron 
configuration and channel data for each SLy" symmetry, for calculation of dipole matrices (i.e. only used if 
IPOLPH = 2). Storage can be either on disk (IDISCI) via a call to DA2, or in /MEMORY/ after the radial 
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integrals, if there is sufficient space (&MEM). 

DMEL 
is the controlling routine for the evaluation of the reduced dipole length and velocity matrix elements Eq. (48) 
for all dipole allowed transitions between the specified SLTr symmetries. DMEL is only activated if IPOLPH > 2 
as specified in the STG2 input data. The dipole matrix elements are stored in arrays DEL and DEV (length and 
velocity), and are written out to the STG2 binary output file ITAPE4 as specified in Section 3.6, for use in 
bound-bound, bound-free, free-free and polarizability calculations. Additional information is also calculated in 
DMEL and written to ITAPE4: the Buttle correction to the dipole matrix; matrices required for the outer-region 
contribution; and certain Clebsch-Gordan coefficients. 

The total wavefunction in the inner region on both sides of the matrix is expanded in the form of Eq. (12). 
Let ~Pa denote collectively the antisymmetrised basis functions in Eq. (12). The inner region dipole matrix 
elements take the form of Eq. (48): 

Daa, = (~pa(xl.. .XN+I) II OII ÷a,(x, . . .xN+,))  

Both length and velocity forms of the dipole operator D are considered: 

N+I N+I 

De=~-~zn and D v - - - ~ - - ~ z  ~ 
n=l n=l 

Routine CHEKTP is first re-called to read the radial multipole integrals from file ITAPE1. Then the outer 
loop over dipole allowed transitions is entered, and DMCON is called to retrieve (N + 1 )-electron configuration 
and channel data for the two states involved. 

Routines DMELCC, DMELCB, DMELBC and DMELBB are then called in sequence to calculate continuum- 
continuum (CC), continuum-bound (CB),  bound-continuum (BC) and bound-bound (BB) dipole matrix 
elements respectively. When continuum basis terms are involved, the routine call is inside the channel loop (i 
in Eq. (12)) .  The arrays DEL and DEV are overwritten in each call to these routines by the appropriate block 
of matrix elements, which are written to the STG2 binary output file ITAPE4 as specified in Section 3.6. The 
dipole matrix elements are thus evaluated in the following blocks: 

DEL(j,j ' )  = (~pj II DL II ~j,) and DEV(j,j') = (~pj II Ov II ~,y) (90) 

In the routines called by DMEL, FINMNT is called to retrieve the dipole radial integral and SETUPE and 
TENSOR to evaluate the angular and spin factors in the reduced matrix element which is expressed in the form 

N+I 

(~ZS II ~-~T(n) II ~'Z'S') = VSHmLL(1) ,  (lp II T II l,,) 
n=l 

where T(n) is a tensor operator which operates on the nth electron, p and o- denote the interacting shells. 
Routine TENSOR calculates VSHELL( I ) and the remaining angular contribution is evaluated in function RME. 

DMEL also calculates the Buttle correction to the dipole matrix. These corrections for a one channel problem 
have been discussed by Yu Yan and Seaton [85]. Generalising the theory to the many-channel case, if the 
Buttle corrections to the radial functions are hUi, then a Buttle correction to the total wavefunction can be 
expanded in the form given by Eq. (6.23) of Berrington et al. [ 11 ] : 

A~li = A - ~ i  AUi ( 9 1 )  

Routines DMELCD, DMELBD, DMELDC, DMELDB and DMELDD are called to calculate the continuum- 
Buttle, bound-Buttle, Buttle-continuum, Buttle-bound and Buttle-Butfle dipole matrix elements respectively, and 
these data are written to the STG2 output file ITAPE4 as described in Section 3.6. 
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DMEL also writes to ITAPE4 the arrays AC, BLC and BVC calculated in routine DMELCC; these matrices are 
defined by Eq. (53) and are required for determining the outer region contribution to the dipole matrix. Note 
a confusion in notation: Bii' and Aii' in Eqs. (9.7) and (9.8) of Berrington et al. [11] correspond to AC(i, i') 
and BLC(i, i') respectively in the program; 

AC(i, i') = (~/ I[ ~" II ~/,) 

BLC(i,i') = ( ~  II R II ~,,) (92) 

BVC(i,i') = ( ~ ;  II ~ II ~i,) (93) 

where i and i' are the channel indices in Eq. (52). 
Finally, DMEL calls routine CG to form the following Clebsch-Gordan coefficients: 

CgC(rn) = ( 2 L +  1) 1/2 C(L'LL;mO) where m =  1,min(L' ,L)  (94) 

which are also written to ITAPE4. In these coefficients, which are required in converting the reduced matrix 
elements of Eq. (47) to the matrix element defined by Eq. (44) for polarizability calculations, L' and L are 
the total orbital angular momentum LRGL of the initial and final states. 

DMELBB 
is part of the DMEL package, and calculates the bound-bound dipole matrix elements given by Eq. (90), with 
j = 1, NCFGP and j '  = 1, NCFGP'. Matrix DEL returns the length form; similarly DEV returns the velocity form. 

DMELBC 
is part of the DMEL package, and calculates the bound-continuum dipole matrix elements given by Eq. (90), 
with j = 1, NCFGP and j '  = 1, NRANG2 for a given continuum channel i'. Since the N-electron states are in 
general multiconfigurational, the matrix elements are evaluated as a weighted sum over configurations in the 
expansion of Eq. (7);  matrix DEL returns the length form: 

NTCON ( i' ) 

DEL(j,j ' )  = ~ bi, k,(X j 11 DE II "A~k'lUi'j ') (95) 
k'=l 

similarly DEV returns the velocity form. The function 7 t  is formed by coupling a target configuration 4't from 
Eq. (7) with the angular and spin functions of the continuum electron to give the total angular momentum, spin 
and parity of the initial state. Routine SETINI is called for each configuration to extend the coupling scheme 
to include the continuum electron. 

DMELBD 
is part of the DMEL package and calculates the bound-Buttle dipole matrix elements between the bound basis 
terms of Eq. (12) and the Buttle correction basis terms of Eq. (91). 

DMELCB 
is part of the DMEL package, and calculates the continuum-bound dipole matrix elements given by Eq. (90), 
with j = 1, NRANG2 and j '  = 1, NCFGP' for a given continuum channel i. Matrix DEL returns the length form; 
similarly DEV returns the velocity form. This routine is similar to DMELBC and proceeds as in Eq. (95), except 
that the final and initial states are reversed. As the continuum basis term now belongs to the final state, routine 
SETFIN is called for each N-electron configuration to extend the coupling scheme to include the continuum 
electron. 

DMELCC 
is part of the DMEL package, and calculates the continuum-continuum dipole matrix elements given by Eq. 
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(90), with j = 1, NP&NG2 and j '  = 1, NRANG2 between continuum channels i and i'. Since the N-electron states 
are in general multiconfigurational, the matrix elements are evaluated as weighted sums over configurations in 
the expansion of Eq. (7); matrix DEL returns the length form: 

~C0N (i) rrrc0N(i') 

k=l k '=l 

- -  ! 

b i ' k ' ( 'm~krUi j  I] DL  II ¢4-~k' l  ui ' j  ' ) 

similarly DEV returns the velocity form. The functions ~k are formed by coupling a target configuration ~bk from 
Eq. (7) with the angular and spin functions of the continuum electron to give the total angular momentum, spin 
and parity of the final and initial states involved. Routines SETFIN and SETINI are called for each configuration 
to extend the coupling scheme to include the continuum electron, for the final and initial state respectively. 

The dipole matrix between two sets of continuum basis terms where the continuum electrons have equal 
angular momenta is in general a diagonal matrix. Moreover, the dipole matrix elements on the diagonal are 
non-zero only if the N-electron configurations differ by no more than one electron and if the channel angular 
momentum li = li,-t-1. The angular contribution to such a non-zero diagonal element is evaluated in the usual 
way, but the radial integral corresponds to the electron transition between the bound levels and is found by 
calling FINMNT. 

DMELCC also calculates and returns 

ACOEF = AC(i,i') BLCOEF = BLC(i,i') BVCOEF = BVC(i,i') 

between the given continuum channels i and i' as defined in Eqs.(92-93) and discussed in Section 9.3 of 
Berrington et al. [ 11 ]. The coefficient ACOEF, which is purely algebraic, is non-zero only if the channels i 
and i' belong to the same target state, and if the channel angular momentum li = l i , + l .  T h e  13LCOEF and 
BVCOEF coefficients are non-zero only if there is a dipole allowed transition between the N-electron target 
states belonging to channels i and i' and if li = li,. 

DMELCD 
is part of the DMEL package and calculates the continuum-Buttle dipole matrix elements between the continuum 
basis terms of Eq. (12) and the Buttle correction basis terms of Eq. (91), for a given continuum channel i. 

DMELDB 
is part of the DMEL package and calculates the Buttle-bound dipole matrix elements between Buttle correction 
basis terms of Eq. (91) and the bound basis terms of Eq. (12). 

DMELDC 
is part of the DMEL package and calculates the Buttle-continuum dipole matrix elements between the Buttle 
correction basis terms of Eq. (91) and the continuum basis terms of Eq. (12), for a given continuum channel 
i. 

DMELDD 
is part of the DMEL package and calculates the Buttle-Buttle dipole matrix elements between the Buttle 
correction basis terms of Eq. (91). 

FINIBB,FIN1BC,FIN1C 
are called from routines DH0 and ODH0 to find a bound-bound(BB), a bound-continuum(BC) or an array of 
continuum-continuum(C) one-electron radial integrals. These are stored in the 0NEST1, 0NEST2 and 0NEST3 
arrays respectively, which are read by routine CHEKTP from the binary input file ITAPE1 (produced by module 
STG1). The routines also find and add in the mass-correction and Darwin terms if required. 
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FINBB 
is called from routine PRNTWT to find a bound-bound two-electron radial integral in the RKST01 array, which 
was read by routine CHEKTP from the binary input file ITAPE1 (produced by module STG1). The (n , l )  
values of the four orbitals involved are input in common block/NJI_J/ .  Returns RKMAT( 1, l ) in /RKMATX/.  

FINBC 
is called from routine PRNTWT to find bound-continuum two-electron radial integrals in the RKST02 array, 
which was read by routine RDINT from the direct access input file JDISC1 (produced by module STGI ). The 
(n, l) values of the four orbitals involved are input in common block /NJLJ/;  the fourth orbital is continuum. 
Returns (RKMAT( 1, j ' ) ,  j '  = 1, JLIMIT) in /RKMATX/. 

FINCC 1 
is called from routine PRNTWT to find diagonal ( j  = j ' )  continuum-continuum two-electron radial integrals 
in the RKST02 array, which was read by routine RDINT from the direct access input file JDISC1 (produced 
by module STG1). The continuum angular momenta li and l i, may be different; when l i=l i  , the case may 
just involve bound orbitals and FINBB is called. The (n, l) values of the four orbitals involved are input in 
common b lock /NJLJ / ;  the second and fourth orbitals are continuum. Returns (RKMAT(j,j),j = 1, ILIMIT) in 
/RKMATX/.  

FINCC2 
is called from routine PRNTWT to find off-diagonal ( j  4= j ' )  continuum-continuum two-electron radial integrals 
in the I~ST02 array, which was read by routine RDINT from the direct access input file JDISC1 (produced by 
module STG1 ). The (n, l) values of the four orbitals involved are input in common b l o c k / N J I J / ;  the second 
and tburth orbitals are continuum. Returns ((R.KMAT(j, j ' ) ,  j = 1, ILIMIT),  j '  = 1, JLIMIT) in /RKMATX/.  

FINMNT 
is called from routines DMELBB, DMELCC, DMELDD and REDRAD to find a multipole radial integral from 
the RKST02 array. The (n, l) values of the two orbitals concerned and the multipole order K are input as 
arguments: if K = 1 then the dipole length and dipole velocity integrals are returned; if K > 1 only the Kth 
pole length integral is returned. 

INTECH 
interchanges the two sets of quantum numbers (nl,/1) and (n2,/2). It is required in finding the appropriate 
continuum-continuum two-electron radial integral from the RKST02 array in the FIN. . .  routines. 

ISTG2 
is called once from AASTG2 for initialisation: 
• calls routines to store factorials in /FACT/ and /FACTr/ ;  
• stores Kronecker delta function in /KRON/;  
• sets up a pointer array in /SYMTX/ to store a symmetric matrix as a single array; 
• calls RME to store coefficients (l II Ck II t ')  for all l, l ' and k in /CSTORE/.  

MATANS 
sets up the call to calculate a Hamiltonian matrix element, which is returned in array AME in common block 
/ELEMS/.  Let ~oj be an electronic configuration from either Eq. (7) or Eq. (12), and let H be the appropriate 
Hamiltonian operator. Then 

AME(j,j') = (~oj [ H I  ~oj,) (96) 

If MATANS is called from routine BOUND for the N-electron Hamiltonian, ~oj represents a single configu- 
ration q~k from Eq. (7),  and the matrix element is returned in AME( 1, 1). If  it is called from the three sections 
of routine SETMX1 and SETMXR for the (N + 1 )-electron Hamiltonian, q~j can be a single bound basis term 



344 K.A. Berrington et a l . /  Computer Physics Communications 92 (1995) 290-420 

or the continuum basis from Eq. (12); the matrix elements are returned in ( (AME(j , j ' ) , j  = I, ILIMIT), j '  = 
1, JLIMIT), where: 

ILIMIT=JLIMIT=I for bound-bound; 
ILIMIT=I, JLIMIT=NRANG2 for bound-continuum; 
ILIMIT=JLIMIT=NRANG2 for continuum-continuum. 

In the case of continuum-continuum matrix elements when li = li,, it separates out the evaluation of the 
off-diagonal ( j  4: j ' )  and diagonal ( j  = j') elements. In the latter case the calculation is simplified because the 
two continuum orbitals are identical; the number of occupied shells (IHSH) is reduced by one and the coupling 
scheme contracted. 

MATRX 
is called by MATANS to evaluate a Hamiltonian matrix element, which is returned in array AME in common 
block /ELEMS/.  Let H0 be the one-electron operator and V the two-electron operator in the Hamiltonian in 
Eq. (96). AME is therefore evaluated as the sum of the two contributions: 

AME(j,j') = (~pj [ Ho + V[ ~pj,> = HOMAT(j,j') + VMAT(j,j') (97) 

Moreover, the angular and radial integrals are separable: 

HOMAT(j,j') = (~oj [ H0 [ q~j,) = Z x(o-,o") Q(n,~l,~,n~,l,~,) 3t~t~, (98) 
~TtT t 

where x is the angular and spin integral calculated in routine H0WTS which is multiplied by the one-electron 
radial integral Q in routines ODH0 and DH0; 

VMAT(j,j') = (~oj ] V l~oj, ) = y~ y(p,o',p',o",k) Rk(nplp,n~,l,~,n/l/,n~,l~,) (99) 
po'p' a" k 

where y is the angular and spin integral calculated in routine FANO which is multiplied by the two-electron 
radial integral R k in routine PRNTWT, invoked by calling RKWTS. 

The p and o- indices in Eq. (98) and Eq. (99) label the interacting shells. ORTHOG is called to test for 
simple orthogonality of the configurations which would lead to zero matrix elements, and CHOP is called to 
remove shells whose interaction arises purely as an average energy. 

NJI_JOD 
is called by routines BOUND, SETIVIX1 and SET/VIXR to put the NJ and LJ arrays, which hold the n and l 
values of the two configurations on each side of a matrix element, into a standard order. 

ODH0 
is called by MATRX and calculates the one-electron matrix element when the configurations ~pj and ~oj, differ 
by one orbital; i.e. for the one-electron contribution to the off-diagonal elements of the Hamiltonian matrix, 
returned in HOMAT in common block /CONMX/. The integral is evaluated as explained in the description of 
routine MATRX by multiplying the angular and radial parts and summing over the interacting shells: 

< ] 1 d2 Z+I~(I~+I)  > 
(~ojla01~oj,>=y~x(~,~r') u . ~  2dr2 r 2r 2 UnoJl at ¢~lo.l~, 

O-O-t 

where H0 is the one-electron operator, x(tr,  or,) the angular integral involving shells labelled o" and or' which 
is calculated in routine RKWTS and input into ODH0, and U.~t., the radial orbital for the shell labelled o-. 
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The radial one-electron integral is found by calling the FIN1...  routines, with the mass-correction and Darwin 
terms included if required. 

If an N-electron target configuration ~bk from Eq. (7) is being considered, the result is returned as a single 
element in HOMAT( 1, 1). 

If the ( N + 1 )-electron basis of Eq. (12) is involved, the matrix elements are returned in ( (HOMAT(j, j ' ) ,  j = 
1, ILIMIT), j '  = 1, JLIMIT), where: 

ILIMIT=JLIMIT=I for bound-bound; 
ILIMIT=I, JLIMIT=NRANG2 for bound-continuum; 
ILIMIT=JLIMIT=NRANG2 for continuum-continuum. 

PNTBG2 
is called from BOUND, SETMX1 and SETMXR to print out the angular momentum coupling before calculating 
the Hamiltonian matrix; only invoked if IBUG9 > 4, i.e. for debug purposes. 

PRNTWT 
is called from the RKWTS package to form the two-electron contribution to the Hamiltonian matrix element as 
in Eq. (99) which is returned in array VMAT in common block /CONMX/. The two-electron radial integrals 
in array RKMATX are located by calling the FIN.. .  routines, and are multiplied through by the appropriate 
angular and spin integrals, input in the arrays AMULT and BWtJLT in common block /XATION/ for the direct 
and exchange integrals respectively. 

RDINT 
is called from SETMX1 and SETMXR to read the bound-continuum or continuum-continuum two-electron 
radial integrals for given continuum angular momenta (li, li ,),  from /MEMORY/ or from the direct access 
input file (JDISC1) via a call to DA2, depending on the value of the pointers ITAPBC, ITAPST defined in 
routine CHEKTP. 

RECOV2 
See the description of this routine in Section 2. 

REDRAD 
is called from AIJS to calculate the product of the reduced matrix element (obtained from calling function 
RME) and the radial muitipole integral (retrieved by calling FINMNT between two orbitals in the evaluation 
of Eq. (89). 

RKWTS 
is described by Hibbert [ 50,51 ]. It calculates the angular and spin weighting factors for the two-electron con- 
tribution to the Hamiltonian matrix element between configurations ~oj and ~oj, using the method of Fano [44]. 
It is called by MATRX and calls routine PRNTWT to return VMAT in common block/CONMX/.  The integral 
is evaluated as explained in the description of MATRX (see Eq. (99)) by multiplying the angular and radial 
parts and summing over the interacting shells: 

< rk<rk>+ 1 > (q~.jl V l~°j'> = ~ y(p,~r,p',o",k) UnploUn, la  Un/l/Un~,la, 
po'p' o" k 

where V is the two-electron operator, y(p, o-, p', o-') the angular and spin integral involving shells labelled p, o- 
p' and o-' which is calculated in terms of Racah algebra by routine FANO or USEEAV, U,,,t~ the radial orbital 
for the shell labelled o-, and r< and r> are respectively the lesser and greater of the two radial coordinates 
involved in the integral. The radial two-electron integral is found by calling the FIN.. .  routines from routine 
PRNTWT. 
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If an N-electron target configuration ~bk from Eq. (7) is being considered, the result is returned from 
PRNTWT as a single element in VMAT( 1, 1 ). 

If the (N + 1 )-electron basis of Eq; (12) is involved, the matrix elements are returned in ( (VMAT(j, j ' ) ,  j = 
1, ILIHIT), j '  = 1, JLIHIT), where: 

ILIMIT=JLIMIT=I for bound-bound; 
ILIMIT=I, JLIMIT=NRANG2 for bound-continuum; 
ILIMIT=JLIMIT=NRANG2 for continuum-continuum. 

SETCUP 
is called from SETUP to set up channel quantum numbers in LS-coupling, given the quantum numbers of the 
target states and the total orbital and spin angular momentum and total parity (LRGL, NSPN, NPTY) of the 
(N + I )-electron system. It calculates the total number of coupled channels (NCHAN) and the channel orbital 
angular momentum li (array L2P), returned in common block/CROSEC/. 

An angular momentum cut-off is incorporated in this routine; the largest channel angular momentum allowed 
is taken to be the value of LRANG2 - I, read from the binary input file ITAPEI from module STGI. 

SETFIN 
is part of the DMEL package, and extends the coupling scheme of an N-electron configuration to include a 
continuum electron, to return a final state continuum basis configuration in common block/MSTATE/. 

SETINI 
is part of the DMEL package, and extends the coupling scheme of an N-electron configuration to include a 
continuum electron, to return an initial state continuum basis configuration in common block/MSTATE/. 

SETMX1 
is the controlling routine for the evaluation, and subsequent storage on the STG2 binary output file (ITAPE3), 
of the (N + 1)-electron Hamiltonian matrix elements in Eq. (14). A restart facility also allows a previously 
uncompleted run of STG2 to be restarted; the contents of input file ITAPE2 can be transferred to TTAPE3 under 
control of input parameter IC0PY (see Section 3.3 for further description). 

The total wavefunction in the inner region on both sides of the matrix is expanded in the form of Eq. (12). 
Let ~Pa denote collectively the basis functions in Eq. (12). The inner region Hamiltonian matrix elements take 
the form of Eq. (14): 

HAA'---- (~A(XI . - .XN+I) I H N+l [ ~pa,(xl . . .XN+l)) 

SETMX1 has three sections, corresponding to the evaluation of continuum-continuum (CC), continuum- 
bound (CB) and bound-bound (BB) matrix elements. 

In the case of the CC matrix elements, because of symmetry only those channels with i' < i are considered. 
Since the N-electron states are in general multi-configurational, the matrix elements are calculated as a weighted 
sum of contributions from each configuration in the expansion of Eq. (12). Thus: 

NTCON(i) /~C0N(i') 

HNPI(j , j ' )cC= ~ bi~: ~ b, , ' A  ~ iu  H N+' i k (  Wkr ijl [ ' A ~ k ' l u i ' j  ' )  (100) 
k=l k'=l 

IfrCON(i) 

HNPI(j,j 'IcB = ~ bik(A~klUij [ H N+! [ Xj') (101) 
k=l 

HNPI(j,j')BB = ( .¥ j (Xl . . .XN+I)  [H N+1 I Xj'(Xl ...XN+I)) 
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The functions ~b k are formed by coupling a target configuration q~k from Eq. (7) with the angular and spin 
functions of the continuum electron to give the total angular momentum, spin and parity of the final and initial 
states involved. The following arrays in common b l ock /MEDEFN/a re  set before calling MATANS to evaluate 
the matrix element, stored in array AME, in Eqs.(97-99): 

NJ,LJ defines the occupied shells; 
NOSH defines the number of electrons in each shell; 
J1QN defines the coupling scheme; 

both for the initial and final states. When either one or two continuum orbitals are involved, the relevant 
elements in the array NJ are set to 999 and the array HD contains the ranges of the continuum principal quantum 
numbers occurring. One call of MATANS will then evaluate all matrix elements differing just in these quantum 
numbers. The matrix elements are accumulated in each case in the matrix HNP1. Matrix elements involving 
the continuum basis are calculated for each channel i in blocks with dimension NRANG2, corresponding to the 
number of continuum orbitals for each angular momentum. 

SETMX1 takes advantage of possible duplication in the target state symmetries included; where the same 
target configurations ~bk occur in the expansion of Eq. (7) for more than one target state. Matrix elements 
in Eq. (100) and Eq. (101) can therefore be re-used for more than one channel i by temporarily storing the 
contribution from each configuration. This is done on the direct access scratch file on unit IDISCl by calling 
DA2. The total matrix element is thus evaluated as a weighted sum of these configuration contributions. 

SETMXR 
is used in place of SETMX1 for Breit-Pauli runs. It does not have the facility for re-using matrix element 
contributions from the target configurations. Otherwise the operation is the same, though the loop order is 
different and more efficient for the case when NAST=NCFG. 

SETUP 
determines channel information by calling SETCUP, and writes data to output file ITAPE3. 

SHRIEK 
computes the factorial n! = GAHHA(n + 1 ) in common b lock/FACT/ .  

SJ1QNT 
is called from SETMX1 and SETMXR to set up the angular momentum quantum numbers of the atomic 
configuration in a form suitable for the recoupling program, leaving spaces for the continuum electron shells 
where appropriate. 

SJ2QNT 
is called from BOUND to set up the angular momentum quantum numbers of the atomic configuration in a 
form suitable for the recoupling program. 

STG2RD 
reads in the user-supplied input data for STG2. See Section 3.3 for a description of the input data. The 
configuration and coupling scheme data for the N-electron and (N + 1)-electron states is generated in the 
CONFIG package, under control of user supplied data. 

A facility in STG2RD allows a previously uncompleted run of STG2 to be restarted (ICl3PY > 0); routine 
COPYTP is called to position of the input file ITAPE2 prior to transferring TCOPY data blocks to output file 
ITAPE3. 

USEEAV 
replaces the routine of the same name in the RKWTS package of Hibbert [ 50,51 ]. It evaluates the weights of 
the two-electron integrals when average energy expressions are used. 
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VIJOUT 
is called from PNTBG2 to print out the quantum numbers and coupling schemes for each matrix element, as 
defined in routine SETUPE. 

WRITAP 
writes basic information onto the permanent output file ITAPE3 for processing by module RECUPD or STGH. 

3.2. Data files 

The following is a summary of the data files required by STG2. The unit numbers and file names are defined 
in the program. Although the variables are part of the input data (for consistency with earlier versions of 
RMATRX) you need only supply dummy values i.e. set them to 0. The exception is IPUNCH which should be 
set > 0 in the input data if you wish to write to 'CONFIG.OUT'. 
IKEAD = 5 - -  'STG2.INP' 

File type: formatted sequential input. 
Written by user. 
Read by routine STG2RD. 
Description: N-electron and (N + 1)-electron system data (see Section 3.3 for details). 

IWRITE = 6 - -  'STG2.OUT' 
File type: formatted sequential output. 
Written throughout STG2. 
Read by user. 
Description: line-printer or job output. 

IPUNCH = 7 (not normally used: input as 0) - -  'CONFIG.OUT' 
File type: formatted sequential output. 
Written by routine CONSTO in CONFIG package. 
Description: configurations and coupling schemes if IPUNCH > 0 (format as in JKEAD, see Section 3.3.1 for 
details). 

IDISCI = I 1 

File type: direct access scratch, record length 512 words. 

Written by routine DA2, called from SETUP and SETMXI. 

Read by routine DA2, called from DMEL and SETMXI. 

Description: N-electron and ( N +  1 )-electron state specifications and configurations from SETUP if IPOLPH = 
2; (N + 1 )-electron Hamiltonian matrix elements for re-use (see description of SETMX1 in Section 3.1 for 
details). 
Only used if insufficient space in /MEMORY/ (see &MEM processing). 

IDISC2 = 0 NOT USED 
IDISC3 = 0 NOT USED 

IDISC4 = 0 NOT USED 

ITAPEI = I -- 'STGI.DAT' 

File type: binary sequential input. 
Written by module STG1. 
Read by routine CHEKTP. 
Description: basic information, multipole, one-electron and bound-bound two-electron integrals (see Sec- 
tion 2.7 for details). 

ITAPE2 = 2 (not normally used, i.e. if ICOPY = 0) - -  'STG2.DMP' 
File type: binary sequential input. 
Written by previous run of STG2 as ITAPE3. 
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Read by routines AIJS, COPYTP, SETMX1, SETMXR, SETUR 
Description: ITAPE3 restart. 

ITAPE3 = 3 - -  'STG2H.DAT' 
File type: binary sequential output. 
Written by routines AIJS, COPYTP, SETMX1, SETMXR, SETUP. 
Read by modules RECUPD and STGH. 
Description: basic information, Hamiltonian matrices and asymptotic coefficients (see Section 3.5 for details). 

ITAPE4 = 4 (used if IPOLPH = 2) - -  'STG2D.DAT' 
File type: binary sequential output. 
Written by routine DMEL. 
Read by modules RECUPD and STGH. 
Description: reduced dipole matrix elements (see Section 3.6 for details). 

JREAD = 8 (not normally used, i.e. if NKEY and IKEY 4: 2) - -  'CONFIG.INP' 
File type: formatted sequential input. 
Written by user, or IPUNCH, or program CIV3 [52]. 
Read by routine CONSTO in CONFIG package. 
Description: configurations and coupling schemes if NKEY = 2. See Section 3.3.1 for details). 

JDISC1 = 21 - -  'RK.DAT' 
File type: direct access input, record length 512 words. 
Written by module STG1. 
Read by routine DA2, called from CHEKTP and RDINT. 
Description: bound-continuum and continuum-continuum two-electron integrals (see Section 2.8 for details). 

3.3. Input data on IREAD 

The user-supplied input data is read in routine STG2RD on input unit number IREAD. Free format is used, 
with one exception: 
• FORMAT(18A4) for reading text into array TITLE. 

Summary of the data records (the variable names are described in the glossary in Section 9): 
I. (TITLE(K),K=I,18). 

I /O units, described in Section 3.2: 
2. IWRITE, IPUNCH, IDISCl, IDISC2, IDISC3, IDISC4, 

ITAPEI, ITAPE2, ITAPE3, ITAPE4, JREAD, JDISCI; 
Debug parameters, described in Section 3.4: 

3. IBUGI, IBUG2, IBUG3, IBUG4, IBUG5, IBUG6, IBUG7, IBUG8, IBUG9; 
Basic information: 

4. ICOPY, ITOTAL, IPOLPH, (JRELOP(K), K=l ,3) ;  
5. MAXORB, NELC, NAST, NKEY, NCUT, INAST, IKEY, ICUT, NDIAG; 
6. (NJCOMP(I), LJCOMP(I), I=I,MAXORB) (only if MAXORB > 0). 

For N-electron system, automatic generation of configurations: 
7. (IKIP(I), I=I,NCUT) (only if NCUT > 0); 
8. NOPTN (only if NKEY = 0 or I); 
9. (MNAL(I), I=I,MAXORB) (only if NKEY=0 or +I and N0PTN > -I); 
I0. (MXAL(I), I=I,MAXORB) (only ifNKEY=O or 1 and NOPTN_> 0); 
I I. (IBASSH(M, I), I=I,MAXORB), NXCITE(M) (only if NKEY = 0 or I and NOPTN > 0); 

repeat record I I for M=I,N0PTN; 
12. LL, LSPN, LPTY (for ground state); 

repeat record 12 for excited states to NAST (repeat records 8-12 if NKEY = I). 
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If  NKEY = 2 then option to read configuration data from JREAD instead of records 8-11 (Section 3.3.1 ). 
13. If  NDIAG = 0 then read configuration coefficients and eigenenergies: 

a. (NTC0N(N), N=I,NAST); 
b. (AIJ(N,J), J=I,NTCON(N)), ENAT(N); 
repeat record b for N=I, NAST. 
For (N  + l)-electron system: 

14. ( I K I P ( I ) ,  I---1,ICUT) (only if ICUT > 0); 
15. NOPTN (only if IKEY = 0 or 1); 
16. (MNAL(I), I--1,MAX0RB) (only if IKEY=0 or -4-1 and NOPTN > - 1 ) ;  
17. (MXAL(I), I=I,MAX0RB) (only if IKEY=0 or 1 and NOPTN > 0); 
18. (IBASSH(M, I ) ,  I=I,MAXORB), NXCITE(M) (only if IKEY = 0 or 1 and NOPTN > 0), 

repeat record 18 for M=I,NOPTN; 
19. LRGL, NSPN, NPTY; 

repeat record 19 to INAST if IKEY 4:1 (repeat records 15-19 if TKEY= 1). 

Important note 
• Inexperienced users should set NKEY = 0, NCUT = 0, IKEY = 0, ICUT = 0, NDIAG = 1 
• NAST = number of target states, normally. But if JRELOP(3) 4: 0, then NAST = number of target configurations 
• The target terms can be input in any order in record 12, providing the first term specified is the ground state. 

It is recommended that the terms be grouped according to their symmetry (this maxirnises program efficiency 
- see routine SETMXI) ,  i.e. all the terms with the same symmetry should be specified consecutively in 
record 12. Target configurations must always be grouped according to their symmetry. 

3.3.1. Option: configuration input on JREAD 
If  the NKEY = 2 option has been chosen, then read configuration data from JREAD instead of the recommended 

automatic generation in the CONFIG package. This file can be produced as output from the CONFIG package 
in STG2 on output IPUNCH. 

Summary of the data records (the variable names are described in the glossary in Section 9) : 

a. NCFG 
b. (NOCCSH(J), J=I,NCFG) 
c. (N0C0Pd3(I,J), I=I,N0CCSH(J)) 
d. (NELCSH(I,J), I=I,N0CCSH(J)) 
e. ((JIQNRD(I,K,J), K=l,3), I=I,2*NOCCSH(J)-I) 
repeatrecords c - e f o r  J=I,NCFG 

3.4. Debug prints 

Debugging prints are under the control of the IBUG parameters, specified in record 3 of the input data. Set 
these to zero in production runs, otherwise a large amount of output can be produced. 

IBUG1 > 0 for debug printout from the two-electron angular integral routines and the associated radial integrals. 
IBUG2 set in RKWTS. This is controlled by IBUG1. 
IBUG3 = 1 for debug printout of the J2 and J3 coupling arrays in routines NJGRAF, J23ANG and J23SPN, 
and for the values of the recoupling coefficients. 

IBUG4 > 1 for debug printout from HOWTS. 
IBUG5 = 0 NOT USED. 
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IBUG6 = 1 for debug printout from AIJS, ALDAU and TENSOR in the evaluation of the asymptotic coeffi- 
cients. 
IBUG7 

= 1 for printout of the N-electron configurations from the CONFIG package; 
= 2 as for 1, with also printout of the (N + 1 )-electron configurations. 
IBUG8 
= 1 for printout of the dipole matrix elements from the DMEL package; 
= 2 as for 1, with also printout from DMELBB, DMELBC, DMELCB and DMELCC. 

IBUG9 
= 1 for printout of the bound-bound Hamiltonian matrix elements from SETMX1 or SETMXR and asymptotic 
coefficients from AIJS; 
= 2 as for 1, with also printout of the continuum-bound elements; 
= 3 as for 2, with also printout of the continuum-continuum elements; 
= 4 as for 3, with calls to PNTBG2 from routines SETMX1, SETMXR and BOUND and matrix elements 
printed in routine MATRX. 

3.5. Output o f  Hamiltonian matrices and coefficients on ITAPE3 

Summary of the output records (the variable names are described in the glossary in Section 9): 
Basic data from routine WRITAP: 

1. NELC, NZ, LRANGI, LRANG2, NRANG2, LAMAX, ICODE, LAM, IZESP, 
(JRELOP (K), K=I,3) ; 

2. (MAXNHF(L), L=I,LRANGI), (MAXNLG(L), L=I,LRANGI), (MAXNC(L), L=I,LRANGI); 
3. (EIGENS(L,J), J=I,NRANG2); 
4. (ENDS(L,J), J=I,NRANG2+I); 

repeat records 3-4 for L=I,LRANG2; 
5. RA, BST0, HINT, DELTA, ETA, NIX; 
6. ((COEFF(K,L), K=I,3), L=I,LRANG2); 
7. N-electron matrix elements from routine BOUND for recoupling in module RECUPD, if JRELOP(3) :g 0: 

a. -JSYM; 
b. LAT(N), ISAT(N), IPTY(N), NTC0, LENGTH(N); 
c. NTCON(N), NSP, EN, (X(K), K=I,NTCON(N)) (only ifNTC0 < 0, i.e. JRELOP(3) = -I); 
repeat record c for I NTC0 I terms; 
d. H(K), K=I,LENGTH(N); 
repeat records b-d for N=I, JSYM unique N-electron symmetries. 
Target data from routine SETUP: 

8. NAST. 
9. (ENAT(N), N=i,NAST), (LAT(N), N=I,NAST), 

(ISAT(N), N=I,NAST), (IPTY(N), N=I,NAST). 
I0. Configurations and spin-orbit integrals for use in RECUPD, if JRELOP(3) ~ 0: 

a. NCFG, (NOCCSH(I), I=I,NCFG); 
b. NOCORB(J,I), J=I,IL), (NELCSH(J,I), J=I,IL), 
((JIQNRD(J,K,I), K=I,3), J=I,2*IL-I); 
repeat record b for each target configuration I=l, NCFG; 
c. MAXORB, (NJCOMP(J), J=I,MAXORB), (LJCOMP(J), J=i,MAXORB); 
d. (NTCON(J), J=i,NAST; 
e. (NTYP(I,J), J=I,NTC), (AIJ(I,J), J=i,NTC); 
repeat record e for each target state I=I,NAST; 
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f. IRK5; 
g. (ISTI(I) ,I=I,LRANGI), (RSPORI(I), I--I,IRK5; 
h. IRK6; 
i. (IST2(I),I=I,LRANGI), (RSPOR2(I), I=I,IRK6; 
j. IRK7; 
k. (RSPOR3(I,L),  I=I,IRK7; 
repeat record k for l + 1 ~ L=2, LI~NG2. 

11. LRGL, NSPN, NPTY, NCFGP, IPOLPH; 
12. MNP1, NCONHP, NCHAN; 
13. (NCONAT(N) ,N=I,NAST); 
14. (L2P(I) ,I=I,NCHAN); 
15. MORE. 

Hamiltonian matrix elements from routine SETMX1 or SETMXR: 
16. ((HNPI(J,J'), J'=I,NRANG2), J=I,NRANG2); 

repeat record 16 for all non-equivalent continuum-continuum blocks i.e. for channels I ' = l ,  I ; 
the upper triangle of blocks are written out by rows; 

17. ( ( H N P I ( J , J ' ) ,  J '=I,NCFGP), J=I,NRANG2); 
repeat record 17 for all bound-continuum blocks i.e. for channel I = l ,  NCHAN; 

18. ( H N P l ( J , J ' ) ,  J'=J,NCFGP); 
repeat record 18 for all bound-bound rows, i.e. for J--1 ,NCFGP. 
Asymptotic coefficients from routine AIJS: 

19. ( ( C F ( I , I ' , K ) ,  K=I,LAHAX), I'=I,NCHAN); 
repeat record 19 for I = l ,  NCHAN. 
Repeat records 11-19 if MORE>0. 

I=l, NCHAN, 

3.6. Output o f  dipole matrix elements on ITAPF- 4 

Summary of the 
1. ((DEL(J', J), 
2. ((DEV(J', J), 

repeat records 
3. ((DEL(J' ,  J ) ,  
4. ((DEV(J', J ) ,  

output records (the variable names are described in the glossary in Section 9): 
J=l, NRANG2), J'=l, NRANG2) ; 
J=I,NRANG2), J'=I,NRANG2); 

1-2 for each initial state channel; 
J=I,NRANG2), J%I,MCFGP); 
J=l, NRANG2), J'=l, MCFGP) ; 

5. ((ABUTL(J,I'), J=I,NRANG2), I'=I,MCHAN), 
6. ((ABUTV(J,I'), J=I,NRANG2), I'=I,MCHAN); 

repeat records 1-6 for each final state channel; 
7. ((DEL(J,J'), J=I,NCFGP), J'=I,NRANG2); 
8. ((DEV(J,J'), J=I,NCFGP), J'=I,NRANG2); 

repeat records 7-8 for each initial state channel; 
9. ((DEL(J',J), J=I,NCFGP), J'=I,MCFGP); 
I0. ((DEV(J',J), J=I,NCFGP), J'=I,MCFGP); 

repeat records 9-10 if NCFGP exceeds the dimension of the DEL and DEV arrays; 
II. ((ABUTL(J,I'), J=I,NCFGP), I'=I,MCHAN); 
12. ((ABUTV(J,I'), J=I,NCFGP), I'=I,MCHAN); 
13. ((ABUTL(I,J'), I=I,NCHAN), J'=I,NRANG2); 
14. ((ABUTV(I,J'), I=I,NCHAN), J'=I,NRANG2); 

repeat records 13-14 for each initial state channel; 
15. ( (ABUTL(J ' , I ) ,  I=I,NCHAN), J'--1,MCFGP); 
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MNKECU AARECU BOUNDJ .... 

COPYTP KECOV2 
DJZERO DA2 

KECOV2 

DMOUT DA2 
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HJZERO DA2 

RECOV2 

IRECUP FACTT(*) 

NJCHAN NUMSYM LSJTKI 

P,.ECOV2 

KEADS KECOV2 

KECUD .... 

RECUPJ .... 

SPINOK .... 

WRIT3 DA2 

RECOV2 

WRITAP 
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Fig. 11. Calling tree for module RECUPD. The routines are given in alphabetical order within each branch not the order in which they are 
actually called. The routines marked with (*) are in module STGLIB. 

16. ((ABUTV(J',I), I=I,NCHAN), J'=I,MCFGP); 
17. ((ABUTL(I,I'), I=I,NCHAN), I'=I,MCHAN); 
18. ((ABUTV(I,I'), I=I,NCHAN), I'=I,MCHAN); 
19. MAXMI, (CGC(L) ,L=I,MAXMI); 
20. ((AC(I,I'), I'=I,MCHAN), I=I,NCHAN); 
21. ((BLC(I,I'), I'=I,MCHAN), I=I,NCHAN); 
22. ((BVC(I,I'), I'=I,MCHAN), I=I,NCHAN). 

4. Module RECUPD 

This module is an optional stage in RMATRX1. It includes relativistic effects in the Breit-Pauli approximation, 
and is run after module STG2 and before STGH. 

RECUPD must be linked with the STGLIB module in order to form an executable program. Routines 
DRACAH, FACTT, HSLDR, SETUPE and TENSOR plus routines which they call are obtained from STGLIB 
(see Section 7). 

Figs. 11-15 display a flow diagram for the routines in RECUPD. 
There are four main computational sections in RECUPD (the controlling routines are named in brackets) : 

• initialisation and reading input files, (READS, COPYTP, IRECUP); 
• oPtions to diagonalize the target Hamiltonian and define term-coupling coefficients, and output (BOUNDJ, 

WRITAP) ; 
• recoupling and output of (N + 1)-electron Hamiltonian matrices and long-range potential coefficients 

(NJCHAN, HJZERO, RECUPJ, SPINOR, WRIT3); 
• recoupling and output of dipole matrices, if any (DJZERO, RECUD, DMOUT). 

4.1. Outline of RECUPD calculation 

The purpose of RECUPD is to transform Hamiltonian matrices, long-range potential coefficients and (op- 
tionally) dipole matrices, defined by Eq. (14), Eq. (29) and Eq. (48), from LS- to pair-coupling by means of 
a unitary transformation. 
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BOUNDJ BSPNO DRACAH(*) 

LSJTRI 

SPINBB FINBBR 

SETUPE(*) 

TENSOR(*) 

HSLDR(*) 

LSJTRI 

RECOV2 

Fig. 12. Calling tree for module RECUPD, BOUNDJ section 
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Fig. 13. Calling 

DAFILA DA2 
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tree for module RECUPD, RECUD section 
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LSCONT DA2 

LSJCUP JLRC 

LSJTRI 

RECOV2 

LSJTRI 
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Fig. 14. Calling tree for module RECUPD, RECUPJ section 
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SPINCB FINBCR 

SETL 

SETUPE(*) 
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SPINCC FINBBR 

FINCCR 

SETL 

SETK 
SETUPE(*) 
TENSOR(*) 

Fig. 15. Calling trc¢ for module RECUPD, SPINOR section 
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Each total angular momentum and parity symmetry of the ( N ÷  1 )-electron system is considered individually. 
If the spin-orbit operator is to be included explicitly, then STG2 must be run with each state represented by a 

single configuration. The corresponding LS-coupled Hamiltonian matrices and long-range potential coefficients 
are read in from ITAPE2 and transformed to pair-coupling. Matrix elements of the spin-orbit operator are then 
calculated in LSJ-coupl ing ,  transformed to pair-coupling and added to the transformed STG2 matrices. 

If the spin-orbit interaction is not explicitly included then STG2 should be run in the normal LS-coupled way 
subject to the condition that FIA$T = number of N-electron configurations generated. The Hamiltonian matrices 
and long-range potential coefficients are then recoupled using term-coupling coefficients. The diagonal elements 
of the continuum-continuum Hamiltonian matrix are then adjusted to reproduce the observed energy splittings 
of the target atom. 

The Hamiltonian matrices and long-range potential coefficients are then stored in unformatted form on an 
output file (ITAPE3). This can be read as input by the module STGH, enabling the calculation of cross sections 
between fine-structure levels both above and below threshold. 

Similar transformations are then applied to the dipole matrices (if  present), using recoupling coefficients 
between the LS- and pair-coupling schemes already computed in the transformation of the Hamiltonian matrices. 
Considering the new coupling scheme, all possible initial and final symmetries in this scheme are looped over. 
Whenever a dipole transition is deemed possible then pairs of LS-symmetries are considered (one contributing 
to the recoupling for the initial state wavefunction, the other contributing to the recoupling for the final state 
wavefunction) until a pair is found linked by a dipole transition in the LS-coupling scheme. The corresponding 
dipole matrix elements are read from the STG2 input file ITAPE1, and their contribution to the dipole matrix 
under construction in the new coupling scheme is calculated. This is repeated for all sets of dipole matrix 
elements in the LS-coupling scheme that can be found to contribute. The newly formed dipole matrix is then 
written out to output file ITAPE4, and the process repeated for any further dipole transitions. 

For completeness we now define the main equations that are required in the reformulation of the R-matrix 
theory in terms of the Breit-Pauli Hamiltonian. Readers are referred to Scott and Burke [71 ] for a complete 
description of the equations and notation. 

The Breit-Pauli Hamiltonian (both H~p and H ~  l) separates into non-fine-structure terms (nnfs) and terms 
involving the spin-orbit interaction (Hso) as in Eq. (59) and Eq. (63), 

HBp = H,fs + Hso 

The target eigenstates q0i are expanded in terms of a single configuration basis as in Eq. (7),  though in 
the intermediate-coupling scheme Eq. (64) for each target level angular momentum and parity, such that the 
expansion coefficients cij are chosen to ensure that 

(102) 

The target Hamiltonian matrix can be set up and diagonalized within RECUPD, in routine BOUNDJ, or the 
coefficients cij and energy levels E//v can be supplied as input to RECUPD by the user. 

The (N + 1)-electron R-matrix basis functions ~Ok are defined as in Eq. (13), again using the intermediate- 
coupling scheme, for each total angular momentum (J)  and parity, i.e. the conserved quantum numbers are 
now J, M~ and parity. 

Let ~oa denote collectively the basis functions in Eq. (12), for a given total J~-symmetry (cf. Eq. (14)) .  
Transforming the ( N + 1 )-electron Hamiltonian matrix requires the evaluation of matrix elements of the type 

(~pa I HN~-I [ q~a,) (103) 

These matrix elements can be divided into three types: continuum-continuum, bound-continuum and bound- 
bound. The long-range potential coefficients can also be transformed in a similar fashion. Each matrix block 
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is most conveniently calculated in LSJ-coupling and then transformed to the appropriate coupling scheme by 
means of a unitary transformation. 

1. Continuum-continuum Hamiltonian matrix elements 

( Ai( Jili)Ki½; J~r IHg:'I Aj( Jjlj)Kj½; JTr) (104) 

= Z C(AiJi; CiLiSiliKi½LS; JT"r)C(AjJj; CjLjSjljKj½LtS'; J'rr) 
LLt SS' CiLiSiCjL.iS j 

u N +  1 x[ (Ci(Li l i )L(Si l )s ;Jzr l , , so  ] Cj(Ljlj)Lt(Sj½)st;jTr) 

+~$LL, ($SS, ( Ci( Lili)L( Sil ) s~  I H~+~'ICj(LflDL(Si½)S'rr) ] 

where 

and 

C( AiJi; CiLiSiliKi½LS; Jr)  = BJ~r ( AiJi; CiLiSi) × COEF (105) 

COEF = X/ ( 2Ji + I)(2L + l)(2Ki + I)(2S + l ) W ( LliSiJi; LiKi ) W ( LJSil ; SKi) 

2. Bound-continuum Hamiltonian matrix elements 

( LS; JTr [Hg~-ll Ai( Jili)Ki½; Jzr) = E C(AiJi; CiLiSiliKi½L'S'; JTr) (106) 
LtS'CILiSi 

×[ ( LS; J*r l UN+l"so I Ci( Lili) L' ( Sil ) S' ; JTr) 

+SLL' 8SS' ( LS'n" I "'nfsUN+l I Ci( Lili)L( Sil ) S~r) ] 

3. Bound-bound Hamiltonian matrix elements 

( LS; Jcr I H~- '  [ L' S' ; Jlr) = ( LS; Jzr I HNff I I L'S'; Jcr) (107) 

+SLL, 6SS, (LS'n" I H.~+l I LS'n') 

4. The long-range potential coefficients 

= C(aiJi;CiLiSi6Ki½LS; J. )C(ajJj;CjL:jl::j½L'S'; 
LSCIL~&CjLj Sj 

x G(LdAL(Si½)S;J " C:(Ldj)L'(Sj½)S';J " 
n=l 

It can be shown that the continuum-continuum matrix may be split into the sum of two matrices, since H N+I 

= H N + H ( N  + 1 ), where H(N + 1 ) are the one- and two-electron interactions with the (N + 1 )th electron. 
The continuum-continuum matrix associated with H N is clearly diagonal and contains the eigenenergies of the 
target atom. This allows us to adjust the diagonal elements of Eq. (104) to reproduce the observed energy 
splittings of the target atom. In this way we effectively account for the two-electron terms of the Breit-Pauli 
Hamiltonian excluded from Eq. (59) (see Eq. (4) of Scott and Burke [71]), and correctly account for the 
kinematics of the continuum electron in the external region. 
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The above approach is valid provided the relativistic two-electron terms are small compared with the rel- 
ativistic one-electron terms, as will be the case as the nuclear charge increases. However, in lighter systems 
this may not be true, and an alternative procedure may be adopted where the dominant effects result from 
correlation and intermediate-coupling in the target atom. Here we expand the q~i of Eq. (102) in terms of a CI 
basis &j which diagonalizes the non-relativistic H~: 

Oi =Z~j&j (109) 
J 

The expansion coefficients f i j  are now the term-coupling coefficients of Jones [56] evaluated using the full 
Breit-Pauli Hamiltonian defined in Eq. (4) of Scott and Burke [71]. We now approximate Eq. (103) by 

( ~  I n~+l I ~ , )  (1 10) 

again adjusting the diagonal elements of the continuum-continuum matrix to effectively account for the operators 
excluded from the Hamiltonian. The corresponding matrix elements are given by Eq. (104), Eq. (106) and 
Eq. (108), with Ci replaced by F i ( a s  defined by Jones [56] ) and ,14N+I, so  , --massHN+l, H~ +1 removed from the right 
hand side, and where Eq. (105) becomes 

C(AiJi; FiLiSiliKi½LS; JTr) = FJ=(AiJi; FiLiSi) × C0EF (111) 

This approach is similar to that of Saraph [69,70], except that it correctly accounts for the kinematics of the 
continuum electron in the outer region, and allows a consistent treatment both above and below threshold. From 
now on we will write the equations in terms of Ci. The corresponding ones for Fi may be trivially obtained. 

4.2. Routines 

MNRECU 
is the program routine and contains all COMMON blocks used in RECUPD. It sets /MEMORY/ pointers and 
calls AARECU. 

AARECU 
is called by MNRECU and controls the RECUPD computation, invoking the four main computational sections 
as summarised above. 

There is a loop over the required (N + 1 )-electron system JTr-symmetries to recouple Hamiltonian matrices 
and long-range potential coefficients, which is completed before entering loops over (Jqr)f  and (JTr)i, the final 
and initial symmetries, to recouple any dipole matrices. 

BOUNDJ 
calculates energies and CI coefficients of fine-structure N-electron states, by recoupling the appropriate LS- 
coupled target Hamiltonians (stored in /BOUNDD/ by routine COPYTP) and diagonalizing as in Eq. (102). 

As an option, term-coupling coefficients are computed and written onto IPUNCH (see Section 4.6) for 
transforming K-matrices in LS-coupling. This procedure requires the eigenvectors of the non-relativistic target 
Hamiltonian from module STG2, which become available only if STG2 has been run with the specification 
JKELOP (3) = -- 1. 

BSPNO 
is similar to SPINOR, but is called by routine BOUNDJ to add in the spin-orbit contribution to fine-structure 
target Hamiltonians. 
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COPYTP 
reads the header data on the file ITAPE2 from module STG2, and positions file at start of the LSTr-dependent 
data (i.e. at record 11, see Section 3.5). 

DA2 
is used both in the temporary storage of channel recoupling data (IDISC1), and in the temporary storage of 
J-coupled continuum-continuum matrix elements (IDISC2). See the description of this routine in Section 2. 

DAFILA 
writes or retrieves channel recoupling data involved in recoupling a given SLzr to J~r. 

Data are held in /MEMORY/ if sufficient space (&HEM) is available, otherwise a direct access scratch file 
IDISC1 is opened for temporary storage. Pointers in IRECA are set positive for /MEMORY/locat ion,  negative 
for file record location. 

DEGEN 
is called if the spin-orbit interaction is not explicitly included (JIZELOP(3) = 0). In this case term-coupling 
coefficients are being used. If we were to transform the LS-coupled Hamiltonian matrices using term coupling 
coefficients spurious off-diagonal elements would occur in the transformed matrices. This is because the N- 
electron wavefunctions diagonalize H~p not Hnr~ r (see Eq. (110)).  To bypass this obstacle routine DEGEN 
adjusts the diagonal elements of the continuum-continuum LS-coupled Hamiltonian matrices (stored in array 
HLS) so that the target energy levels are degenerate with the ground state. The equations are then transformed 
by routine RECUPJ, and NDEGEN is called to readjust the diagonal elements to give the observed target 
splittings. 

DFIND 
is called from RECUD to read the next set of dipole matrix dements on the input file (ITAPE1) from module 
STG2, for a given pair of LS-symmetries linked by a dipole transition. 

DJZERO 
initialises various two-dimensional arrays that will be used later to hold continuum-continuum, bound-continuum, 
continuum-bound and bound-bound dipole matrix elements in the new coupling scheme, as they are built up 
from transformed contributions evaluated in the original LS scheme. 

If there is insufficient space in /MEMORY/, DJZERO will initialise scratch file IDISC2 for overflow. 

DMES 
is called by RECUD to work out the contribution each set of LS-coupled dipole matrix elements makes to the 
desired dipole matrix in the JTr-coupling scheme. The contributing set of dipole matrix elements in LS-coupling 
are input, as are the Racah coefficient and phase factor needed for the transformation. Here we are required to 
determine reduced matrix elements of the form (cf. Eq. (48))  

Daa, = (,PallM, II~oa,) 

where M1 is a tensor of rank 1 representing the electric dipole operator. Due to the fact that the total angular 
momentum and parity are not the same in the initial and final states, there are four types of matrix element to 
be considered: continuum-continuum, bound-continuum, continuum-bound and bound-bound. 

The factor 

RAC = -v/(2J + 1) (2J '  + 1) ( - 1 )  L'+s-J-I W(J 'L tJL;  S1) 

is input to the routine. 
1. Continuum-continuum dipole matrix elements 
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(Ai(Jili)Kil;jTrllMlIlAj(Jjlj)Kj½;J'cr') = Z RAC (112) 
LUSCiLiSiCjLjSj 

× C (AiJi; CiLiSiligi½ LS; J'rr) C (AjJj; CjLjSjljKj ½LtS; JtTr') 

x (Ci(tili)L(Si½)Sw IIM111 Cj( t j l j ) t ' (S j½)S¢/)  

For each of the two symmetries each coupled channel is examined to see if it will obtain a contribution 
from the channels in the two LS-symmetries being considered. Information previously stored during the 
transformation of the Hamiltonian matrices allows this to be decided readily. If a channel coupled to the 
new initial state symmetry has a counterpart in the LS-symmetry and there is a similar correspondence 
between the final state symmetries, then the particular continuum-continuum block of the LS-coupled dipole 
matrix corresponding to these channels makes some non-zero contribution to the corresponding channel 
block in the new scheme. The size of the contribution is determined by the recoupling coefficients etc. 
previously calculated, and multiplied in at this stage. 

2. Continuum-bound dipole matrix elements 

(LS;J~llMll[Ai(Jili)Ki½;J'Tr') = ~ '  P~C (113) 
L' CIL;S; 

x C (Ai Ji; CiLiSiliKi ½ L'S; J"tr') 

× (LS~ Ilgl II Ci(Lili)Lt(Si½) S7/)  

Here each channel coupled in the final state alone is considered. From a treatment of the continuum- 
continuum blocks above a knowledge of the correspondence between channels in the two coupling schemes 
has been retained and the possible contribution from the LS-coupled continuum-bound dipole matrix 
elements multiplied by the recoupling coefficient etc. is taken. 

3. Bound-continuum dipole matrix elements 

(Ai(Jili)Ki½; Jcr IIM  II L'S, -- (114) 
LGLiS; 

X C (Ai Ji; CiLiSiliKi ½ LS; J~r) 

x (Ci(LiIi)L(Si½)S~ IIM~ II L'STr') 

This is similar in treatment to the continuum-bound case above except that now the continuum part is 
associated with the initial state and the bound part with the final state. 

4. Bound-bound dipole matrix elements 

(LS; J~rllMl IlL'S; J'zr') = ~ C  x (LSTrlIMI IlL'Set') (115) 

Each bound-bound dipole matrix element in the LS scheme is simply carried over into the new coupling 
scheme and new dipole matrix, albeit multiplied by a phase factor and Racah coefficient. 

DMOUT 
writes out to output file ITAPE4 blocks of dipole matrix elements formed in the new coupling scheme. 

FINBBR,FINBCR,FINCCR 
find a bound-bound(BB), bound-continuum(BC) or continuum-continuum(CC) one-electron, spin-orbit integral 
from the arrays RSPOR1, P~.qPOR2 or I~POR3 respectively. 

HFIND 
reads an LS-coupled Hamiltonian matrix and associated long-range potential coeficients from the STG2 file 
(ITAPE2). 
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HJZERO 
initialises the scratch file (IDISCl) and various two-dimensional arrays that will be used later to hold 
continuum-continuum, bound-continuum and bound-bound Hamiltonian matrix elements and long-range po- 
tential coefficients in the new coupling scheme, as they are built up from transformed contributions evaluated 
in the original LS scheme. 

IRECUP 
is called once from AARECU for initialisation: 
• calls STGLIB library routine FACTT to define logs of factorials in /FACTS/, these are needed for the 

DRACAH routine; 
• partit ions/MEMORY/between channel recoupling data and continuum-continuum matrix elements. 

JLRC 
evaluates the recoupling coefficient which provides the transformation from LSJ  to Jil coupling, used in Eq. 
(105) and Eq. ( I l l ) .  

C0EF= V/(2Ji + 1 ) (2L+  1) (2S+ 1)(2Ki+ 1) W(LJSi½;SK)  W(LliSiJi;LiKi)  

The angular momentum quantum numbers in the argument list have the following correspondence: (J1, J2, J3, 
J4, JS, Jr ,  J7, J8, J9) --- (2Li, 2S/, 2Ji, 2Ki, 21i, 2L, 2S, 1,2J) 

LSCONT 
applies the contributions, described in Eqs. (104-108), to the non-fine-structure Hamiltonian matrices and long- 
range potential coefficients, which arise from the current LS-symmetry being considered (LRGL, NSPN). 

LSJCUP 
calculates the channel recoupling contributions from this LS-symmetry to the current J-symmetry. 

LSJTRI 
is an integer function used to check the parity and triangular relations between L, S and J. 

NDEGEN 
is called if JKELOP(3) = 0. This routine adjusts the diagonal elements of the transformed continuum-continuum 
Hamiltonian matrices so that the energy levels in the target have the observed splittings. See routine DEGEN 
for further details. 

NJCHAN 
for a given JTr-symmetry, this routine defines and stores the channels in the pair-coupling scheme. It then calls 
routine NUMSYM to determine the number of LScr-symmetries required for convergence in Eq. (104), Eq. 
(106) and Eq. (108). 

NUMSYM 
determines the number of SLot-symmetries required in the transformation for convergence (see Eq. (104), Eq. 
(106) and Eq. (108)) for the J value under consideration. It uses the condition 

This gives all the possible S values, where ,S~. "n and ~ / ~  are the minimum and maximum spins of the target 
states in module STG2. For each S value the possible L values are given by 

r J -  Sl<_L <_l g ÷ s I  
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For each LSzr-symmetry it then checks if there are any channels coupled in. The total number of symmetries 
required is held in ICOUNT. If not enough symmetries have been provided by STG2 the code will terminate in 
routine RECUPJ with an appropriate message. 

READS 
reads user input data from unit number IKEAD as described in Section 4.4. 

RECOV2 
See the description of this routine in Section 2. 

RECUD 
is the controlling routine for the transformation of dipole matrices. It loops over pairs of LS-symmetries in the 
order in which they are stored on the input file (ITAPE1) from module STG2, and calls routine DFIND to read 
the LS-coupled dipole matrix. The parity and triangular relations between L, S and J are checked by calling 
function LSJTRI. If this particular LS-coupled dipole matrix contributes to the current J-coupled dipole matrix, 
then: routine DAFILA is called to retrieve channel recoupling data calculated previously by routine RECUPJ; 
and routine DMES is called to update the J-coupled dipole matrix. 

RECUPJ 
is the controlling routine for the transformation of Hamiltonian matrices. Each LS-coupled Hamiltonian matrix 
is read in turn from the input file ITAPE2, as written by module STG2, and the parity and triangular relations 
between L, S and J are checked by calling function LSJTRI. Before applying the transformations, routine 
LSJCUP is called to determine the necessary recoupling information for all channels and stores this information 
in arrays NTEKM, ICHAN and PV. If JRELOP(3) = I or a photoionization calculation, these arrays are also 
written out to scratch file (IDISC1), for later use in routines SPINOR or RECUD. The transformation is 
carried out in routine LSCONT. 

SETL 
extends the coupling scheme of an N-electron configuration to include a continuum electron on the left hand 
side of a matrix element. 

SETR 
extends the coupling scheme of an N-electron configuration to include a continuum electron on the right hand 
side of a matrix element. 

SPINBB 
evaluates the bound-bound spin-orbit matrix elements which arise from the (N + l)-electron configurations 
associated with symmetries (LRGL, NSPN) and (LLRGL, NNSPN). If a diagonal block is being considered only 
the upper triangle is calculated. 

SPINBC 
evaluates the bound-continuum spin-orbit matrix elements where the bound terms arise from the ( N+ 1 )-electron 
configurations associated with the symmetry (LRGL, NSPN) and the continuum terms are associated with the 
symmetry (LLRGL, NNSPN). If a diagonal block is being considered only the upper triangle is calculated. 

SPINCB 
evaluates the continuum-bound spin-orbit matrix elements where the continuum terms are associated with the 
symmetry (LRGL, NSPN), and the bound terms arise from the (N + 1)-electron configurations associated with 
the symmetry (LLRGL, NNSPN). Note that we use the fact that 

N+I ( tS;  JTr Inso I C i ( t i l i ) t ' ( S i l ) S ' ;  J~r) 

= ( C i ( L i l i )  L'( Si½ )S'; J'n" In~'~' I LS; JTr) 
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This routine is not called if a diagonal block is being considered. 

SPINCC 
evaluates the continuum-continuum spin-orbit matrix elements which arise from the continuum terms associated 
with the symmetries (LRGL, NSPN) and (LLRGL, NNSPN). If a diagonal block is being considered only the 
lower triangle is calculated. 

SPINOR 
is the controlling routine for the evaluation of the spin-orbit matrix elements required in Eq. (104), Eq. (106) 
and Eq. (107). 

The spin-orbit matrix elements are not diagonal in L and S, therefore all combinations of L, S, U,  S ~ are 
considered. Since the total matrix is symmetric about the diagonal only the lower triangle of blocks is explicitly 
calculated, the upper triangle being the transpose of the lower. For each set of (LRGL, NSPN) and (LLRGL, 
NNSPN) symmetries, routines SPINBB, SPINBC, SPINCB and SPINCC are called to evaluate the spin-orbit 
matrix elements in LSJ-coupling. These are then transformed to pair-coupling and added to the transformed 
Hamiltonian matrices calculated in routine RECUPJ. 

Certain symmetry properties are used to cut down the amount of computation. See the comments in the 
source listing for details. 

All the spin-orbit matrix elements are evaluated in LSJ-coupling according to the expression given in 
Eq. (28) of Glass and Hibbert [47]. 

O~ 2 
- ~ - Z  (ll 

n 
(n).sl(n)) ((rn) = ( - 1 )  L+s'-J W(LL~SS~; 1J) 

O~ 2 
x -~- VSHELL [31p(lp + 1)(21p + 1)] 1/2 

X ~l, lv ( Unol, ~ Until,) 

where p and o- are the 'interacting' subshells. W(LUSS~; 1J) = RAC is a Racah coefficient from a call to 
DRACAH, and is passed as an argument to the SPIN.. .  routines, which call TENSOR for VSHELL, and the 
FIN. . .R routines for the spin-orbit radial integrals. 

WRIT3 
writes out records to the output file ITAPE3, containing the recoupled Hamiltonian matrices and long-range 
potential coefficients. See Section 4.7 for details. 

WRITAP 
writes basic information as a header onto the output file ITAPE3, for processing by module STGH. See 
Section 4.7 for details. 

4.3. Data files 

The following is a summary of the data files required by RECUPD. The unit numbers and file names are 
defined in the program. Although the variables are part of the input data (for consistency with earlier versions 
of RMATRX) you need only supply dummy values i.e. set them to 0. The exceptions are: IPUNCH which 
should be set > 0 in the input data if you wish to write to 'TCC.DAT'; ITAPE1 which should be set > 0 in 
the input data if you wish to read from 'STG2D.DAT' and write to 'RECUPD.DAT', i.e. handle dipole data; 
and ITAPE3 which should be set > 0 in the input data if you wish to write to 'RECUPH.DAT'. 
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IREAD = 5 - -  'RECUPD.INP' 
File type: formatted sequential input. 
Written by user. 
Read by routine READS. 
Description: N-electron and (N + 1)-electron system data (see Section 4.4 for details). 

IWRITE = 6 - -  'RECUPD.OUT' 
File type: formatted sequential output. 
Written throughout RECUPD. 
Read by user. 
Description: line-printer or standard output - -  the log file. 

IPUNCH = 7 (not normally used: input as 0) - -  'TCC.DAT' 
File type: formatted sequential output. 
Written by BOUNDJ. 
Read by program JAJOM (Saraph [69,70] ). 
Description: term-coupling coefficients, see Section 4.6. 
(used only if IPUNCH > 0). 

IDISCI = I I 

File type: direct access binary scratch, record length 512 words. 
Written by routine DA2, called from DAFILA. 
Read by routine DA2, called from DAFILA 
Description: channel recoupling data 
(only used if JRELOP(3) = 1 or photoionization run if insufficient memory). 

IDISC2 = 12 
File type: direct access binary scratch, record length 512 words. 
Written by routine DA2, called from various routines. 
Read by routine DA2, called from various routines. 
Description: recoupled continuum-continuum matrix elements (used only if insufficient memory). 

ITAPE1 = 1 (input as 0 if no dipole matrices) - -  'STG2D.DAT' 
File type: binary sequential input. 
Written by module STG2 
Read by routine DFIND 
Description: LS-coupled dipole matrix elements 
(only used in photoionization run - -  see Section 3.6 for details). 

ITAPE2 = 2 - -  'STG2H.DAT' 
File type: binary sequential input. 
Written by module STG2. 
Read by routines COPYTP. 
Description: basic information, LS-coupled Hamiltonian matrices. 
(see Section 3.5 for details) 

ITAPE3 = 3 - -  'RECUPH.DAT' 
File type: binary sequential output. 
Written by routines WRITAP and WRIT3. 
Read by module STGH. 
Description: basic information, recoupled Hamiltonian matrices. 
(see Section 4.7 for details). 

ITAPE4 = 4 (not used if ITAPE1 = 0 in input data) - -  'RECUPD.DAT' 
File type: binary sequential output. 
Written by routine DMOUT. 
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Read by module STGH. 
Description: recoupled dipole matrices 
(see Section 4.8 for details). 

4.4. Input data on IREAD 

The user-supplied input data is read in routine READS on input unit number IREAD. Free format is used, 
with one exception: 
• FORMAT(18A4) for reading text into array TITLE. 

Summary of the data records (the variable names are described in the glossary in Section 9): 
I. (TITLE(K),K--1,18). 

I /O  units, described in Section 4.3: 
2. IWRITE, IPUNCH, IDISCl, IDISC2, ITAPEI, ITAPE2, ITAPE3, ITAPE4. 

Debug parameters, described in Section 4.5: 
3. IBUGI, IBUG2, IBUG3, IBUG4, IBUG5, IBUG6, IBUG7, IBUG8, IBUGg. 

N-electron target data: 
4. JNAST, ICHECK, IPHOT; 
5. (JJ(I), I=l, JNAST); 
6. (JPTY(I), I=l, JNAST) ; 
7. if ICHECK = 0 then read target data: 

a. (ENAT(I), I=l, JNAST), 
b. (JNTCON(I), I=l, JNAST), 
c. (B (I, K), K=l, JNTCON (I)), 
repeat record c for I=i, JNAST, 
d. (LSVALU(I,K),K=I,JNTCON(1)) 
repeat record d for I=i, JNAST. 
(N + 1 )-electron symmetries: 

8. IJNAST; 
9. J2(J), JP(J); 

repeat record 9 for J=l, IJNAST. 

Important note 
• The inexperienced user should run STG2 with NDIAG = 1 and RECUPD with ICHECK = 1; thus the target 

energies and eigenvectors will be automatically generated by a diagonalization of the Breit-Pauli Hamiltonian 
in routine BOUNDJ. 

• If  ICHECK = 0, then level energies ENAT must be supplied as input: 
JRELOP (3) = 0 the energies should give the observed splittings, 
JKELOP(3) = 1 the energies should be the theoretical ones. 

4.5. Debug prints 

Debugging prints are under the control of the IBUG parameters, specified in record 3 of the input data. Set 
these to zero in production runs, otherwise a large amount of output can be printed. 
IBUGI 

= 0 normally; 
= 1 printout from routine CFP. 
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IBUG2 

= 0 normally; 

= 1 printout from routine NJGRAF. 
IBUG3 = 0 NOT USED. 
IBUG4 

= 0 normally; 
= i for a printout of  the arrays defining the channels from routine NJCHAN. 
IBUG5 

= 0 normally; 
= 1 for a printout from routines LSCONT and JLRC of  the arrays containing the recoupling information for 
all the channels; 
= 2 as for 1, together with a printout from routine RECUPJ of  the transformed bound-bound Hamiltonian 
matrix blocks; 
= 3 as for 2, together with a printout from routine RECUPJ of  the transformed bound-continuum matrix 
blocks; 
= 4 as for 3, together with a printout from routine RECUPJ of  the lower triangle of  transformed continuum- 
continuum Hamiltonian matrix blocks; 
= 5 as for 4, together with a printout from routine RECUPJ of  the transformed long-range potential coeffi- 
cients. 

IBUG6 

= 0 normally; 
= 1 for a printout of  the LS-coupled bound-bound Hamiltonian matrix elements from STG2; 
= 2 as for 1, together with a printout of  the LS-coupled bound-continuum Hamiltonian matrix blocks from 
STG2; 
= 3 as for 2, together with a printout of  the LS-coupled continuum-continuum matrix blocks from STG2; 
= 4 as for 3, together with a printout of  the LS-coupled long-range potential coefficients from STG2. 

IBUG7 

= 0 normally; 
= 1 for a printout from LSCONT of  the partially transformed bound-bound Hamiltonian matrix elements; 
= 2 as for 1, together with a printout from routine LSCONT of  the partially transformed bound-continuum 
Hamiltonian matrix blocks; 
= 3 as for 2, together with a printout from routine LSCONT of the lower triangle of  partially transformed 
continuum-continuum Hamiltonian matrix blocks; 
= 4 as for 3, together with a printout from routine LSCONT of  the partially transformed long-range potential 
coefficients. 

IBUG8 

= 0 normally; 
= 1 for a printout from routine SPINOR of  the transformed bound-bound Hamiltonian matrix elements which 
now include the spin-orbit interaction; 
= 2 as for 1, together with a printout from routine SPINOR of the transformed bound-continuum Hamiltonian 
matrix blocks which now include the spin-orbit interaction; 
= 3 as for 2, together with a printout from routine SPINOR of the lower triangle of  transformed continuum- 
continuum Hamiltonian matrix blocks which now include the spin-orbit interaction. 
IBUG9 

= 0 normally; 
= 1 for a printout from routine SPINBB of the bound-bound Hamiltonian matrix elements of  the spin-orbit 
operator in LSJ-coupl ing;  

= 2 as for 1, together with a printout from routines SPINCB and SPINBC of the continuum-bound and 
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bound-continuum Hamiltonian matrix blocks of the spin-orbit operator in LSJ-coupling; 
= 3 as for 2, together with a printout from routine SPINCC of the lower triangle of continuum-continuum 
Hamiltonian matrix blocks of the spin-orbit operator in LSJ-coupling. 

4.6. Option: output of  term-coupling coefficients on IPUNCH 

Formatted output from routine BOUNDJ for JAJOM (Saraph [69,70] ). It is assumed that the main production 
run to obtain reactance matrices is in LS-coupling, though the mass-correction and Darwin terms JKELOP( 1 ) 
and JRELOP(2) can be either off or on as required. The term-coupling coefficient option described here must 
be considered a special one-off run terminating in RECUPD. The user must set the following parameters in the 
input data of: 
STG1 set JRELOP(1) = JKELOP(2) = JRELOP(3) = 1; 
STG2 set JRELOP(1) and JRELOP(2) as in the LS-coupling run, and set JRELOP(3) = - 1 ;  set also NDIAG = 1 

and NAST = NCFG; 
RECUPD set IPUNCH > 0. 

Summary of the data records (the variable names are described in the glossary in Section 9): 
Target terms: 

1. NAST; format (I4);  
2. (I, ISAT(1), LAT(1), LPTY(1), I=I,NAST); format(I4,313). 

Term-coupling coefficients for each target Ji ( J J  = 2 • Ji): 
3. J J ,  MTC, TEXT, NZ, NELC; format(I10,I5,A32,I3,5X,I3); 
4. (ITMP(K), TEMP(K), K=I,MTC); format(5(I5,F9.6)); 

repeat records 3-4 for each JJ  = 2 * J. 
Terminator: 

5. 0, 0; format(I10,I5,5X,'TCC END') .  
Warning : the term coupling coefficient labels (ITMP in the output) may need to be modified before use in 

JAJOM. 

4. 7. Output of  Hamiltonian matrices and coefficients on ITAPE3 

The same format and variables are used as in the output on ITAPE3 from module STG2 (see Section 3.5), 
except that the optional data (records 7 and 10) is no longer present. 

ISAT = 0 and NSPN = 0 in the output are used to denote that the data are in intermediate-coupling. 

4.8. Output of  dipole matrices on ITAPF 4 

Output from routine DMOUT. The same format and variables are used as in the output on ITAPE4 from 
module STG2 (see Section 3.6). 

5. Module STGH 

This module of RMATRXI deals with the remaining 'inner-region' tasks. It can diagonalize the Hamiltonian 
matrices and process the dipole matrices from files created in LS- or in intermediate-coupling. In the latter 
case, when STG2 has been run with spin-orbit terms on specifying JRELOP(3) 4: 0, the files from STG2 must 
have been reprocessed by RECUPD. These files in the 'continuum function' representation of Eq. (14) and 
Eq. (48) are transformed to a form in which the (N + 1)-electron Hamiltonian is diagonal. 

Fig. 16 displays a flow diagram for the routines in STGH. 
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module STGH. The routines are given in alphabetical order within each branch not the order in which they are 

There are three main computational sections in STGH (the controlling routines are named in brackets): 
• initialisation and reading input files (BLOCK DATA, STG3RD, TAPERD); 
• diagonalizing the Hamiltonian in the continuum basis (RSCT); 
• calculating electric transition data in the new representation (DMAT). 

5.1. Routines 

MNSTGH 
is the program routine and contains all COMMON blocks used in STGH. It sets /MEMORY/ pointers, and 
calls AASTGH. 

AASTGH 
is called by MNSTGH and controls the STGH computation, invoking the three main computational sections as 
summarised above. 

There is a loop over the (N  + 1 )-electron system symmetries to diagonalize the Hamiltonian matrices, which 
is completed before entering the dipole matrix routine DMAT. 

DA2 
is used to write to the scratch file IDISC2 if there is insufficient memory in STGH. See the description of this 
routine in Section 2. 

DMAT 
called if IPOLPH > 1, is the controlling routine for photoionization, transforming the reduced dipole matrices 
D of Eq. (48) to a form in which the (N + 1)-electron Hamiltonian is diagonal, Eq. (49): 

M(k ,  k') = V~DVk, 

• The D matrix is from module STG2 or RECUPD on file ITAPE1, in length and velocity forms (DEL and 
DEV). The same transformation is applied to the Buttle corrections to the dipole matrix. 

• The V eigenvectors are from routine RSCT, in memory or scratch file IDISC2 via a call to DA2. 
• The M matrix is output to ITAPE4, in length and velocity forms (DML and DI~), together with the transformed 

Buttle corrections. 
Routine DMAT1 or DMAT2 is called to read the appropriate matrix elements from ITAPE1, to get the 

eigenvectors, to do the matrix multiplications, and to write the results to ITAPE4. 
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DMAT1 
is called by DMAT if there is insufficient memory (&MEM), in which case the matrix multiplications are done 
using scratch file "rDISC3 to buffer intermediate matrices. 

DMAT2 
is called by DMAT if there is sufficient memory (&MEM), in which case the matrix multiplications are done in 
memory, in an optimum way. 

MDIAG 
is the same diagonalization routine as HSLDR, described in the STGLIB module. However, micro tasking 
instructions have been inserted (which appear as comments), in order to facilitate optimisation. It calls routines 
TASK1.. .4  to perform independent parallel tasks. 

ORDER 
returns a pointer array (NORDER) to define an ascending or descending set from an input array of real numbers 
(EN): i.e. let (EN(i), i = 1, NDIM) be in arbitrary order, then (EN(NORDER(i)), i = 1, NDIM) is in ascending or 
descending order. 

It is used to order target energies and channels. 

RECOV2 
See the description of this routine in Section 2. 

RSCT 
controls the diagonalization of a Hamiltonian matrix. 

The matrix is normally held in the array HNPI in the common block /MATRIX/. However, a rarely-used 
facility exists to read it from scratch file IDISCl in order to reduce its size in accordance with the user-specified 
parameter NOT1. 

On calling the diagonalization routine MDIAG, the eigenvalues VALUE(k) -- E~ of Eq. (13) are found. The 
surface amplitudes WMAT(i, k )  - wig are obtained from the eigenvectors cijk as in Eq. (20) 

Wik = ~ Cij k Uij ( RA ) 

J 

where the uij boundary amplitudes, which were evaluated in module STG1, are transferred here via the input 
file ITAPE2. 

If  IPOLPH > 1, then the eigenvectors are required in routine DMAT in order to transform the dipole matrices. 
In this case the eigenvectors are either stored in memory if sufficient (g~MEM), or on the scratch file IDISC2 via 
a call to DA2. 

STG3RD 
reads the input data specifying the case. The input data is summarised in Section 5.3. 

TAPERD 
reads input data from the Hamiltonian matrix file from either STG2 or RECUPD. There is a facility here for 
adjusting the diagonal elements of the Hamiltonian matrix, before diagonalization. 

TASK1.. .4  
are primitive algorithms for diagonalization. Independent parallel tasks called by MDIAG: 
TASK1 evaluates Eq. (125) - outer loop parallel, inner loops vectorised; 
TASK2 evaluates Eq. (126) - outer loop parallel, inner loop vectorised; 
TASK3 finds eigenvalues - each one independently; 
TASK4 finds batches of eigenvectors - each one independently. 
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VMUL 
is a matrix multiply routine. 

WRITOP 
writes basic data at the start of the H file ITAPE3. 
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5.2. Data files 

The following is a summary of the data files required by STGH. The unit numbers and file names are defined 
in the program. Although the variables are part of the input data (for consistency with earlier versions of 
RMATRX) you need only supply dummy values i.e. set them to 0. 

IREAD = 5 - -  'STGH.INP' 
File type: formatted sequential input. 
Written by user. 
Read by routine STG3RD. 
Description: user supplied input, see Section 5.3 for details. 

IWRITE = 6 - -  'STGH.OUT' 
File type: formatted sequential output. 
Written throughout STGH. 
Read by user. 
Description: line-printer or job output - -  the log file. 

IPUNCH = 0 NOT USED 

IDISC1 = 11 (not normally used, i.e. only if NOT1 < NRANG2) 
File type: sequential binary scratch file. 
Written by routine TAPERD. 
Read by routines RSCT. 
Description: temporary store of Hamiltonian matrix. 

IDISC2 = 12 (used only if IPOLPH = 2 and insufficient memory) 
File type: direct access scratch file, record length 512 (8 byte) words. 
Written by routine RSCT. 
Read by routines DMATI and DMAT2. 
Description: temporary store of eigenvectors. 

IDISC3 = 13 (used only if IPOLPH = 2 and insufficient memory) 
File type: direct access scratch file. 
Written by routine DMAT1. 
Read by routine DMAT1. 

• Description: internally used by DMAT1 to store dipole matrix data. 
ITAPE1 = 1 (used if IPOLPH = 2) - - ' S T G 2 D . D A T '  or 'RECUPD.DAT' 
File type: binary sequential input. 
Written by module STG2 or RECUPD. 
Read by routines DMAT, DMAT1 and DMAT2. 
Description: dipole matrix file. 

ITAPE2 = 2 - -  'STG2H.DAT' or 'RECUPH.DAT 
File type: binary sequential input. 
Written by module STG2 or RECUPD. 
Read by routine TAPERD. 
Description: Hamiltonian matrix file. 
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ITAPE3 = 3 - -  the H file, 'H.DAT' 
File type: binary sequential output. 
Written by routines WRITAP and RSCT. 
Read by module STG4 and Seaton's codes STGB and STGF of the Opacity Project (Berrington et al. [ 11 ] ). 
Description: diagonalized Hamiltonian matrix data. See Section 5.6. 

ITAPE4 = 4 - -  the D files, 'D00.DAT', 'D01.DAT', 'D02.DAT' . . . (used if IPOLPH = 2) 
File type: binary sequential output. 
Written by routine DMAT. 
Read by module STG4 and Seaton's codes STGBB and PREBF/STGBF of the Opacity Project (Berrington et 
al. [11]) .  
Description: dipole matrix files Dnn, where D00 is a header file, followed by one Dnn for each pair of initial 
and final (N + 1 )-electron symmetry that gives rise to electric dipole transitions. See Section 5.7. 
STGH attempts to open the files RECUPH.DAT and RECUPD.DAT first. If these are not found then it 

attempts to open STG2H.DAT and STG2D.DAT. 

5.3. Input data on IREAD 

The user-supplied input data is read in routine STG3RD on input unit number IREAD. Free format is used, 
with one exception: 
• FORMAT(18A4) for reading text into array TITLE. 

Summary of the data records (the variable names are described in the glossary in Section 9): 
1. (TITLE(K) ,K=I, 18). 

I /O units, described in Section 5.2: 
2. IWRITE, IPUNCH, IDISCI, IDISC2, IDISC3, 

ITAPEI, ITAPE2, ITAPE3, ITAPE4. 
Debug parameters, described in Section 5.5: 

3. NBUG1, NBUG2, NBUG3, NBUG4, NBUG5, NBUGr, NBUGT, NBUG8, NBUG9. 
Controlling information: 

4. ICOPY, ITOTAL, IPOLPH; 
5. NBIYr, NOT1, NOT2, IDIAG, NEST, INAST. 

Target energy adjustments, described in Section 5.4: 
6. EST(N) ,N--1 ,NEST (only if NEST > 0). 

(N + 1 )-electron symmetry specification, see note below: 
7. LRGL, NSPN, NPTY (only if INAST > 0). 

repeat record 7 for INAST > 0 symmetries. 

Important note 
• Inexperienced users should set NBVr = 1, NOT1 = NOT2 = NRANG2, IDIAG = 1 and INk, ST = 0. Setting INAST--O 

forces the program to loop over all available symmetries (normal operation). 
• The user should not set INAST > 0 if IPOLPH = 2, as the code cannot skip over embedded pairs of transition 

matrices. However one may still select symmetries for electron collision calculations by specifying INk, ST > 0, 
followed by INAST values of LRGL, NSPN, NPTY. 

5.4. Option: adjusting target energies 

There is a facility in STGH for adjusting the target energies. A corresponding change is made to the diagonal 
elements of the (N + 1)-electron Hamiltonian matrix before diagonalization. The adjusted energies are carried 
over to the external region, so that the asymptotic equations are solved with consistent channel energies. 
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This facility is normally used to allow observed energy splittings to be input to the scattering calculation - -  
EST(1), I = 1, NEST are the observed target energies: in units of 2 .Ry if EST(1) > 0, in Ry if EST( 1 ) = 0.0, or 
in cm -1 wave numbers if the values EST are prefaced by a minus sign. The ordering of the target energies in 
this array must correspond exactly with the ordering of the target states defined by the user in modules STG2 
or RECUPD (i.e. they may not necessarily be in order of increasing energy). 

The justification for adjusting the Hamiltonian matrix can be seen by examining the (N + 1)-electron 
Hamiltonian in Eq. (4).  This clearly can be split into an N-electron part and terms involving the (N + 1)th 
electron: 

N 
HN+I = H N I 2 Z Z 1 

- ~VN+ J + 
FN+I n=l rn 'N+l  

In order to diagonalize the ( N +  1)-electron Hamiltonian in Eq. (13), we have calculated in modules STG2 and 
RECUPD matrix elements involving the R-matrix expansion in Eq. (12). In particular, the continuum-continuum 
diagonal matrix element 

HNPI( j , j )cc  = (.A-~iluij l HN+l l,A-~ilui j) 

=(cI, i l n N I 4 , i ) + h ( g + l )  (116) 

i.e. separates into a sum of the target energy E/N = (4'i I HN I cI, i) from Eq. (6) and a term involving the 
continuum orbital h (N  + 1 ). Thus, accurate experimental values of the target energies E/N can be incorporated 
into the calculation by adjusting the diagonal elements of the (N + 1)-electron Hamiltonian. 

There are three practical points to bear in mind - -  
• The first target state defined in modules STG2 or RECUPD must be the one with the lowest energy, the 

ground state. The remaining states can be defined in arbitrary order, and STGH will reorder the states in 
ascending energy on output to the H and D files. 

• If adjusting target energies, it is probably not valid to change the original energy order of the states. For 
example, if one state lies above another according to the calculated energies, but the states are actually 
observed to be the other way round, it is probably better to set the two energies degenerate to some average 
value. 

• although continuum-continuum diagonal elements can be changed, there is no change to the diagonal elements 
from the bound-bound part of the matrix, which is normally associated with low lying resonances or bound 
states. This is somewhat inconsistent. It is recommended therefore to keep energy adjustments small. 

5.5. Debug prints 

Debugging prints are under the control of the NBUG parameters, specified in record 3 of the input data. Set 
these to zero in production runs, otherwise a large amount of output can be printed. 

NBUGi = 0 NOT USED. 
NBUG2 = 0 NOT USED. 
NBUG3 = 0 NOT USED. 
NBUG4 = 0 NOT USED. 
NBUG5 > 0 will provide a debug print from routine RSCT. The largest eigenvector components are printed for 

the NBUG5 lowest eigenvalues. This variable is also affected by NBUG8 so that NBUG5 = max(NBUG5, 1 ) when 
NBUG8 = I; NBUG5 = MNP2 when NBUG8 = 2; and NBUG5 = 0 when NBUG8 = 3. 

NBUG6 

= 1 for a full printout of the (N + 1)-electron Hamiltonian when read by TAPERD; 
= 2 for a similar printout by RSCT on processing the Hamiltonian. 
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NBUG7 
> 0 gives a print of the arrays AC, BLC and BVC from routine DMAT; 
> 1 prints the length dipole matrix elements in routines DMAT1 and DMAT2; 
> 2 prints the velocity dipole matrix elements in routines DMAT1 and DMAT2. 

NBUG8 
= 2 to print surface amplitudes; 
= 3 to print all eigenvalues and eigenvectors of the (N + 1)-electron Hamiltonian; 
see also the description of NBUG5. 

NBUG9 = 0 NOT USED. 

If any of NBUG5, NBUG6 or NBUG8 are non-zero then the eigenvalues are printed relative to the ground-state 
in routine RSCT. 

5.6. Output on ITAPE3 ~ the H f i le  

Summary of the output records (the variable names are described in the glossary in Section 9) : 
Basic information from routine WRITOP: 

1. NELC, NZ, LRANG2, LAMAX, NAST, RA, BST0; 
2. (ENAT(N), N=I,NAST); 
3. (LAT(N), N=I,NAST); 
4. (ISAT(N), N=I,NAST); 
5. ((COEFF(K,L), K=I,3), L=I,LRANG2); 

Partial wave dependent data from routines WRITOP and RSCT: 
6. LRGL, NSPN, NPTY, NCHAN, MNP2, MORE; 
7. (NCONAT(N), N=I,NAST); 
8. (L2P(I) ,I=I,NCHAN); 
9. (((CF(I,J,K), I=I,NCHAN), J=I,NCHAN), K=I,LAMAX); 
I0. (VALUE(K), K=i,MNP2); 
II. ((WMAT(I,K), I=I,NCHAN), K=I,MNP2); 

repeat records 6-I I for INAST (N + I )-electron symmetries. 

5. 7. Output o f  dipole matrices on ITAPF_~ - -  the Dnn fi les 

• Summary of the output records on D00. 
An index of dipole allowed transitions from routine DMAT: 

1. KOUNT; 
2. ISPN, ILRGL, IPTY, JSPN, JLRGL, JPTY 

repeat record 2 for KOUNT dipole allowed transitions. 
• Summary of the output records on Dnn. 

A new file is opened for each dipole allowed transition, i.e. D01, D02, etc. .  
I. NOTERM, MNP2, NCHAN, JLRGL, JPTY, JSPN, MMNP2, MCHAN, ILRGL 
2. Dipole matrix elements from routines DMAT1 and DMAT2: 

a. set N2=0 initially; 
b. set NI = N2+I and N2 = min(N2+NOTEKM,MMNP2), and M2=0; 
e. set M1 = M2+I and M2 = min(M2+NOTERM,MNP2); 
d. ((DML(M,N), M=MI,M2), N=N1,N2), ((DMV(M,N), M=MI,M2), N=NI,N2); 
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repeat records c-d for JK = 1, 
repeat records b-d for IK = 1, 
Dipole matrix Buttle corrections 

3. ((BBUTL(M,N) 
((BBUTV(M,N) 

4. ((ABUTL(M,N) 
((ABUTV(M,N) 

5. ((BBUTL(M,N) 
((BBUTV(M,N) 

N=I MCHAN) 
N=I MCHAN) 
N=I NCHAN) 
N=I NCHAN) 
N=I NCHAN) 
N=I NCHAN) 

Clebsch-Gordan coefficients and 
6. MAXMI,(CGC(M),M=I,MAXMI); 
7. 

I+(MNP2-1)/NOTEKM; 
I+(MMNP2-1)/NOTERM. 
~om routine DMAT: 
M=I,MNP2), 
M=I,MNP2); 
M=I,MMNP2), 
M=I,MMNP2); 
M=I,MCHAN), 
M=I,MCHAN). 
outerregion contributions, copied from file ITAPEI: 

((AC(M,N), N=I,MCHAN), M=I,NCHAN), 
((BLC(M,N), N=I,MCHAN), M=I,NCHAN), 
((BVC(M,N), N=I,MCHAN), M=I,NCHAN). 
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6. Module STG4 

This module of RMATRX1 deals with the 'external-region' tasks. It solves the external region coupled 
equations (see Eq. (30)) ,  for either atomic or ionic targets, and matches to the R-matrix on the internal region 
boundary to produce collision observables. 

This version replaces those portions of the former STG3 [ 12,13,73] that dealt with tasks outside the R-matrix 
boundary RA. We prefer the philosophy used in the Opacity Project [ 11 ], where the 'outer region' tasks were 
separated and performed in a new suite consisting of the modules STGB, STGBB, STGF, and STGBF (letter B 
refers to solutions with bound state asymptotic boundary conditions while letter F refers to a boundary condition 
representing a free electron in the field of an N-electron target). However, these Opacity Project outer region 
programs are at present unpublished; moreover they are restricted to ionic targets. We therefore include here a 
less efficient package, based on the published coupled differential equation solver of Crees [ 37], in order that 
RMATRX1 can yield a range of output, for both ionic and neutral targets: 
• electron collision strengths (output in file XOMEGA); 
• photoionization cross sections from ground states (file XSECTN); 
• frequency dependent polarizabilities (file XBOUND); 
• bound state energies and f-values (file XBOUND); 
• other optional output, such as partial cross sections, T-matrices , K-matrices, eigenphases, photoelectron 

asymmetry parameter ,8, etc. (file XDUMP). 
STG4 cannot however calculate with excited bound states; further, no external region contribution to the dipole 
matrices as in Eq. (52) can be applied. 

Fig. 17-18 displays a flow diagram for the routines in STG4. 
STG4 must be linked with STGLIB and the asymptotic package, CREES, in order to form an executable 

program. Routines AFACE, CG, DRACAH, FACT'I" and HSLDR plus any routines called by them are in 
STGLIB and CREES. 

There are three main computational sections in STG4 (the controlling routines are named in brackets): 
• initialisation and reading input files (STG4RD, READH1, READD1, MESHE, READH2); 
• bound state options and further initialisation (BOUNDE, OUT1, READD2); 
• calculating collisional data for each impact energy (ENERGY). 
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MNSTG4 AASTG4 BOUNDE ITERE 1 

2 

3 

4 

5 VMUL 

6 WVFNIN 

7 ENERGY AFACE (*) .... 

8 BETA CG(*) 

9 COULGA 
10 DRACAH(*) 
11 FACTT(*) 

12 SHRIEK 

13 EXTRAP 

14 KMAT MAOIA 

15 VMUL 

16 0UT2 
17 PHASE4 HSLDR (*) 

18 PHOT MA01A 

19 VPFdL 

20 POLZ 
21 RMAT > 3 

22 XOMEGA MA01A 

23 VMUL 

24 MESHE 

25 OUT1 OUTJJ 
26 READDI 

27 READD2 DMUL 

28 READD3 

29 READHI 

30 READH2 READH3 
31 STG4RD 

AFACE(*) .... 

MAOIA 

RMAT BUTO 

MAOIA 

Fig. 17. Calling tree for module STG4. The routines are given in alphabetical order within each branch not the order in which they are 
actually called. The routines marked with (*) are in module STGLIB or CREES. 

1 

2 

3 
4 

5 

6 

7 
8 
9 

10 

11 

12 
13 
14 

15 
16 

17 
18 

AFACE ASYPCK ASYMPT ASYSM COULGM 

EXPAN 

ITERA 

PBAS 

POTS 

SOLV 

FG MTINV 

WW 

SOLV > iO 
BOUNDC 

INTERP 

OMEGA 

SOLNS PRTPNS 

SECDRVWW 

POP BOOLE 

DCHAIN 

PPFS 
QROP 
ZETA 

WOUTER 

DCHAIN 

Fig. 18. Calling tree for module STG4, CREES section. 
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6.1. Routines 

MNSTG4 
is the program routine and contains all common blocks used in STG4. It sets /MEMORY/ pointers and calls 
AASTG4. 

AASTG4 
is called by MNSTG4 and controls the STG4 computation, invoking the three main computational sections as 
summarised above. 

BETA 
is only called if ItL~D>_I, for optional calculation of photoionization cross sections to each final ionic state 
and/or the photoelectron asymmetry parameter ft. 

The cross section to a final state j is given by 

o-j=~,.~ 0 j 2 - ~ ; 1  Y'}~lOeTIIOllV'°)12 
ljL 

where C = 1 in the length form, and C = 4/to 2 in the velocity form, with the photon energy (co) being in 
Ry. D is a general dipole operator which could be either the length or velocity operators of Eq. (43); the 
dipole matrix associated with the initial state ~0 is input to this routine in the DSTI3RE array, being calculated 
in routine PHOT. 

The asymmetry parameter is defined as the l = 2 term in the expression for the differential cross section for 
photoionization when the incident radiation is linearly polarized: 

do- o- 
[1 + flP2(cos 0) ] 

dk 4~ 

where 0 is the angle of the ejected electron relative to the axis of polarization, fl is determined from (Burke 
and Robb [22]) :  

CoJ f l=  ( 4 7 r 2 a g a ) ( ~ ) ( - 1 )  L'+ta (117) 

X ~ i ly- l f  ' e - i ° t / + i ° t f  ' 

lflft LL' 

x [ (2 l f  + 1)(21f, + 1 ) ( 2 L +  1)(2l '  + 1)] U2 

x W(LlfL'lf,; Lf2) W( 1LIL'; Lo2) C(Ifl~f2; 00) C( 112; 00) 

x (q~o II D II %7) (~7  II D II ¢'o) 

BOUNDE 
is the controlling routine for calculating bound state energies E0 and wavefunction expansion coefficients A0k 
in Eq. (50) for photoionization etc. .  For each required symmetry, the lowest bound state is calculated using an 
iterative procedure in routine ITERE. Routine WVFNIN is then called to calculate the wavefunction expansion 
coefficients. 

BUT0 
is a real function used to calculate the Buttle correction for a given channel energy, using the procedure of 
Seaton [77]. 
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COULGA 
is called by BETA to calculate the Coulomb phase shift ot = argF(l + 1 + i~7) where 77 = -z/k.  

DMUL 
is called by READD2 to calculate a g f-value as in Eq. (55) for a dipole allowed transition by multiplying 
the dipole vector associated with the initial state, calculated in routine READD3, by the expansion coefficients 
(Afk) defining a final state vector, calculated in BOUNDE: 

gf  =g (E°~3E ) c ~ afk(~ k 11D [[ qt0) 2 (118) 

where C = 1 for the length form, and C = 4/(E0 - Ey) 2 in the velocity form; though if Eo ~ Ef the velocity 
form is set zero. The energies of the initial and final states, E0 and Ef, are in Ry, and g = (2L + 1 ) (2S + 1 ) 
or g = (2J  + 1 ) depending on the coupling scheme. 

Results can be inaccurate because an external region contribution to the dipole matrix elements is not 
calculated. The effect of this can be reduced by enlarging the internal region. 

ENERGY 
is the controlling routine for solving the external region equations to obtain the K-matrix from the R-matrix,  
and hence the cross sections etc. .  

A single scattering energy is treated in the routine. The partial wave loop is then entered in order to obtain: 
• (optional) frequency dependent polarizabilities (routine POLZ). 
• the R-matrix (routine RMAT); 
• external region solutions (routine AFACE); 
• the K-matrix (routine KMAT); 
• collision strength (routine XOMEGA); 
• photoionization cross sections (routine PHOT); 
• (optional) output of K-matrices and other data on file XDUMP (routine OUT2). 

After the loop over partial waves, the collision strengths can be 'topped-up' to output the total collision 
strengths (routine EXTRAP). In the case of photoionization, the cross section for each final state and the fl 
asymmetry parameter can optionally be output (routine BETA). 

EXTRAP 
estimates the collision strength contribution from a given total angular momentum (LTOP) to infinity, and 
returns the total ' topped-up' collision strength. The partial collision strength at LTOP and at LTOP-1, and the 
partial sum to LTOP, are required as input. 

Each transition is considered in turn. If  the transition is spin-allowed, or a fine-structure one, and the initial 
and final states are non-degenerate, the collision strength is assumed to form a geometric series (cf. Burgess et 
al. [19] ): /2t ,-~ x j, and the sum from LTOP to infinity is /2Lr0P (X/( l -- X)). Here x = /2Lr0P//2Lr0P-l, unless 
this yields a value greater than one or the transition is dipole allowed, in which case x is taken as the ratio of 
the final and initial electron energies. Transitions involving degenerate states are examined separately. 

ITERE 
is called by BOUNDE to determine the energy of a bound state, e.g. the initial state in a photoionization 
calculation. 

Since all the channels are closed the required solution is given by Eq. (40): 

Ncru~ 
F,. = ~ cijxj, i = 1, NCI-IAN, r > PAt 

j=l 
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where the cij are NCHAN independent solutions of the asymptotic equations with exponentially decaying boundary 
conditions. The coefficients xj are determined by requiring that the solution F/ satisfies the R-matrix boundary 
condition, as in Eq. (41) 

Fi(RJ4. ) = ~ Rij t r - -~.  - BSTO. Fj , i =  1,NCHAN 
j= 1 k u, J r=l~ 

This gives a homogeneous equation for the xj 

NCHAN 

~ Bijxj = 0, i = 1, NCHAN 
j=l 

where the B-matrix is defined by Eq. (42) 

NCI~ \( r d C j' j~ 
Bij = cij(RA) - ~j, Rij, - BST0. cj , j /  r=p& 

This equation only has non-trivial solutions at the eigenenergies corresponding to the bound states of the system. 
To find these energies we set xl = 1, solve the remaining NCHAN-1 equations 

NCI-~N 
~-~Bi j x j  = - B i l ,  i = 2, NCHAN 
j=2 

and look for solutions of the non-linear equation 

NCHAN 

f ( E )  = ~ B l j X  j = 0 
j=l 

The procedure adopted is to first find by a stepping procedure two energies which bracket the required zero 
in f ( E ) .  A bisection process is then started with these two energies as end-points and in this way the zero 
of f ( E )  is located between successively narrower limits. The bisection process is continued until f ( E )  has a 
magnitude less than some predetermined value (e.g. 10-3). The program then switches to Newton's iterative 
method until f ( E )  is less than a second predetermined value (e.g. 10-8). 

The lowest R-matrix pole is usually closely associated with the ground state eigenenergy of the system, so 
we start with a trial energy close to this pole. We use a procedure developed by Burke and Seaton (1984) and 
Seaton (1985) for carrying out the calculation in the vicinity of the R-matrix pole. 

The final value of the bound state energy obtained is returned (EI ) ,  as is an array (D) containing information 
on the bound state solution on the boundary: (rdFj /dr  - BST0. Fj)r= ~ ,  needed for the calculation of the bound 

state wavefunction in routine WVFNIN. 

KMAT 
calculates the K-matrix from the R-matrix and asymptotic solutions on the boundary. Let: 

s o, j = 1, N0PEN be the regular (sine) solutions, input to the routine in array F(i, j, 1); 
cij, j = I,N0PEN be the irregular (cosine) solutions, input in F(i , j ,  2); 
c 0, j = N0PEN + 1, NCHAN be the exponentially decaying solutions, input in F(i, j, 1); 

for i = 1, NCHAN. The derivatives are input in corresponding places in the FD array. We then solve the simulta- 
neous equations for the K-matrix as in Eq. (36): 
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NCHAN 

l=l 
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Ci l (P~) -  Z Rim ~r-~r -BST0.c,nt(r) K 0 
tn= l r=IL~ 

m= 1 r=RA 

for i=I,NCHAN and j=I,NOPEN; i.e. 

(119) 

B . K = A  

where the B and A matrices are defined by the quantities in the first and second square brackets respectively of 
Eq. (119). The multiplication of the matrices are carried out in routine VMUL, and the simultaneous equations 
solved in MA01A. 

MA01A 
is a linear equation solver. It is called by routines ITERE, KMAT, PHOT and XOMEGA. 

MESHE 
is taken from program STGF (Berrington et al. [ 14] ), and generates an energy mesh for the incident electron, 
based on equal intervals in the effective n below each threshold. 

OUT1 
opens the output files and writes header information. 

OUT2 
is called by ENERGY to write partial-wave dependent data (e.g. K-matrices ) to output file XDUMP, under 
control of the user-supplied parameter IPRINT. 

OUTJJ 
is called by OUTI to write JAJOM data header information, containing target state data etc. (Saraph [69,70] ), 
if requested by IPRINT. 

PHASE4 
determines the eigenphases by diagonalizing the K-matrix to produce tanSi, where t~i is the eigenphase in 
channel i. It returns also the eigenphase sum over the open channels. Note that the eigenphase as computed is 
arbitrary in multiples of 7r. 

PHOT 
calculates the photoionization cross section for a given photoelectron energy k 2, which is related to the photon 
energy to through the conservation of energy, as in Eq. (10): 

w + E o  = k2 q- el 

where E0 and E1 are the initial bound state energy and ground state energy of the final ion respectively, in Ry. 
The total photoionization cross section is (cf. Eqs.(56-57) ) 

~oC rr o Ir  0)12 
jlj L 

where C = 1 in the length form, and C = 4/to 2 in the velocity form, with the photon energy (to) being in Ry. 
D is a general dipole operator which could be in either the length or velocity operators of Eq. (43). Expanding 
~/'j- in terms of R-matrix states as in Eq. (58), we find that 
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(120) 

where wk(P~) are the surface amplitudes input on the H file, ( ~  II D [I go) are the reduced matrix elements 
calculated in routine READD3, and Yi-] is constructed from the asymptotic solutions such that it satisfies the 
boundary conditions 

F -  ,-~ ( T r k ) - l / 2 ( s i n O + c o s O K ) ( l + i K )  -1 
r ~oG 

corresponding to a Coulomb modified plane wave plus ingoing spherical wave. These solutions are just linear 
combinations of the solutions defined by Eq. (31 ). 

The vector ] (g '7  [[ D II 1/0) [, which has real and imaginary components, and length and velocity forms, is 
stored in DSTORE for later use in routine BETA. 

POLZ 
calculates the frequency dependent dipole polarizability in both the length and velocity forms from the reduced 
dipole matrix elements. It is only called if II~D=3. 

The contribution to the polarizability from a continuum state, with given total angular momentum and spin, 
is defined by (Allison et al. [2] ) 

MNP2 12 
c~M, (w) = 4(CGC12 ~ (Ek- EolC~IDk 

k 

(121) 

where Ck = 1 in the length form, and Ck = 4/(E~- E0) 2 in the velocity form. The coefficient CGC = 
C(LalL; MLO)/(2L + 1) 1/2 is defined in module STG2. La is the total orbital angular momentum of the 
atomic state and L of the continuum state. The range of ML is from zero to the minimum of La and L. The 
Dk dipole matrix elements, in length and velocity form, are defined in routine READD3. Energies are in Ry. 

READD i 
reads the D00 file, containing an index to the initial and final symmetry on each file of dipole matrices. 

READD2 
is the controlling routine for reading all available D files associated with a specific initial state symmetry, i.e. 
for the dipole allowed transitions; looping over the final state symmetries which satisfy the selection rules, 
and calling READD3 to read the reduced dipole matrices from module STGH and to calculate dipole vectors 
associated with the initial state. There is an optional call also to DMUL to use these vectors in calculating 
g f-values. 

Two calls to READD3 are made: the first call opens the appropriate D file and reads the first record to obtain 
the sizes of the matrices, required for memory management; the second call reads the remainder of the D file 
and returns the dipole vectors, which are stored in memory for later use in routine PHOT. 

READD3 
is called by READD2 to read a specific D file for the reduced dipole matrix (~kk II D II 4'k' ) and multiplies 
by the initial state wavefunction coefficients Aok from routine WVFNIN to return the dipole vector associated 
with a given initial state: 

MNP2DI 

(0~ 110 II ~'o) = ~ (~k II O II ~bk,)Aok, 
k'=l 
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for k=I,MNP2D2, where MNP2D1 and MNP2D2 are the sizes of the R-matrix bases in the initial and final states 
respectively. This dipole vector, in its length and velocity forms, is used in bound-bound and bound-free 
calculations in routines DMUL and PHOT. 

P,,EADH1 
reads the header of the H file, for the basic data, target states etc. 

RE,M)H2 
is the controlling routine for reading the whole of the remainder of the H file into memory. Routine READH3 is 
called for each partial wave to read the data; the long-range potential coefficients (a}~) in Eq. (29)) ,  R-matrix 
poles and surface amplitudes (Ek and wik in Eq. (26)) ,  are stored in memory for those partial waves required 
for the run. 

Two calls to READH3 are made: the first call reads a single record to specify the partial wave symmetry and 
the sizes of the matrices, required for memory management; the second call reads the remainder of the data for 
this partial wave. 

READH3 
is called by Pd~ADH2 to read the H file for a specific partial wave. 

RaMAT 
calculates the Buttle-corrected R-matrix on the boundary for a given energy E in Ry, using Eq. (26), from 
the surface amplitudes wik (array WMAT) and eigenvalues Ek (array VALUE) of the Hamiltonian matrix. The 
correction R c. to the diagonal elements of the R-matrix for each channel i whose energy is k 2 is calculated 
from an analytic fit in k 2 as described by Seaton (1987). The routine also returns these channel energies and 
the number of energetically open channels. 

There are two further options available: 
• a pole can be omitted in the evaluation of the R-matrix, and the amplitude (WinWjn/Pt~) returned, where n 

is the omitted pole - this facility is used in routine ITERE to find a bound state lying close to an R-matrix 
pole; 

• the inverse of the R-matrix (R - l  ) can be returned - this is used in the photoionization calculation in routine 
PHOT. 

SHRIEK 
evaluates and stores factorials, GAMMA(/+ 1) = i!, stored in common block /FACT/, for use in evaluating 
Clebsch-Gordan coefficients. 

STG4RD 
reads all the user-supplied input data from unit 5. See Section 6.3 for a description of the data. 

VMUL 
performs a matrix multiplication C = A . B .  

WVFNIN 
is called by B O ~ E  to determine normalised expansion coefficients A0k for the bound state wavefunction in 
Eq. (50) (retaining for completeness the logarithmic derivative b), where the coefficients Aok corresponding 
to a bound state energy of E0 are defined by 

- [  ) 1 dFj 
Aok - RA(Ek - E0) ~ wj~: r ~ r  - BSTOFj 

The quantity in the square brackets is input to the routine, having being calculated in routine ITERE from the 
bound state external region solutions on the boundary, 
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XOMEGA 
calculates the partial collision strength from the K-matrix for a given electron energy. Updates also the partial 
sum. First the T-matrix is calculated, see Eq. (37): 

T _ _ _  
1 + iK 2K 2 2K 

1= - - + i - -  
1 - i K  I + K  2 I + K  2 

then the partial collision strength, see Eq. (38): 

g 12 n;j(k2)= 
lilj 

where g = (2L + 1)(2S + 1) or g = (2J  + 1) depending on the coupling scheme. 

6.1.1. AFACE 

AFACE provides an interface between STG4 and the asymptotic package. It is called from routines EN- 
ERGY and ITERE, to set up a call for a given energy to the external region program. STG4 uses the Crees 
program [37], which solves the coupled differential equations (see Eq. (30))  for both neutral and ionic targets, 
to yield the asymptotic functions and derivatives on the boundary r = RA. Any other suitable package could be 
used here. 

6.2. Data f i les  

The following is a summary of the data files required by STG4. The unit numbers and file names are defined 
in the program. 
5 - -  the user input - -  'STG4.INP' 

File type: formatted sequential input. 
Written by user. 
Read by routine STG4RD. 
Description: user-supplied options, described in Section 6.3. 

6 - -  the log file - -  'STG4.OUT' 
File type: formatted sequential output. 
Written throughout STG4. 
Description: line-printer or job output. 

10 - -  the H file, 'H.DAT' 
File type: binary sequential input. 
Written by module STGH. 
Read by routines READH1 and READH3. 
Description: the diagonalized Hamiltonian matrices (see Section 5.6). 

99 - -  the D files, 'D00.DAT', 'D01.DAT', 'D02.DAT' . . .  
File type: binary sequential input. 
Written by module STGH. 
Read by routines READD1 and READD3. 
Description: D00 is an index file, the other D files each contain the reduced dipole matrix for a given pair 
of initial and final (N + 1)-electron symmetry that gives rise to electric dipole transitions (see Section 5.7). 

1 - -  the file 'XOMEGA.OUT' 
File type: formatted sequential output. 
Written by routines OUT1 and ENERGY. 
Description: total collision strengths for electron scattering as a function of energy (described in Section 6.5). 
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2 - -  the file 'XSECTN.OUT' 
File type: formatted sequential output. 
Written by routines OUT1 and ENERGY 
Description: total cross sections for photoionization as a function of photon energy (described in Section 6.6)  

3 - -  the file 'XBOUND.OUT' 
File type: formatted sequential output. 
Written by routines OUTI, DMUL and POLZ. 
Description: bound state data, g f-values, and frequency dependent dipole polarizabilities (described in Sec- 
tion 6.7). 

7 - -  the file 'XDUMP.OUT' 
File type: formatted sequential output. 
Written by routines OUT1, BETA, OUT2 and OUTJJ. 
Description: partial-wave dependent data, such as K-matrices (described in Section 6.8). 

6.3. Input data on unit 5 

The user-supplied input data is read in routine STG4RD on input unit number 5. Free format is used. 
Summary of the data records (the variable names are described in the glossary in Section 9): 

Printout options, described in Section 6.4: 
1. IPRINT, IRAD, IPERT. 

Accuracy parameters: 
2. AC; 
3. RUNE. 

Electron energy mesh and options 5, 6 or 7: 
4. IMESH; 

if IMESH=I or 0 then generate an equal energy interval mesh: 
5. MXE, E0,EINCR; 
6. if IMESH=2 or <0 then generate an equal effective n energy mesh: 

a. DQN; 
b. QNMAX; 
c. EMIN; 

d. EMAX; 

e. DEUPEN; 
f. IRDEC; 

7. if IMESH=3 then read energy mesh: 
a .  MXE, QNMAX; 
b. EMESH(k) ; 
repeat record b for k = I, MXE. 
Partial wave options: 

8. IOPTi; 
if IOPTI = 2 then read partial wave symmetries: 

9. IS, IL, IP; 
repeat record 9 until end of file. 

6.4. Printout options 

IPRINT 
> 0 for debug output on unit 6, 
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< 0 to create the XDUMP output file: 
= - 1  photoionization cross sections to each final state; 
= - 2  fl asymmetry parameter for the photoelectron; 
= - 3  partial collision strengths; 
= - 4  eigenphases; 
= - 5  K-matrices (compact format); 
= - 6  T-matrices ; 
= - 7  K-matrices (JAJOM format); 
= - 8  JAJOM header file (no TCC);  
= - 9  JAJOM header file (TCC switch activated). 

IRAD 
= 0 for electron collisions (produces file XOMEGA); 
= I for electron collisions and photoionization cross sections (files XOMEGA and XSECTN); 
= 2 for photoionization (XSECTN); 
= 3 for polarizabilities (XBOUND); 
= 4 for bound state data (XBOUND). 

IPERT 
= 0 to switch off long-range coupling, > 0 to include coupling: 
= 1 no top-up; 
= 2 top-up, i.e. include estimate for higher partial waves in total collision strength. 
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6.5. XOMEGA output file 

Summary of  the output records for collision strengths (the variable names are described in the glossary in 
Section 9) : 

1. NZED, NELC, NAST 
2. ENAT(i), i=I,NAST 
3. ETOT, NTKAN, (0MEGA(n), n=I,NTRAN) 

repeat record 3 for all impact energies. 

6.6. XSECTN output file 

Summary of  the output records for photoionization (the variable names are described in the glossary in 
Section 9) : 

1. NZED, NELC, NAST 
2. ENAT(i ) ,  i=I ,NAST 
3. IS1 ,  I L l ,  IP1 ,  I1  
4. El, NEN 
5. column headings for the following photoionization cross section records: 
6. EP, XL, XV 

repeat record 6 for all photon energies. 

6.7. XBOUND output file 

Summary of  the output records for bound state data (the variable names are described in the glossary in 
Section 9) :  

1. IPRINT, IRAD, IPERT, NZED, NELC 

If  IRAD = 3 then output polarizabilities: 
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1 a. column headings for the following polarizability records: 
lb. 0MEGA2, M, ALPHL, ALPHV 

repeat this last record for each M and L. 
If IRAD = 4 then output bound state energies and g f:  

2. AC 
3. RONE 
4.2 
5. ISl, ILl, IPI, II 
6. 1, 0 .0  
7. EI ,  EFFN 

repeat records 5-7 for all bound state symmetries considered, terminating with: 
8. 0, 0, 0, 0 
9. IS1,  I L l ,  IVl ,  IS2,  IL2, IP2,  NN 
I0. Ii, Ii, El, EF, FL, FV 

repeat records 9 and I0 for dipole allowed transitions. 

6.8. XDUMP output file 

The variable names are described in the glossary in Section 9. 

6.8.1. Summary of output records for photoionization, IPRINT = -1  
1. NZED, NELC, NAST 
2. ENAT(i), i=I,NAST 
3. IS1, ILl, IPI, Ii 
4. El, NEN 
5. column headings for the following photoionization cross section records: 
6. Wi, (SIGL(i), i=I,NAST) 

repeat the last record for all photon energies WI. 

6.8.2. Summary of output records for fl parameters, IPRINT= - 2  
I. NZED, NELC, NAST 
2. ENAT(i), i=i,NAST 
3. IS1, ILl, IPI, Ii 
4. El, NEN 
5. column headings for the following fl parameter records: 
6. Wi, SIGL(N), BETALR, BETALI, N, SIGV(N), BETAVR, BETAVI 

repeat the last record for N = i, NAST and for all photon energies Wi. 

6.8.3. Summary of output records for partial omegas, IPRINT= - 3  
1. NELC, NZED, NAST, RA, LRANG2 
2. column headings for the following partial collision strength records: 
3. IS, IL, IP, E, ((XPART(i,j), i=l,j), j=I,IEND) 

repeat the last record for all partial waves IS, IL, IP, and energies E. 

6.8.4. Summary of the output records for eigenphases, IPRINT= - 4  
I. NELC, NZED, NAST, RA, LRANG2 
2. column headings for the following eigenphase records: 
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3. IS, IL, IP, E, PHSUM, (EIG(i), i=I,NOPEN) 
repeat the last record for all partial waves IS,  IL, IP, and energies E. 
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6.8.5. Summary of the ou~ut mcordsfor K-matrices IPRINT= - 5  
I. NELC, NZED, NAST, RA, LRANG2 
2. ITEMS, MPTY, IL, 0, E 
3. ((RK(j,i), j=l,i), i=I,NOPEN) 

repeatthelasttwo records ~r all partial waves IS, IL, IP, and energies E. 

6.8.6. Summary of the output records for T-matrices, IPRINT= - 6  
I. MPTY, IL, ITARG(i), ITARG(j), TR(i,j), Tl(i,j), O, 4, E, 

FORMAT(12,13,216,FI6.8,3X, 2X,FI2.8,13,12,FI2,8,A4) 
repeat this record for j = 1, i; i = 1, NOPEN; 
repeat for all partial waves IS,  IL,  IP, and energies E. 

' T '  

6.8.Z Summary o f ~ e  ou~ut mcordsfor K-matnces(JAJOMformaO, IPRINT= - 7  
I. MPTY, IL, ITARG(i), ITARG(j), RE(i,3),' ',' ', 0.0, O, O, E,' K' 

FORMAT(12,13,216,EI6.8,3X,2AI,FI2.8,13,12,FI2,8,A4) 
r epea t th i s recordfor j  = l , i ; i  = 1, NOPEN; 

if IRAD_> 1 then output dipole matrices: 
2. MPTY, IL,  0, ITARG(i),  D L ( i , j ) ,  ' R ' ,  ' L ' ,  El ,  I L l ,  2, E , '  D' 
3. MPTY, IL,  0, ITARG(i),  D V ( i , j ) ,  ' R ' ,  ' V ' ,  E l ,  I L l ,  2, E , '  D' 

repeat records 2 and 3 for i = 1, NOPEN; 
repeat for all partial waves IS,  IL,  IP, and energies E. 

6.8.8. Summary of the output records for JAJOM, IPRINT= - 8  or - 9  
I. NAOP, IREFL, IW, IB, ITOP, MAT, IONQ, IPART 
2. I, IS(I), LAT(I), ENAT(I), ISAT(I), LSPECT(LAT(I)), PARITY(LPTY(I)) 

repeat this last record for I = I, NAOP 
3. NZED, NELC 
4. LRANG2, ISLM, N0X 
5. (I, I=0, LRANG2-1) 
6. (IST(i), ILT(i), i=i,ISLM) 
7. NZED, NELC 
8. NEN, NEN 
9. (K, EMESH(K), K=I,NEN) 
I0. NZED, NELC, 0 
II. ' F.S. ', JJFSL, IFIT, JPUN 
12. (FJ(3), j=I,JJFSL) 
13. NTCC, NTCC (= 0 if IPRINT = -8) 
14. MPTY, IL, ITARG(i), ITARG(j), RK(i,j),' ',' ', 0.0, 0, 0, E,' K' 

repeat this last record for j=l,i; i=I,NOPEN; 
and repeat for all partial waves IS, IL, IP, and energies E. 

For a detailed description of the data output for IPRINT = -8 or -9 from routine OUTJJ, see the write-up 
of the program JAJOM (Saraph [69,70]). 
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7. Library  STGLIB 

This routine library is part of RMATRXI. Modules STG2, RECUPD and STG4 must be linked with STGLIB 
in order to form executable programs. No call is made from the library to any routine outside the library, apart 
from the usual FORTRAN functions. 

Rather than describe the routines in alphabetical order they have been grouped together for convenience. 
1. General 
2. CFP - -  coefficients of fractional parentage 
3. Angular integrals (FANO,HOWTS,TENSOR) 
4 .  H S L D R  - -  matrix diagonalization 
5 .  N J G R A F  - -  recoupling package 

Only a brief description of the main routines in each group is given. These routines have all been documented 
before in the CPC program library. 

Z1.  G E N E R A L  

BLOCK DATA - -  BDLIB 1 
defines the data in common blocks /TERMS/ and /CONSTS/.  The data in /TERMS/ holds the allowed 
quantum numbers for arbitrary numbers of electrons in s, p and d shells, and for one electron in f shells and 
beyond. Only the first half of the table corresponding to a particular I is included because of symmetry, e.g. d 7 
forms the same terms as d 3. 

The data in /CONSTS/defines commonly-used constants, whose precision could be changed if necessary. 

CG(J1,J2,J3,M1,M2,M3) 
is a real function that calculates Clebsch-Gordan coefficients. Factorials are required to be pre-defined in 
common b l o c k / F A C T / b y  a call to routine SHRIEK. 

CHOP 
is a routine taken from the angular momentum package [50,51 ]. It determines the shells whose interaction with 
all shells in the configuration arises purely as an average energy. 

INTACT 
is taken from the angular momentum package [ 50,51 ]. It sets the interaction energy between two shells whose 
orbital angular momentum is l and 1 t, where l and I' < 4. The first term of this interaction energy is always 
F°( l ,  11), and this is not given in this routine. 5 Thus only the extra terms are produced here. 

For equivalent electrons (argument IEQIJI'v" = 1 ), there will be F k integrals only. For non-equivalent electrons 
(IEQIJIV = 2), there will be G k integrals only. 

The expressions for the interaction energies involving shells with l _< 3 are given in Eqs. (14.20) and (14.22) 
of Slater [81]; in the last of his Eqs. (14.22) a term - ~ G ° ( f ,  f t )  is omitted - this is included in this routine. 
The interaction energies for g-electron shells may be evaluated using his Eqs. (13.12), (13.17), (14.19) and 
(14.21). 

MEKEST 
saves or restores the common b lock/MEDEFN/  and arguments IRtt0, ISTG, IILr-IOP, ISI6P. 

ORTHOG 
is taken from the angular momentum package [50,51 ]. It checks for simple orthogonality of the configurations 

5The direct and exchange radial integrals, Fk(ab) and Gk(ab) respectively, are defined in terms of the Slater radial integral by 
Fk(ab) = Rk(abab) and G~(ab) = Rk(abba) for orbitals a and b. 
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5 .6  CFP CFPD 
5 .7  CFPP 

Fig. 19. Calling tree for CFP. The routines are given in alphabetical order within each branch not the order in which they are actually 
called. 

due to coupling differences or uneven parity which would lead to zero matrix elements, The configurations 
are input in /MEDEFN/,  and the routine argument LET is returned 0 if the two configurations will have zero 
Hamiltonian matrix element, or 1 if there is no obvious angular momentum orthogonality. 

REDUCE 
removes spectator i S shells which have no effect in angular or spin integrals. If  a change in the common block 
/MEDEFN/ is to be made, its present situation is preserved by a call of routine MEKEEP. REDUCE calls 
routine MEKEST. 

RME(I,  l l, k) 
is a real function taken from the angular momentum package [50,51 ]. It evaluates the reduced matrix element 
using the formulae of Fano and Racah [45] chapter 14, p.81: 

r E= (l II Ck Ill') =o,  

otherwise 

if l +  k + l  t is odd 

RHE= [ ( 2 l +  1)(2l '  + 1 ) ]  1/2 

[ ( l+ l ' - k ) ! ( l '+k- l ) ! ( k+l - l ' ) ! ] ' / 2  [ g! ] 
x ( 2 g ~  i-)i (g - l ) ! (g  - l ' ) ! ( g  - k)! 

where 2g = l + k + l ~. The orbital angular momenta l, l ~ of the interacting shells and order k are input as integer 
arguments. Factorials are required to be pre-defined in common b lock /FACT/  by a call to routine SHRIEK. 

SETUPE 
is a routine taken from the tensor operator package [ 67 ]. It generates the arrays defining the quantum numbers, 
occupation and coupling of the shells, for each of the two configurations involved in a single matrix element. 
The arrays are then in a form suitable for use in routine TENSOR. Only those shells occurring in at least one 
configuration are included. 

7.2. CFP -- Fractional Parentage Coefficients 

This routine is called from the HOWTS, FANO and TENSOR packages, and is the controlling routine of the 
fractional parentage coefficient package (Allison [1], Chivers [32] ). See Fig. 19 for a flow diagram. 

BLOCK DATA - -  BDLIB2 defines the d-shell coefficients in /FRPAR2/; 
CFPD is called for a d-shell coefficient [32]; 
CFPP is called if a p-shell coefficient is required [ 1 ] ; 

For an f-shell (or higher) the program allows a maximum of two electrons in the shell (the result is in this 
case trivially unity) since f-shell fractional parentage coefficients have not been made available here. 

7.3. Angular integrals (FANO, HOWTS, TENSOR) 

FANO 
This package, described by Hibbert [ 50,51 ], calculates angular and spin weighting factors for the two-electron 
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5.i FANO GENSO-MDRACAH 

5.2 J23ANG 

5.3 J23SPN 

5.4 KNJ 

5.5 MODJ23 

5.6 MUMDADCFP .... 

5.8 NJGRAF .... 

5.35 NTABI 

5.36 SETJI 

Fig. 20. Calling tree for FANO. The routines are given in alphabetical order within each branch not the order in which they are actually 
called. 

contribution to the Hamiltonian matrix for a given initial and final configuration using the method of Fano [44]. 
See Fig. 20 for a flow diagram. 

The Hamiltonian matrix element associated with the electron-electron interaction V can be written as in 
Eq. (4) of Hibbert [50,51] as 

(~oj [ V [ ~oj,>= E [ ~  adRk(nvlmn'~l'~'no 'l¢'n0"l'~') 
po-pt o .t 

+ ~k a~Rk(nvl°' n0"10", n~,l~,, n¢1¢)] 

where R k is the appropriate two-electron radial integral, and the p and o" indices label the interacting shells 
and are input as routine arguments. The ranges of k (which is incremented in steps of 2) for the direct 
(KD1 < k < KD2) and exchange (KEI < k < KE2) integrals are determined in FANO and returned in common 
block /XATION/, which also returns the calculated angular and spin weighting factors in arrays ANJLT and 
BNJLT. These weighting factors are, for the direct and exchange integrals respectively: 

a~=N(lv II ck II Ip,)(t0" II G II l,r,) 

×[1 + (1 -- 6po-)(1 - 8p,0",)] [(21o,+ 1)(2l a, + 1)1-1/2 

× E E E Z(c/  (cm(cmw   S(l  

aek =N(la IIck II 1~,)(10" [1 ck II l / )  

×(2  - 8p0" - ~/ , r , ) [(21a + 1)(2/,~, + 1 ) ]  -1 /2  

× E E E Z(c:.)(c:.)(c:.>(c:.> s(2> 

where 

N = ½ ( - 1 )  ~p [Np(N0" - 6p~)N¢(N~ - 6p,0",)] 1/2 

The various coefficients are evaluated by routine calls as follows: 
J23SPN for S(e, e'), which denotes the spin recoupling coefficient in Eq. (35) of Fano [44] ; 
J23ANG for Lk(1) and Lk(2), the two angular recoupling coefficients in Eq. (41) of Fano [44]; 
MUMDAD for the fractional parentage coefficients (cfp) from Fano's Eqs. (24) or (26), calculated by calls 

to the CFP package; 
RME for the reduced matrix elements (l II G II l '). 
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6 .1  Howrs CFP .... 

6 . 2  NJGRAF .... 

6.3 SETM 

Fig. 21. Calling tree for HOWTS. The routines are given in alphabetical order within each branch not the order in which they are actually 
called. 

13.1 TENSOR CFP .... 

13.2  NJGRAF .... 

13.3 NTABI 

13.4 TRITST 

Fig. 22. Calling tree for TENSOR. The routines are given in alphabetical order within each branch not the order in which they are actually 
called. 

HOWTS 
This package, described by Hibbert [52], calculates the angular and spin weighting factors for the one-electron 
contribution to the Hamiltonian matrix for a given initial and final configuration, when these are different. 

See Fig. 21 for a flow diagram. 

(~oj I 14ol q~j,) = ~ x(o',o") Q(nolo-,no.,lo-,) 6t,,t,,, 
o-o-, 

where x is the angular and spin integral calculated in routine HOWTS and Q the appropriate one-electron radial 
integral; the o" indices label the interacting shells and are input as routine arguments. The weighting factor is 
returned as an argument (TIMES). 

SETM sets constants in /MVALUE/ used in inner routines. 

TENSOR 
is a package for the evaluation of angular and spin factors in the reduced matrix element of any one-electron 
tensor operator between arbitrarily coupled LS configurations. This package has been published by Robb [ 67 ]. 

See Fig. 22 for a flow diagram. 
The reduced matrix element is expressed in the form 

VSHELL(1) • (Ip 11Tk [[ l,r) for p 4~ o- 

(aLS II 
IHSH 

2.~Tk(n) II ce'L'S') = E VSHELL(IRH0) * (Ip I[ Tk II for p = o- 
n 

IILtl0=l 

where Tk(n) is a tensor operator of order k which operates on the nth electron, and is either independent of 
spin or completely spin-dependent (in which case k = 1 and lp = l~, = ½). p and o" denote the interacting shells 
(IRH0 and ISIG). Routine TENSOR calculates VSHELL and the remaining angular contribution is evaluated in 
function RME. Routine SETUPE must be called prior to entering TENSOR to set up the arrays in common 
b lock/MEDEFN/ .  

These reduced matrix elements are defined through the Wigner-Eckart theorem as: 

C ( LIkL; M~Lm) 
(trLSMLMs ] E T;~(n) [ a'L'S'M[M~s> = 6SS'6MsMts (2L + 1)1/2 

II 

x(otLS II E T i ( n )  II d u g ' )  
t l  

for the spin-independent case; a similar relation holds for the spin-dependent case. The C(L'kL; M~L m) are 
Clebsch-Gordan coefficients. 
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7.1 HSLDR EIGEN 

7.2 EIGVEC NORM 

7.3 HOUSE 

7.4 VECTOR BAKSUB 

7.5 NORM 

Fig. 23. Calling tree for HSLDR. The routines are given in alphabetical order within each branch not the order in which they are actually 
called. 

TRITST(I1,/2,13) is a real function taken from the tensor operator package [ 67 ]. It tests whether or not three 
angular momenta values satisfy a triangular relationship. 

NTAB 1 (l, q) 
This integer function is called by the FANO and TENSOR packages and returns the row of NTAB (defined in 
/TERMS/  in BLOCK DATA) where may be found the parents of a shell given by l q. For example, the row of 
1/TAB containing the parents of one of the p4 terms (l = 1, q = 4) is that containing the p3 terms; thus NTAB1--4. 
Use is made of the fact that the list of possible parents is symmetrical about the configuration /(2/+1 ). For one 
electron in a term, the parent is always a l S term; otherwise the value of NTAB 1 depends on the l value of the 
electrons. The function is aborted if there are more than two l > 3 electrons in a shell. 

7.4. HSLDR - -  matrix diagonalization 

This package diagonalizes a real symmetric matrix using the Householder method [84] to find all the 
eigenvalues and eigenvectors. See Fig. 23 for a flow diagram. The routine works entirely in memory and is 
economic, requiring little more space than that required to store the upper triangle of the matrix, which is input 
in a linear array of dimension LENGTH = (n * (n + 1)) /2 ,  where n is the order. 

Diagonalization proceeds in two stages: firstly a tri-diagonalization reduction is performed; secondly the 
eigenvalues and eigenvectors are formed from the tri-diagonal form. All the eigenvalues and the first eigenvector 
are found in the first call to HSLDR; the remaining eigenvectors are calculated one at a time in each subsequent 
call to HSLDR. 

Tri-diagonalization is performed by a Householder reduction of a matrix A of order n, effected by n - 2 
similarity transformations with orthogonal matrices P1, t'2 . . . .  1',-2 successively [84]: 

A ( r+ l )  =PrA(r)er,  r =  1,2 . . . .  n - 2  (122) 

where A (l) is the original n x n  matrix A. At each step a row and a column is set to zero (except for the diagonal 
and adjacent element). Clearly this is recursive, but within one cycle of the reduction the transformation acts 
on rows independently. 

Consider a cycle at step r. Matrix A (r) consists of r - 1 rows and columns already tri-diagonalized, with a 
square submatrix starting in the rth row and column remaining to be transformed. First sum the squares Of the 
off-diagonal elements down the rth column (or row - the matrix is symmetric) of A (r) and form: 

S 2 = ~ A2ir, BKR = S(S + At+ix) 
i=r+l 

(the sign is arbitrary and is chosen to avoid subtraction errors). Then define a column vector u with zeros in 
the first r + 1 elements and the remaining elements taken from the rth column of A ( r ) :  

u T = ( 0  . . . .  O, Ar+l,r  q- S, mr+2 . . . . . .  Anr) 

which implies that uTu = 2BKR. It can easily be shown that Pr = I - U.u/BKR is an orthogonal matrix (i.e. 
P~Pr = I) .  Using this form of Pr in Eq. (122) and defining: 
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p = A ( r ) u / B K R ,  K = u T p / B K R ,  q = p - ½ K u  (123) 

A ~r+l) = A ir) - u q  ¢ - q u  T (124) 

This transformation of A ~r) ensures that the first r -  1 rows and columns (which have already been tri- 
diagonalized in previous cycles) remain unaltered, the rth diagonal element remains the same and its adjacent 
element becomes i S ,  and the rest of the rth row and column is made zero. 

In Eq. (123), since u and q are both column vectors, the evaluation of q and the scalar quantity K are 
single-loop vector operations. However, writing out the evaluation of p in element form: 

Pi = Ajiuj + Z Aijuj /BKR 125) 
j=r+l j: i+l ] 

two sums are required because the matrix A is stored in upper triangular form (i.e. the lower triangle is not 
defined. Both inner ( j )  and outer (i) loops show parallelism, as does the evaluation of Eq. (124): 

Ai j  = A i j  - u i q j  - q i u j ,  i , j  = r + l , n  (126) 

Note that the tri-diagonalization process consists of three levels of nested loops (i.e. it is an 'n 3 process' - 
computing time normally increasing with the cube of the order of matrix n); only the outer loop (over r in 
Eq. (122)) is recursive, the inner loops are usually vectorisable on suitable computers. 

Let us now summarise the routines involved in order to calculate eigenvalues and eigenvectors. 
BAKSUB is called by VECTOR to solve for X in the eigenvector equation U X  = B by back substitution. 
EIGEN finds the eigenvalues of the tri-diagonal matrix (these are the same as the eigenvalues of the original 

matrix) using the Sturm sequence property, applying a bisection method to determine eigenvalues to a 
specified accuracy. 

The polynomials Pl  ( x ) ,  p 2 ( x )  . . . .  p n ( X )  are a Sturm sequence in the interval (a,  b) if 
• p n ( x )  has a constant sign in ( a ,b ) ;  
• at any zero of p k ( x )  in (a, b), Pk-l (X) and Pk+l ( X )  are non-zero and of opposite sign (k = 2 . . . .  n - 1). 

The sequence is generated by setting up the matrix AI - B where none of the co-diagonal elements in B 
are non-zero. Let f i ( A )  denote the determinant of the leading principal minor of M - B .  Using determinantal 
relations it can be shown that 

f i (  A ) = (--OLi -1- a ) f i - I  ( a )  -- fl2i_lfi-2( A ). 

By starting with f0(a)=l and f l ( a ) = a -  al, then the full sequence can be generated using the above 
relations. It can be shown that the zeros of f i ( a )  separate those of f i - I  (A) and hence that a Sturm sequence 
has been generated. An important property of a Sturm sequence is the if V(A) is the number of changes 
of sign in the sequence, then V(A) gives the number of eigenvalues in excess of h. With this information, 
bisection and the subsequent location of the eigenvalues can quickly proceed as follows: if we require Ak in 
the interval (a,  b), then choose c = ( a  + b ) / 2  and if V ( c )  > k,  then take a = c; otherwise, take b = c. This 
procedure is continued until a and b differ by less than a pre-assigned tolerance (EPSI, defined in the call 
to HSLDR), when a value for Ak can finally be allocated. 

EIGVEC then obtains the eigenvectors of the original matrix using details of the matrices used in transforming 
the original matrix A to tri-diagonal form. Thus if x is an eigenvector of the tri-diagonal matrix the 
corresponding eigenvector v of matrix A is given by: 

V = P1 P2  • • • P n - z x  
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5.8 

5.9 CUTIL DELTA 

5.10 PRINTJ 

5.11 ZERO PRINTJ 

5.12 CUT2L DELTA 

5.13 PRINTJ 

5.14 CUTNL DELTA 

5.15 PRINTJ 

5.16 DIAGKM INTAB 

5.17 PRINTJ 

5.18 WAY 

5.19 GENSUM DPO%CAH 

5.20 LOLPOP DELTA 
5.21 ORDTRI CHANGE 
5.22 PRINTJ 
5.23 POLYGN PRINTJ 
5.24 PRINTJ 
5.25 SEARCH CHANGE 
5.26 PRINTJ 
5.27 SETDM 

5.28 SETTAB DELTA 

5.29 PRINTJ 

5.30 SPRATE CHVAK 

5.31 VAK 

5.32 SQUARE 

5.33 TKIANG TKDEL 

5.34 ZER0 PRINTJ 
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NJGRAF BUBBLE DELTA 

Fig. 24. Calling tree for NJGRAE The routines are given in alphabetical order within each branch not the order in which they are actually 
called. 

The vector v is calculated from the relations 

Xr ---- e r X r + l ,  r = n --  2 . . . . .  1 

where x , - i  = x and Xl = v, so that the product of  the Pr  does not have to be formed explicitly. Also 
advantage is taken of  accumulating a scalar product when calculating P r x r + l :  

P r X r + l  = ( I - -  2UrUT)Xr+I  = Xr+l  --  2 ( U T X r + I ) U r  

HOUSE performs the tri-diagonalization by Householder's method as described above. 
NORM is called from VECTOR and EIGVEC to renormalise the vector x and v such that the largest 

component is unity. 
VECTOR finds the eigenvectors of  the tri-diagonal matrix by inverse iteration. Calls BAKSUB. 

7.5. N J G R A F  - -  r e c o u p l i n g  p a c k a g e  

This general recoupling package is described by Bar-Shalom and Klapisch [5] ,  and is called from the FANO, 
HOWTS and TENSOR packages. See Fig. 24 for a flow diagram. 

The recoupling coefficient takes the form (Burke [20] ) (jl  ,j2 . . . .  J n , j  I j l , j 2  . . . .  j , , j ) ,  where the n values 
j l . . . j n  can be coupled in an arbitrary and in general different way in the bra (initial state) and ket (final 
state) vectors to form the total angular momentum j.  The efficient method of  Bar-Shalom and Klapisch uses 
graphical analysis to construct the formula which involves summing products of  Racah coefficients. 

GENSUM 
is called by the FANO and NJGRAF packages. It evaluates the product of  the (2 j  + 1)1/2 factors, the 
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(--1)  j factors, the ( - 1 ) - J  factors and Racah coefficients, which are input in arrays K6, K7, K8 and KW as 
routine arguments, and carries out the required summation subject to the restrictions imposed by the triangular 
conditions. GENSUM calls the routine DRACAH. 

DRACAH 
evaluates a Racah coefficient W(abcd; e f )  (Fano and Racah [45] ). The routine employs the algorithm de- 
scribed by Scott and Hibbert [72]. It works for integer and half-integer values of angular momenta, which 
are input in the routine argument list as integers representing twice the actual values. Each of the four triads 
(abe),  (cde) ,  ( a c f ) ,  (bdf )  has an integral sum. Moreover, the Racah coefficient satisfies selection rules such 
that each of these four triads must form a possible triangle, i.e. must satisfy the condition that any side of a 
triangle is smaller than or equal to the sum of the other two sides; DRACAH returns W = 0 if any triad does 
not form a triangle. 

Logs of factorials are required to be pre-defined in common block/FACTS/  by a call to routine FACTT. 

FACTT 
calculates logs of  factorials, FACT(n + 1) = In(n!) which are stored in common block /FACTS/ and used in 
the Racah coefficient routine DRACAH. 

8. Preprocessing 

8.1. Introduction 

Dimensions in RMATRX1 are set by preprocessing parameters. These parameters begin with an ampersand 
(&),  and must be substituted with numbers in order to produce a FORTRAN compilable source. They are 
mainly confined to PARAMETER statements of the form 

PARAMETER (MZCHF=&CHF) 

at the start of the relevant routines. A convention is that the assigned variable names begin with MZ. A 
number of other variables (with names beginning with MX) are derived from these in subsequent PARAMETER 
statements. All common blocks can be found in the PROGRAM routine of each module and these dimension 
setting PARAMETER statements are located there also. The &-parameters have been kept to a near minimal 
set for convenience. 

There are two suggested ways for carrying out the preprocessing 
• using the FORTRAN program PREP 
• using a text editor such as the UNIX stream editor sed 

8.2. PREP program 

A preprocessor program is provided: PREP, written in standard FORTRAN (Day [40] ). PREP is not however 
essential to the R-matrix package - it merely performs the parameter substitution for dimensions, and is useful 
in batch runs. 

The preprocessor is common to a number of other programs, such as the Opacity Project version of the 
R-matrix programs (Berrington et al. [ 11] ) and the no-exchange programs (Burke et al. [29] ), and similar 
preprocessing parameters are used. PREP requires four files: 
unit 1 the original version of one of the R-matrix modules (input); 
unit 2 the FORTRAN version of the R-matrix module (output) ; 
unit 3 a scratch file; 
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unit 4 user supplied input consisting of two columns on each line using FORMAT(A4,I4), the first column be- 
ing the preprocessing parameter (which begins with '&') ,  the second column being the number to substitute, 
as described below. 

8.3. &-parameters 

The following is a description of the 16 preprocessing parameters used (with some suggested values in 
square brackets). 
&CHF [25] the highest number of coupled channels (max(NCHAN)), i.e. the range of index i in the summation 

of Eq. (12) and Eq. (27). 
&CHL [25] the highest number of coupled channels in LS-coupling. 
&FAC [32] largest factorial available. Factorials are calculated in routines SHRIEK and FACTT. 
&IPH [ 2] = I for electron scattering only, = 2 otherwise (IPOLPH). 
&LMX [ 4] maximum number of multipoles in the long-range potential (LAMAX), i.e. the range of A in Eq. 

(30). 
&LR1 [ 5] highest l + l for bound orbitals (LKANG1). 
&LR2 [20] highest l + 1 for continuum orbitals (LRANG2). 
&MEG [ 1 ] megawords of memory required in each module - in the case of optional use, insufficient memory 

will result in the opening and use of scratch files on disk, with consequent increase in I /O overheads. However, 
the results should be correct. 
• STG1 needs sufficient space to store two-electron radial integrals associated with a particular l and l' 

combination (the number of such integrals can be obtained from a dimension test run of STG1 by setting 
NBUG7=I in the input data); 

• STG2 needs sufficient space to store two-electron radial integrals associated with a particular l and l' 
combination - optional use is to store all radial integrals in memory, and also to store Hamiltonian matrix 
blocks for sorting in routine SETMX1; 

• RECUPD has no compulsory need - optional use is to store continuum-continuum matrix element blocks 
in the JTr representation while they are being recoupled, and also to store recoupling coefficients; 

• STGH has no compulsory need, and no requirement at all for electron scattering calculations (IPI3LPH=I) 
- optional use is to store the Hamiltonian matrix eigenvectors, and the dipole matrices while they are being 
transformed; 

• STG4 needs sufficient space for storing the entire H file in memory, and in the case of photoionization for 
storing vectors containing bound state data; in order to estimate how much memory is required in STG4, 
it should be noted that the largest items are normally the surface amplitudes Eq. (20) on the H file: these 
are of dimension NCHAN,MNP2, where MNP2=NCHAN,NKANG2+NCFGP, and there is one such array for each 
( N + 1 ) -electron symmetry; 

In order to run the codes on a PC with a small memory the variable MZKIL was introduced. This sets 
the number of kilowords of memory and is used along with &MEG so that the total memory allocation is 
(&MEG*1000+M7.KIL) kilowords. This variable has been set to 100 in all modules using the statement 

PARAMETER (MZKIL=IO0) 

&NC1 [50] highest number of N-electron target configurations for given symmetry. 
&NC2 [ 100] highest number of (N + 1)-electron configurations for given symmetry (max(NCFGP)), i.e. the 

range of index j in the second summation of Eq. (12). 
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Table 1 

The modules in which the preprocessing variables are used 

3 9 5  

Variable S T G  1 S T G 2  R E C U P D  S T G H  S T G 4  S T G L I B  C R E E S  

C H F  • • • • e, 

C H L  

FAC • • • • 

IPH • 
L M X  • • • • • 

L R I  • • • • 

L R 2  • • • • • 

M E G  • • • • • 

NCI • • 

N C 2  • • • • 

NPT 

NRI • • • 

NR2 • • • • 

O C C  • • • 

S L P  • • • • 

TAR • • • • 

&NPT [ 800] the number of  radial mesh points in the inner region. 
&NR1 [ 5] highest n for bound orbitals. 
&NR2 [20] number of  continuum orbitals for a given l (NIL~NG2). 
&OCC [ 15] maximum number of occupied shells in a given configuration. 
&SLP [80] number of  different ( N  + 1)-electron symmetries. 
&TAR [ 100] number of N-electron configurations or target states (max(NCFG, NAST)). 

The modules in which the preprocessing variables are used is summarised in Table l with • indicating its 
u s e .  

8.4. Using a text editor 

Rather than use PREP it may be more convenient to use a text editor. 
As an example of  using a text editor to preprocess a code, consider the UNIX stream editor, sed. If the 

unprocessed code is s t g l  .pre  and the sed commands are in file s t g l .  sed  then you would issue the following 
command : 
sod -f stgl.sed stgl.pre > stgl.f 

The processed output is piped to file stgl. f. This can be compiled in the normal way. 
The format of  the sed commands is for example 

s / ~ N P T / 8 0 0 / g  

which is a global (i.e. , the ending g) substitution of  the text &NPT by 800. This would correspond to setting 
the number of  radial mesh points in module STG1 to 800. 

An example of  a sed ( .  s ed)  file is given in Fig. 25. 

8.5. Memory requirements 

The dimensions given in Fig. 25 were used to compile the modules on a Cray Y-MP EL. The resulting 
memory requirements are given in Fig. 26. 

Module RECUPD has large memory requirements when the number of channels and continuum orbitals is 
increased. 
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Sample .sed file for RMATRXI. (comments begin with #) 

THE FOLLOWING DIMENSION PLANTS HAVE BEEN MADE : 

NUMBER OF SCATTERING CHANNELS (NCHAN) 

NUMBER OF CHANNELS IN LS COUPLING (NCHAN) 

LARGEST FACTORIAL AVAILABLE ON MACHINE 

=1 FOR ELECTRON SCATTERING ONLY, =2 OTHERWISE (IPOLPH) 

MULTIPOLES IN POTENTIAL (LAMAX) 

HIGHEST L+I FOR BOUND ORBITALS (LRANG1) 

HIGHEST L+I FOR CONTINUUM ORBITALS (LRANG2) 

MEGA-WORDS OF MEMORY, 

FOR INTEGRAL STORAGE, 

TO REDUCE DISK I/O, 

TO STORE H FILE, 

TO STORE BOUND STATE WAVEFUNCTION AND DIPOLE VECTORS 

TARGET N-ELECTRON CONFIGURATIONS FOR GIVEN SYMMETRY 

N+£ ELECTRON CONFIGS FOR GIVEN SYMMETRY 

RADIAL TABULAR POINTS 

HIGHEST N FOR BOUND ORBITALS 

NUMBER OF CONTINUUM ORBITALS FOR GIVEN L 

OCCUPIED SHELLS IN A GIVEN CONFIGURATION 

NUMBER OF DIFFERENT N+I ELECTRON SYMMETRIES 

TARGET STATES OR CONFIGURATIONS 

(NCFGP) 

(IRX(NIX)) 

(MAXNHF(L)) 

(NRANG2) 

(INAST) 

(NAST,NCFG) 

# 

# 

# 

# 

# 

# CHF (25) 

# CHL (25) 
# FAC (32) 

# IPH (2) 

# LMX (4) 

# LR1 (5) 

# LR2 (20) 

# MEG (i) 
# 

# 

# 

# 

# NCI (50) 

# NC2 (100) 

# NPT (800) 

# NRI (5) 
# NR2 (20) 

# OCC (15) 

# SLP (80) 

# TAR (100) 
# 

# KIL (100) KILO-WORDS OF MEMORY 

# You can use the KIL parameter to set kilo-words of memory. 

# At present this is set to i00. To reset the variable to say 500 

# you can use: 

# s/MZKIL=IOO/MZKIL=5OO/g 
# 

sI&CHFI25/g 

sl&CHL125/g 

s/&FAC/32/g 

s/&IPH/2/g 

s/&LMX/4/g 

s/&LR1/5/g 

s/~LR2/20/g 

s/&MEG/1/g 

slINCll5Olg 
s/&NC2/IOO/E 

s/&NPT/8OO/g 

sl&NRl/5/g 

s/&NR2/20/g 
s/&0CC/15/g 
s/&SLP/80/g 
s/~TAR/100/g 

Fig. 25. Samp~ sed file ~ r  the codes. 

STGI 1.9346 MWords 

STG2 1.6880 MWords 

RECUPD 2.3594 MWords 

STGH 1.5488 MWords 

STG4 1.4248 bYWords 

Fig. 26. Module memory requirements. These use the dimensions of Fig. 25. 
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9. GLOSSARY: detailed description of input/output data 

Appended in brackets ( ) to the name of an array is an indication of its dimensionality. 
Appended in braces { } are any recommended or default values. 
Appended in square brackets [ ] is a module name if the scope is restricted to one particular program 

module. 
ABUTL,ABUTV(k, i) : 

Buttle correction dipole matrix elements - in length and velocity forms - between basis functions and 
channels of each (N + 1)-electron state involved in the dipole transition; see Eq. (91). 

AC(i , i ' )  = (q~i 11 ~" II ,t,i,); i=  1,NCHAN; i ' =  1,MCHAN : 
required for the outer region contribution to the dipole matrix. See Section 1.3.2 and Eq. (92). 

AC {0.005} [STG4] " accuracy for the Crees asymptotic package, ASYPCK. Variable EROR is used within 
ASYPCK. 

AIJ(NAST, j ) ;  j = 1,NTCON : 
the weighting of the jth configuration (in the order generated by the CONHG package or read in from 
JREAD) for each target state. 

ALPHL,ALPHV [STG4] : 
frequency dependent dipole polarizability - in length and velocity forms - calculated using Eq. (121). 

B(NAST, k); k = 1, JNTCON [RECUPD] : 
the weighting factor of the kth configuration of each target level. These are equivalent to the coupling 
coefficients of Eq. (105) if JRELOP(3) = 1, or to the term-coupling coefficients of Eq. (109) if JRELOP(3) = 
0. 

BBIYrL, BBUTV(k, i) : 
Buttle correction dipole matrix elements - in length and velocity forms - after multiplying by the eigenvectors 
in STGH, between basis functions and channels of each ( N +  1 )-electron state involved in the dipole transition; 
see Eq. (91 ). 

BETALR, BETAVR [ STG4] : fl asymmetry parameter (real) - in length and velocity forms - calculated using 
Eq. (117). 

BETALI, BETAVI [ STG4 ] : (Imfl = 0, for checking purposes). 
BLC(i,i') = (~i [[ R II ~i,);  i =  1,NCHAN; i ' =  I,MCHAN : 

required for the outer region contribution to the dipole length matrix. See Section 1.3.2 and Eq. (92). 
BNORM(LRANG2) : dipole normalisation involving Buttle term. 
BST0 {0.0} : the value of the logarithmic derivative to be imposed on the continuum orbitals uii ( r ) ,  i.e. Eq. 

(16). 
BVC(i,i') = ( ~ i  II II i=  I,NCHAN; i' = 1,MCHAN : 

required for the outer region contribution to the dipole velocity matrix. See Section 1.3.2 and Eq. (93). 
C(NC0) [STG1] : 

Slater-type orbital coefficients in Eq. (70). The coefficients C(J) of the expansion can be supplied in 
Clementi form [34], which differ from Eq. (70) by a factor 

Af= x/2 • IRAD(J) ! 

(2 * ZE(J))(Im~D(J)+½ ) 

However, the program switches automatically between the two by checking the normalisation of the orbital. 
It is the Slater-type form which is actually used in STG1. 

CF(i,j,A) =2a~; i= I,NCHAN; j = I,NCHAN; A = I,LAMAX : 
asymptotic coefficients of multipole order A + 1, as in Eq. (29) and Eq. (88). 

CGC(m) = (2L + 1 ) - 1 / 2 C ( L ' I L ; m O ) ;  m = 1,MAXM1 : 
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Clebsch-Gordan coefficient divided by the square-root factor occurring in the definition of the reduced matrix 
element for each angular momentum L. See Section 1.3.2, and Eq. (94). 

COEFF(3,/+ 1); l +  1 = 1,LRANG2 : 
holds the three parameters for the Buttle correction fit for each continuum angular momentum l. Seaton's 
fitting procedure [77] is normally used as described in routine NEWBUT in STG1. See Eq. (67). 

CPOT(NPOT) [STG1 ] : the zero-order potential energy function in Eq. (79). 
DEL,DEV(/I,A') = (Ca I1D(') II Ca')  : 

the reduced dipole matrix elements - in length and velocity forms - between the R-matrix basis, where the ¢ 
are collectively the basis functions. See Eq. (48) and the description of routine DMEL is STG2. This matrix 
is normally input and output in blocks, so the array handling the I /O  does not have to be fully dimensioned. 

DELTA {0.00002} [STG1] : the energy increment for use in the BASFUN package. 
DEOPEN [STG4] : interval in energy when all channels are open. 
DL,DV(NCHAN) = (~j-  II M II ~0) [STG4] : 

dipole vector elements as defined in Eq. (120) - in length and velocity forms. 
DML,DMV(k, k') = (~k II D(I) II ~bk,) = VTDVk ,  : 

the reduced dipole matrix elements - in length and velocity forms - between the ~ basis. See Eq. (49) and 
the description of routine DMAT in STGH. 

DQN [STG4] : interval for effective principal quantum number n. 
DUJ(NPTS,NBOUND) : values of one-electron operator terms Qnl(r)  of Eq. (72). 
E [STG4] : electron energy in Ry. 
E0 [STG4] : first energy (in Ry if IRAD = 0, or z2-scaled Ry if IMESH = 1; and refers to the energy of the 

incident electron if IRAD = 0 or 1, or photon if IBAD = 2 or 3). 
E1 [STG4] : initial state energy in Ry relative to target ground state. 
EF [STG4] : final bound state energy for g f-value. 
EFFN [ STG4 ] : effective principal quantum number of the (N + 1 )-electron bound state relative to N-electron 

target ground state. 
EIG(i) [STG4] : eigenphase in ith channel. 
EIGENS(NRANG2, I + 1); l +  1 = 1,LRANG2 : 

k 2 eigenvalues in Ry for continuum functions of angular momentum li; see Eq. (15). 

EINCR [STG4] : energy interval (in Ry if ILIAD = 0, or z2-scaled Ry if IMESH = 1; and refers to the energy 
of the incident electron if IRAD = 0 or l, or photon if IRAD = 2 or 3). 

EMESH [STG4] : energy mesh (in z2-scaled Ry). 
EMIN,EMAX [STG4] : minimum, maximum electron energy (in z2-scaled Ry).  
EN : eigenvalue of the N-electron Hamiltonian matrix. 
ENAT(NAST) : the total energy of each target state in a.u. .  

If  supplying level energies as user input to module RECUPD, then if: 
JRELOP(3) = 0 the energies should give the observed splittings; 
JRELOP(3) = 1 the energies should be the theoretical ones. 

ENDS(NRANG2 + 1, LRANG2) = ui j (RA ) : 
boundary amplitudes. The NRANG2 + 1 location is reserved for Buttle amplitudes. 

EP [STG4] : photon energy in Ry. 
EST(NEST) [STGH] : observed target energies, in a.u. if EST(1) > 0, in Ry if EST(1) = 0, or expressed as 

cm- l  wave number if the values of EST are prefaced by a minus sign. This facility corrects the diagonal 
elements of the target Hamiltonian and yields correct channel energies in the asymptotic modules. The 
ordering of the target energies in this array must correspond exactly with the ordering of the target states 
defined by the user in module STG2 or RECUPD. See Section 5.4. 

ETA {0.00002} [STG1] : 
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the accuracy parameter to which the continuum basis eigenvalues k~ are to be computed. 
ETOT [STG4] : incident electron energy in Ry. 
FL,FV [STG4] : g f-value - in length and velocity forms - calculated using Eq. (118). 
H ( L E N G T H )  : contains upper triangle of N-electron Hamiltonian matrix for a given target LS symmetry, stored 

in rows as a one-dimensional array from routine BOUND in module STG2. Stored on output file ITAPE3 for 
use in routine BOUNDJ in RECUPD. 

HINT [STG1 ] : the basic integration step-length, see Eq. (77). 
HNP1 (MNP2, MNP2) : contains the (N + 1 )-electron Hamiltonian matrix blocks. 
I i =  1 to indicate that initial state is the lowest state of that symmetry. 
IBASSH(m, i); i = I,MAXORB; m = 1,NOPTN [STG2] : 

the number of electrons in the ith shell defining the mth basic configuration. The configurations retained will 
be the union of those generated by each basic configuration, subject to the overall restriction of MNAL and 
MXAL. 

IBBI : the number of bound-bound multipole integrals stored in the RKST02 array. 
IBBPOL(1 + 1, l '+  l , l ) ;  l +  1 = 1,LRANG1; l '+  1 = 1,LRANG1; A= 1,LAMIND : 

the position in the RKST02 array where the first bound-bound multipole integral corresponding to (l, I ') is 
stored (with l < l'). Only those multipole values A allowed by the triangle relations are stored. 

IBC {0} [STGI]  : 
= 0 normally, in this case the boundary radius RA will be automatically calculated and a value BST0 = 0 
chosen for the logarithmic derivative of the continuum functions at RA; 
> 0 to read in the values of RA and BST0 (record 13); 
> 1 to read the integration mesh parameters also (records 14). 

IBCPOL(I + l , l ' +  1,A); I +  1 = 1,LRANG1; / ' +  1 = 1,LRANG2; A= I,LAMIND : 
the position in the RKST02 array where the first bound-continuum multipole integral corresponding to (nl) 
bound, (n'l') continuum, is stored (with l < / ' ) .  Only those multipole values a allowed by the triangle 
relations are stored. 

IBUG1...9 {0} : debug parameters. See module descriptions. 
ICCPOL(/+ 1, l '+ 1,A); l +  1 = 1,LRANG2; l '+ 1 = 1,LRANG2; A= 1,LAMIND : 

the position in the RKST02 array where the first continuum-continuum muhipole integral corresponding to 
(1,/ ') is stored (with 1 < l'). Only those multipole values a allowed by the triangle relations are stored. 

ICHECK {1} [RECUPD] : 
= 0 to read in fine-structure energies and CI coefficients; 
= 1 for automatic calculation of energies and CI coefficients by diagonalization of the target Hamiltonian in 
routine BOUNDJ. 

ICODE : code version on output files. 
ICOPY, ITOTAL {0,999} : a restart facility for STG2. 

ICOPY is the position number of the last block of data to be copied from ITAPE2 to ITAPE3. It is not used 
in STG1. 
ITOTAL is the total number of data blocks required on ITAPE3. 
In STG2 each (N 4- 1 )-electron symmetry gives rise to four blocks of data on the output file: continuum- 
continuum, continuum-bound, bound-bound Hamiltonian matrix blocks, together with the associated asymp- 
totic coefficients. 

ICT((II 4- I2) * LRANGI • LRANGI) : 

for the direct continuum-continuum two-electron radial integrals, 
the first I1 * LRANG1 • LRANG1 locations indicate the position in the RKSTI]2 array where the first direct two- 
electron integral corresponding to the (11121314k) combination is stored ( I1  = min(2*LRANG1- 1, L+LP+  1 ) ); 
the second I2  * LRANG1, LRANG1 locations indicate the position in the RKST02 array where the first exchange 
two-electron integral corresponding to the (ll121314k) combination is stored ( I 2  = min(LRANGi 4-L, LRANG1 4- 
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LP) ). 
I C T B B ( I I +  1 , 1 2 + I , 1 3 * L R A N G I + 1 4 + I ) ;  l l +  1; 12+1 ;  13+ 1; 14+ 1 = 1,LRANG1 : 

for the bound-bound two-electron radial integrals, the position in the ISTBB1 array where the first and 
smallest k value associated with the particular (Ill21314) combination is stored. Further allowed k values are 
stored consecutively. The corresponding value in the ISTBB2 array gives the position in the RKST01 array 
where the first two-electron integral corresponding to the (ll121314k) combination is stored. 

ICTBC(ll + 1 , / 2 +  1 , / 4 .  LRANGI+/3 + 1); lj + 1; / 2 +  1; / 3 +  1 = I,LRANG1; / 4 +  1 = 1,LRANG2 : for the 
bound-continuum two-electron radial integrals, the position in the ISTBC1 array where the first and smallest 
k value associated with the particular (lll21314) combination is stored. Further allowed k values are stored 
consecutively. The corresponding value in the ISTBC2 array gives the position in the RKST02 array where 
the first two-electron integral corresponding to the (lll21314k) combination is stored. 

ICUT {0} [STG2] : is the total number of  configurations generated or read if not all of  them are to be stored. 
ICUT applies to the ( N  + 1)-electron states and allows you to exclude configurations from their description. 
This facility is only for the experienced user. See array IKIP.  

IDIAG {1} : NOT USED. 
IDISC1,  IDISC2,  IDISC3,  IDISC4 {8,9,10,11 } : scratch files. See module descriptions. 
IHX(1);  1 = 1,NIX [STG1] : 

the multiple of  the basic step length defining the integration step in the l th  interval, where IHX(I)  = 
2 ,  I H X ( I -  1) with IHX(1) = 1. 

IJNAST [RECUPD] : the total number of  (N  + l)-electron symmetries to be considered. 
IKEY [STG2] : similar to NKEY, but for the (N  + 1)-electron configurations. (The IKEY = 2 option is not 

normally used, but if it is, the ( N  + 1)-electron configurations are read from JREAD) 
I K I P ( 1 ) ;  I = 1,NCUT [STG2] : 

= 0 if the I th  configuration is not to be stored; 
= 1 if the I th  configuration is to be stored. 
See the description of  NCUT. This array is also used with ICUT. 

IL  [STG4] : L for selected symmetry (= 2 J  in intermediate-coupling). 
I L l ,  IL2 [STG4] : L for initial, final bound state (= 2J  in intermediate-coupling). 
ILRGL : the initial L or 2 J  value for an ( N  + l)-electron transition on the D file. 
IMESH [STG4] : 

= 1 to generate an equal energy interval mesh, in z2-scaled Ry; 
= 2 to generate an equal effective n energy mesh; 
= 3 to read energy mesh; 
= 0, as 1 above, but energies in unscaled Ry: 
electron energies if  II%AD = 0 or 1, photon energies if IRAD = 2 or 3; 
= - S  to choose mesh appropriate for cases with total 2S + 1, followed by data as for IMESH = 2. 
Note, for neutral targets, IMESH = 0 is the only valid option. 

INAST : the number of  ( N  + 1)-electron states. In STGH setting INAST--0 forces the program to loop over 
all available symmetries (normal operation). 

INDATA {10} [STGI  NAMELIST]  : 
optional parameter for the 'ORBITAL.DAT' input unit number to read user-supplied orbital function input 
data (either CIV3 or S.S.), i.e. starting with the KEY = - 9  header record in the case of  S.S. type input 
(either a blank record or KEY = - 5  in position T1, I5  can serve as a terminator).  Reset internally. 

IOUT=ITAPE3 {3} [STG1 NAMELIST] : 
optional parameter for the unformatted 'STG1.DAT' output unit number from STG1. Reset internally. 

IOUTDA=JDISC1 {21} [STG1 NAMELIST]  : 
optional parameter for the direct access 'RK.DAT' output unit number. Reset internally. 

IOPT1 [STG4] : 
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= - L  for all symmetries up to L (or 2J ) ,  followed by top-up in omega; 
= 1 for all symmetries available; 
= 2 for selected (N  + 1 )-electron symmetries. 

IP  [STG4] : = 0 for even parity, = 1 for odd parity, of  selected symmetry. 
I P 1 ,  IP2 [STG4] : = 0 for even parity, = 1 for odd parity, of  initial, final state. 
IPERT {0} [STG4] : 

= 0 to switch off long-range coupling, > 0 to include coupling: 
= I no top-up; 
= 2 top-up, i.e. include estimate for higher partial waves in total collision strength. 

IPHOT {0} [RECUPD] : NOT USED. 
IPOLPH : 

= 0 for target calculations only (i.e. no scattering); 
= 1 for electron scattering only (i.e. no dipole matrices); 
= 2 for photoionization and/or  electron scattering (normal option). 

IPOT(NPOT) [STG1] : defines the zero-order potential energy function in Eq. (79).  
IPRINT {0} : debug parameter. See individual program modules for descriptions. 
IPSEUD {0} [STGII : 

= 1 if model potentials for each l are to be read from ITAPE1; 
= i 1 if model potentials for each l are to be read in S.S. type input mode, where they are read as effective 
charges Zt (r). As explained in the description of  routine SPNORB the option - 1  allows computation of  the 
effective spin-orbit parameters srt from the derivative of  the pseudo-potential - -  contrary to normal + 1 when 
the Blume-Watson formalism is applied, which accounts correctly for exchange contributions from closed 
shells. 

IPTY(NAST) : = 0 for even parity, = 1 for odd parity, of  each target state. 
IPUNCH {0} : not normally used. 

Sometimes used as a switch to activate a program section for output. See individual program module 
descriptions for details. 

IRAD(NCO) [STGI]  : powers of  r in orbitals as in Eq. (70).  
ILIAD [STG4] : 

= 0 for electron collisions (produces file XOMEGA);  
= 1 tbr electron collisions and photoionization cross sections (produces files XOMEGA and XSECTN);  
= 2 for photoionization (produces file XSECTN);  
= 3 for polarizabilities (produces file XBOUND);  
= 4 for bound state data (produces file XBOUND).  

IRDEC [STG4] : NOT USED. 
IRELOP( 1 ) : 

= 0 to exclude the mass-correction term in the Hamiltonian; 
= 1 to include the mass-correction term in the Hamiltonian. 

IRELOP(2) : 
= 0 to exclude the one-electron Darwin term in the Hamiltonian; 
= 1 to include the one-electron Darwin term in the Hamiltonian. 

IRELOP(3) : 
= 0 to exclude the spin-orbit term in the Hamiltonian; 
= 1 to include the spin-orbit term in the Hamiltonian. 

IRK1 : total number of  bound-bound two-electron integrals stored in array RKST01. 
IRK2 : total number of  bound-continuum two-electron integrals, or the number of  continuum-continuum 

two-electron integrals for a given ( l , / ' )  combination, stored in array RKST02. 
IRK3 : number of  A values stored in array ISTBCl. 
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IRK4 : number of  h values stored in array ISTBB1. 
IRK5 : number of  bound-bound one-electron integrals stored in array 0NEST1. 
IRK6 : number of  bound-continuum one-electron integrals stored in array 0NEST2. 
IRK7 : number of  continuum-continuum one-electron integrals stored in array 0NEST3 for each continuum 

angular momentum l + 1. 
IRK8 : number of  multipole integrals stored in array RKSTO2. 
IRK9 : number of  bound-bound Darwin integrals stored in array P, DAR1. 
IRK10 : number of  bound-continuum Darwin integrals stored in array RDAR2. 
IRX(1);  I = 1,NIX [STG1] : 

the cumulative number of  integration steps from the origin to the end of the l th  interval; where the number 
of  points in the I th  interval is Nt --- IRK( I )  - IRX(I  - 1) with N1 = IP, X(1) .  

I S , I L , I P  = ( 2 S +  1, L, parity),  parity, = 0 for even, = 1 for odd [STG4] : 
( N  ÷ 1 )-electron symmetry. 
In intermediate-coupling, set ( I S ,  IL ,  IP)  = (0,2J,pari ty).  

I S 1 ,  IS2  [STG4] : 2S ÷ 1 for initial, final bound state (= 0 in intermediate-coupling). 
ISAT(NAST) : 2S ÷ 1, where S is the spin of  each target state (= 0 in intermediate-coupling). 
ISMIT(I-I-  1) {0} [STG1 NAMELIST]  : 

an optional array which declares some of  the S.S. type orbitals as correlation orbitals, for angular momentum 
l. It is the NAMELIST  equivalent to MAXNHF-MAXNLG. Thus {ISMIT( 1 )--40, ISMIT(2)=41,  ISMIT(3)=42} 
singles out the 3 orbitals 4s, 4p, and 4d, and the continuum orbitals will be Schmidt orthogonalised to them, 

ISPN, ILRGL, IPTY : the initial (2S-t- 1, L or 2J,  parity) values for an ( N  + 1 )-electron transition on the D00 
file. 2S ÷ 1 = 0 in intermediate-coupling. 

I S T I ( I ÷  1); l +  1 = 1,LRANG1 : 
the position in the 0NEST1 array where the first bound-bound one-electron integral corresponding to angular 
momentum l is stored. 

I S T 2 ( I ÷  1); l +  1 = 1,LP~NG1 : 
the position in the 0NEST2 array where the first bound-continuum one-electron integral corresponding to 
angular momentum l is stored. 

ISTBBI(IRK4)  : for the bound-bound two-electron radial integrals, the k values. 
ISTBB2(IRK4) : for the bound-bound two-electron radial integrals, the positions in the RKST01 array where 

the first integral corresponding to the (lll21314k) combination is stored. 
ISTBCl(IRKS) : for the bound-continuum two-electron radial integrals, the k values. 
ISTBC2(IRK3) : for the bound-continuum two-electron radial integrals, the positions in the RKST01 array 

where the first integral corresponding to the (11121314k) combination is stored. 
ITAPE1, ITAPE2, ITAPE3, ITAPE4 {1,2,3,4} : intermediate files for transferring data between program mod- 

ules. See module descriptions. 
In module RECUPD, ITAPE1 is used as a switch to decide whether or not to process dipole matrices. 

ITARG(i) = ni * 1 0 0 0 +  L2P(i) ;  i = 1,NCHAN [STG4] : 
where ni is the target state coupled to channel i, and L2P(i)  is the channel angular momentum. 

ITEMS= (NOPEN, (NOPEN + I))/2 [STG4] : 
number of  elements in the upper triangle of  the (symmetric)  K-mat r ix .  

ITMP(MTC) = 100 • i + f [RECUPD] : 
identifies initial i and final f states for MTC term-coupling coefficients for given angular momentum J on 
IPUNCH. 

ITOTAL {999} : the total number of  data blocks required on ITAPE3 (normally set to a large value). 
In STG1 each block of  integrals is counted. 
In STG2 each ( N  + 1 )-electron symmetry gives rise to four blocks of  data on the output file: continuum- 
continuum, continuum-bound, bound-bound Hamiltonian matrix blocks, together with the associated asymp- 



K.A. Berrington et al . /  Computer Physics Communications 92 (1995) 290-420 403 

totic coefficients. 
IWRITE {6} : standard output. 
IZESP {0} [STG1] : not used for a non-relativistic calculation. 

= 0 normally, for inclusion of  screening by closed shell electrons in evaluation of  the spin-orbit interaction; 
= - 1 to exclude screening in the spin-orbit interaction; 
> 0 (e.g. LRANG1) if screening factors (ZESP(L),  L = 1, IZESP) will be supplied for use in routine SPNORB. 

J1QNRD(i,k, j) ;  i =  1,2*NOCCSH(j) - 1; k =  1,3; j = 1,NCFG : 
angular momentum quantum numbers for the j th  configuration: k = 1 is seniority; k = 2 is ( 2 / +  1); k = 3 
is (2s + 1). i = 1, NOCCSH(j) is the set of  quantum numbers for the ith shell; the remaining NOCCSH(j) - 1 
are quantum numbers resulting from the coupling between the shells (see Hibbert [ 50,51 ] ). 

J2 ,  JP = (2J,pari ty) ,  where J is the total angular momentum of  the (N + 1)-electron system. 
JBBPOL(LRANG1, LRANG2) : same as IBCPOL, but for the bound-Buttle dipole integrals. 
JBCPOL(LRANG2, LRANG2) : same as ICCPOL, but for the continuum-Buttle dipole integrals. 
JDISC1 { 12} [STG1 ] : direct access 'RK.DAT' output. 
JDISC2 {0} : NOT USED. 

J J, JPTY(IJNAST) = (2J,parity) for each target level. 
JLRGL : the final L or 2J  value for an (N + 1)-electron transition on the D file. 
JNAST : the total number of  N-electron atomic or ionic target J levels. 
JNTCON(i); i = 1, JNAST : 

the number of  states from STG2 which couple to the ith target level. 
JP(IJNAST) : the parity of  the (N  + 1)-electron symmetry: 0 = even, 1 = odd. 
JPTY(JNAST) : the parity of  each target level: 0 = even, 1 = odd. 
JRELOP ( 1 ) : 

= 0 to exclude the mass-correction term in the Hamiltonian; 
= 1 to include the mass-correction term in the Hamiltonian. 

JRELOP(2) : 
= 0 to exclude the one-electron Darwin term in the Hamiltonian; 
= 1 to include the one-electron Darwin term in the Hamiltonian. 

JREL[IP(3) : 
= 0 to exclude the spin-orbit term in the Hamiltonian; 
= 1 to include the spin-orbit term in the Hamiltonian; 
= - 1 in module STG2, for calculation of  term-coupling coefficients in RECUPD. 

JRK2 : the number of  continuum-continuum two-electron integrals for a given (/, l ' )  combination, stored in 
array REST02. Set negative if there are more integrals for that particular (l, l~). 

JRE8 : the total number of  multipole integrals stored in the SKST02 array. 
JSPN, JLRGL, JPTY : the final (2S + 1, L or 2J, parity) values for an (N  + 1 )-electron transition on the D00 

file. 2S + 1 = 0 in intermediate-coupling. 
JSYM : number of  unique N-electron target symmetries. 
KEY [STGI ] : S.S. input parameter = - 9 ,  - 8 ,  - 7 , - 6  to distinguish blocks of  data. 
KOUNT : number of  dipole allowed transitions on D file. 
ERELOP= 4 • IRELOP(1) + 2 • IRELOP(2) + IRELOP(3) ; {0} [STG1 NAMELIST] : 

defines the Breit-Pauli options, which are zero by default unless one specifies KRELOP. Hence KRELOP = 7 
switches on all three Breit-Pauli one-electron terms, and includes screening of  the spin-orbit interaction 
(IZESP = 0). KRELOP has two further options: 
< 0 for all three one-electron terms, but in this case screening is user-specified: IZESP =1 KRELUP I; 
= 9 for all three one-electron terms, but with no screening (IZESP = - 1 ) .  

L,LP (as an ordered pair on the STG1 output file ITAPE3) : 
the continuum l value on each side of  a continuum-continuum two-electron integral. 
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L2P(i) ;  i = 1, NCHAN : orbital angular momentum of  continuum electron in ith channel. 
LAM {3}: 

--- 1 for electron scattering, when the dipole matrix is not needed there is some saving by just evaluating and 
storing the bound-bound multipole integrals; 
= 3 for evaluating all bound-bound, bound-continuum and continuum-continuum dipole integrals; these are 
required for photoionization calculations. 

LAMAX : is the maximum order of  multipole integrals to be evaluated. These integrals are required for the 
long-range potential coefficients and for the dipole matrix (set LAMAX > 2 for photoionization calculations). 

LAT(NAST) : the orbital angular momentum of  each target state ( 2 J  in intermediate-coupling). 
LCB {0} [ S T G I ]  : 

an untested feature, LCB > 0 if some of  the continuum basis orbitals are to be treated as part of  the bound 
basis; LCB - 1 is the highest angular momentum for such treatment. 

LENGTH(n) = NTCON(n) • (NTCON(n) + I)/2 : 
number of  elements in upper triangle of  N-electron Hamiltonian matrix for given symmetry on STG2 output 
file ITAPE3, for processing in module RECUPD. 

LJCOMP(MAX0RB) : the l value of  each bound orbital. 
LL,LSPN,LPTY = (L,2S + 1,parity) [STG2] of  each target state. 
LPTY : = 0 for even parity, = 1 for odd parity, of  target state. 
LRANG1 : specifies inclusion of  bound orbitals with l + 1 _< LRANG1. 
LKANG2 : specifies inclusion of  continuum orbitals with 1 4- 1 < LKANG2. 
LRGL, NSPN, NPTY = (L,2S 4- l ,pari ty):  for ( N  + 1 )-electron symmetry. 

In intermediate-coupling, set (LRGL, NSPN, NPTY) = (2J,0,pari ty) .  
LRGL : the total orbital angular momentum L, or 2 J  in intermediate-coupling. 
LSPN : = (2S + 1 ), where S is the total spin of  target state, = 0 in intermediate-coupling. 
LSVALU(JNAST, k) : defines the position in the LAT and ISAT arrays (read on unit number ITAPE2 from 

STG2) of  the 'parent '  L and S values of  the kth configuration which is coupled to each of  the JNAST target 
levels. 

MAG [STG4] : magnetic quantum number. 
MAXC {g~NR2} [STG1 NAMELIST]  : 
optional parameter to override the effective NRANG2 computed from MAXE; a very large value for MAXC (e.g. 
99) for the number of continuum functions reduces to the array length &NR2. 

MAXE [STGI NAMELIST] : 
compulsory parameter to specify the highest collision energy in Ry, ensures that S.S. type orbital input is 
suitably interpolated to secure enough tabulation points. And unless MAXC is specified it assigns a value to 

2 NRANG2 such that kNRANG2 ,~-< 2 * MAXE is satisfied. 
MAXLS [STG1 NAMELIST]  : 

compulsory parameter to specify the largest total target orbital angular momentum value L. 
MAXM1 : the number of  different L values occurring in the array CGC. 
MAXNHF(I 4- I) ; I + I = I, LKANGI : 
the maximum principal quantum number n of the bound orbitals for angular momentum I. 

MAXNLG(/+ I); l+ I = I,LRANGI : 
the maximum principal quantum number of  those bound orbitals to which the continuum orbitals are to be 
Lagrange orthogonalised, for angular momentum I. The continuum orbitals are then Schmidt orthogonalised 
to any remaining bound orbitals (e.g. the pseudo-orbitals).  I f  no Lagrange orthogonalisation is required for 
a given angular momentum then set MAXNLG(I 4- 1) = l. 

MAXNC(LRANGI) : 
the maximum principal quantum number n of  the core electrons to be represented by a model potential. 

MAXORB : the total number of  bound shells. 
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In STG2 input, the user can supply -MAXORB for the program to automatically generate MAXORB (n, l) values, 
so the record containing the NJCOMP, LJCOMP arrays does not have to be input. 

MAXPW [STGI  NAMELIST]  : 
compulsory parameter to specify the largest ( N  + 1 )-electron L. 

MCFGP : the number of  ( N  + l)-electron configurations in the initial state. 
MCHAN : the number of  channels in the initial state. 
MNAL, MXAL(MAXORB) [ STG2] : the minimum, maximum number of  electrons required in each shell. 
MNP1 : = NRANG2, NCHAN + NCFGP, i.e. order of  Hamiltonian matrix. 
MNP2 : = NOTERM • NCHAN + NCFGP, i.e. order of  Hamiltonian matrix. 
MORE : 

= 0 if no more ( N + 1 )-electron symmetries; 
= t if further ( N + 1 )-electron symmetries. 

MPTY [ S T G 4 ] =  + I S ,  where the sign is determined by parity, - 1  for odd parity, +1 for even parity. 
MTC [RECUPD] : number of  term-coupling coefficients for given angular momentum J on IPUNCH. 
MXAL(MAXORB) : the maximum number of  electrons required in each shell. 
MXE,EO,EINCR [STG4] : number of  energies at equal intervals, initial energy, increment. 
NAST : the number of  N-electron states. 

In STG2, if JRELOP(3) 4= 0, NAST = number of  N-electron configurations 

NBUG1... 9 {0} : debug parameters. See module descriptions. 
NBUT {1} [STGH] : NOT USED. 
NCFG : the total number of  different configurations for all N-electron states. 
NCFGP : number of  ( N  + 1 )-electron configurations for given symmetry. 
NCHAN : total number of  coupled channels for given symmetry. 
NC0 [ S T G I ]  : number of  Slater-type coefficients in Eq. (70) .  
NCONAT(NAST) : number of  channels coupled to each N-electron state. 
NCONHP= NRANG2 • NCHAN, i.e, total number of  continuum terms. 
NCUT {0} [STG2] : is the total number of  configurations generated or read if not all of  them are to be stored. 

NCUT applies to the target states and allows you to exclude configurations from the target description. This 
facility is only for the experienced user. See array IKIP.  
NDIAG {I} [STGZ] : 

= 0 to read the N-electron configuration coefficients and energies; 
= 1 to diagonalize the N-electron Hamiltonian to produce the configuration coefficients and energies (normal 
option).  

NELC = N : the number of  electrons in the N-electron target. 
NELCSH(i, NCFG) : 

the number of  electrons in the ith occupied shell for each N-electron configuration. 
NELCOR [ S T G I ]  : is set to NELC. 
NEN [STG4] : number of  impact energies. 
NEST {0} [STGH] : 

normally zero, but can be specified as the number of  target states, whose energies are then read in free format 
on the next record or records. See Section 5.4. 

NIX [STG1]  : 
( >  2) is the number of  intervals covering the range 0 < r < RA, typically NIX ~ 5. 

NJCOMP, LJCOMP(MKXORB) : the (n, l) value of  each bound orbital. 
NKEY [STG2]  : set 4 : 2  if the N-electron configurations are to be automatically generated: 

= - l  for minimum data; 
= 0 for specifying the same criterion for each state (normal option);  
= 1 for different criteria for each state, records 8-11 are therefore repeated for each state; 
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= 2 if the N-electron configurations are to be read in explicitly; and all configurations for all states are read 
as in from the formatted input file JREAD. 

NN {1} [STG4] : = 1, since only one bound state for each symmetry is considered. 
N0CCSH(NCFG) : the number o f  occupied shells in each N-electron configuration. 
N0C0Pd3(i, NCFG) : the position of  the ith occupied shell in the NJC0MP and LJC0MP arrays for each configu- 

ration. 
NOPEN [STG4] : number of  open channels. 
NOPTN {0} [STG2] : 

= number of  basic configurations specified in record 10 to restrict the number of  electron excitations; 
= - 1  for minimum input data; 
= - 2  for no configurations to be generated for this state (this facility is only used if NKEY = 1 and there are 
more than one N-electron states with the same symmetry; then the configurations need only be generated 
once).  

NOTI,NOT2 {NKANG2} [STGH] : 
as in the old STG3 one can still specify an interval NOT1 < NOT2 < NI~NG2 for a convergence test, but 
the answers no longer make sense in physics, because they are all Buttle corrected for NRANG2 continuum 
functions. 

NOTERM= NI~NG2 normally : is the number of  continuum basis orbitals used for each of  the channel angular 
momenta. 

NPOT {0} [STG1] : 
= 0 normally, in this case the zero-order potential in Eq. (15) is automatically generated; 
> 0 to read in the zero-order potential function as an analytic function - -  as in Eq. (79).  NPOT is the number 
of  terms; 
< 0 can be used along with S.S. type numerical input. See the description of  routine POTF. 

NPTS [STG1] : numbe r  of  radial mesh points in ( 0 , I ~ ) .  
NPTY : parity, = 0 for even, = 1 for odd. 
NRANG2 : is the number of  continuum basis orbitals to be evaluated for each of  the LP~NG2 angular momenta. 
NS,LS - as an ordered pair - [STG1] : (n , l )  quantum numbers of  orbital on S.S. file. 
NSHELL,LSHELL - [STG1] : (n, l) quantum numbers of  each shell in order of  occupancy, in the ground state 

configuration. Option for static potential determination in routine POTF. 
NSP : N-electron Hamiltonian matrix for given LSTr symmetry. 
NSPN : = (2S + 1), where S is the total spin, or = 0 in intermediate-coupling. 
NTC0 : 
= NTC0N if JRELOP(3) = I; 
= - ( n u m b e r  of  target terms of  given symmetry) if JRELOP(3) = - 1 .  

NTC0N(NAST) : the number o f  configurations stored for each target state. 
NTRAN [ STG4] : number o f  energetically allowed transitions in a triangle of  the (symmetric) collision strength 

matrix, the diagonal is included if the target is neutral, otherwise not. 
NTYP(NAST, j); j = I, NTCON : 

the position o f  the j th  configuration (in the order generated by the CONFIG package or read in from JREAD) 
for each target state. 

NXClTE(m); m = 1,NOPTN [STG2] : 
the maximum number o f  electrons to be excited from the mth basic configuration. 

N Z  = Z : the atomic number o f  the atom or ion (Z  > N > 1). 
NZED = Z : the atomic number of  the atom or ion. 
0MEGA(NTIL~N) [STG4] : total collision strength for each transition (i.e. summed over all partial waves, with 

top-up if IPERT = 2). 
0MEGA2 [STG4] : frequency of  the radiation in Ry. 
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0NESTI(IRKS) : the array containing the bound-bound one-electron integrals Q(m, n) as in Eq. (78). The 
lower triangle of the matrix of elements defined by (m, n) are stored consecutively by rows. 

0NEST2(IRK6) : the array containing the bound-continuum one-electron integrals. The matrix of elements 
defined by (m, n) are stored consecutively by rows. 

0NEST3(IRKT,LP~NG2) : the array containing the continuum-continuum one-electron integrals. The lower 
triangle of the matrix of elements defined by (m, n) are stored consecutively by rows. 

PHSUM [STG4] : eigenphase sum (modulo rr). 
PX(NPTS) [STGI] : contains model potential. 
QNMAX [STG4] : largest allowed value of effective n. 
I~ : the R-matrix boundary radius in ao. 
RDAR1 (IRK9) : bound-bound Darwin integral ID, (i, j )  as in Eq. (83). 
RDAR2(IRK10) : bound-continuum Darwin integral. 
RDAR3(IRKT) : continuum-continuum Darwin integral. 
RK(NOPEN, NOPEN) [ STG4] : K-matrix element. 
RKST01(IRK1) : two-electron integrals Rk(nlll, n212, n313, n414) as in Eq. (73). 
RKST02(IRK2) : 

the array containing all multipole integrals, and two-electron radial integrals involving continuum orbitals. 
Multipole integrals RKST02 contains all bound-bound, bound-continuum and continuum-continuum multi- 

pole length l~(nl, n ' f )  and dipole velocity Iv(nl, ntl t) integrals, as in Eq. (82) and Eq. (69). When 
k = 1, two numbers are stored consecutively, the first is the length dipole integral I [ and the second is the 
velocity dipole integral Iv. When k > 1 only the length multipole integral IL k is stored. For each l, l', k, 
the n, n' values are stored as follows: 
when l = f ,  the lower triangle of the bound-bound and continuum-continuum are stored consecutively by 
rows (in pairs if k = 1); 
when l v~ l ~, the elements are stored consecutively by rows (in pairs if k = 1). 

Bound-continuum two-electron integrals Rk(n;li, n212, n313,n414) in Eq. (73), where (n4/4) is the con- 
tinuum orbital. The integrals defined by (nln2n3n4) are stored in RKST02 consecutively by rows, i.e. n4 
varies most rapidly, n3 varies next most rapidly, and so on over their allowed ranges. 

Continuum-continuum two-electron integrals Rk(nlll,n212, n313,nal4) in Eq. (73), where (n2/2), (n4/4) 
are continuum orbitals in the direct integral, and (n2/2), (n3/3) are continuum orbitals in the exchange 
integral. 

RMASS 1 (IRK5) : bound-bound mass-correction/mass (i, j )  integrals, Eq. (84). 
RMASS2(IRK6) : bound-continuum mass-correction integrals. 
RMASS3(IRK7, l + 1 ) : continuum-continuum mass-correction integrals for l = 1, LRANG2. 
RONE {1.0} [STG4] : NOT USED. 
RSPOR1 (IRK5) : bound-bound spin-orbit/so (i, j )  integrals, Eq. (86). 
RSPOR2(IRK6) : bound-continuum spin-orbit integrals. 
RSPOR3(IILK7, l + 1 ) : continuum-continuum spin-orbit integrals for l = 1, LRANG2. 
SIGL, SIGV(NAST) [STG4] : photoionization cross section (in Mb) - in length and velocity forms - to each 

final target state. 
SKST02(JRK8) : dipole radial integrals involving Buttle term. 
TEMP(MTC) [RECUPD] : 
MTC term-coupling coefficients for given angular momentum J on IPUNCH. 

TEXT [STGI ] : S.S. input parameter, contains text, probably not used. 
TITLE(18) ,4 : 

contains 72 characters of text and is printed out on unit IWRITE as a heading for the calculation. 
In STG1, if the first four characters are: 

S.S. then radial orbital input is read in the format described by Crees et al. [38] and generated by routine 
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RADIAL of the SUPERSTRUCTURE code [43]; 
CIV3 then radial orbital data in CIV3 format [52] is expected; 
STO- then radial orbital data in STG1 format is expected. 

In each of these cases the NAMELIST format is invoked. 
TR,TI(NOPEN,NOPF_21) [STG4] : T-matrix element - real and imaginary parts. 
UJ(NPTS, j )  [STG1] : 

tabulation of all bound Pnt(r) and continuum uij(r) orbitals. The first j = I,NBOUND locations are bound, 
and are defined by the user input. 

VALOE(k) = E~; k = 1,MNP2 : 
(N + l)-electron Hamiltonian eigenvalues stored on H file, as in Eq. (13) and Eq. (24). 

Wl [STG4] : photon energy in Ry. 
WMAT(i,k) ----wik(RA); i =  1,NCHAN; k=  1,MNP2 : 

surface amplitudes stored on H file, as in Eq. (20). 
X(NTC) : eigenvector of the N-electron Hamiltonian matrix. 
XL,XV [STG4] : total photoionization cross section - in length and velocity forms - in Megabarns (i.e. 

summed over all final states included). 
XPART(i, j )  [ STG4] : partial collision strength for transition between target states i and j. 
XPOT(NPOT) [STG1 ] : the zero-order potential energy function in Eq. (79). 
XR(NPTS) [STG1] : values of radial mesh points r. 
ZE(NC0) [STGI] : bound orbital exponents as in Eq. (70). 
ZESP(I + 1); l + 1 = 1, IZESP {not normally specified} [STG1] : 

= the screening factor (i.e. a number between 0 and 1) for the spin-orbit parameter to angular momentum 
0 l (Blume and Watson [ 18]): effective ~" = ZESP(I+ 1) * ~,l,kl, where k stands for bound or continuum nl,kl 

orbitals. 

10. Additional programs to interface with current codes 

In this section we summarise the computer programs which are available to interface with the current R- 
matrix codes. These either provide input data, or process the output data, or augment the current codes, as 
outlined below. All programs are written in FORTRAN, and most are available from the CPC program library. 

10.1. Programs providing input data 

These programs can provide input data for use in module STG1 of the R-matrix package. 
• CIV3: a general program to calculate configuration interaction wavefunctions and electric-dipole oscillator 

strengths, Hibbert [ 52]. More up-to-date versions are available for fine-structure transitions, and for polarized 
pseudo-state generation (CIVPOL) (Hibbert, private communication). 

• SUPERSTRUCTURE: atomic structure package, Eissner et al. [43]. 
• MCHF: a general multi-configurational Hartree-Fock program, Fischer [46] (an interface to STG1 is under 

construction). 

10.2. Programs to process the output data 

These programs can normally use reactance K- or T-matrices output from external region codes such as 
STG4. 
• Fine structure collision strengths from LS-coupled reactance matrices: 

JAJOM: is widely used, more up-to-date versions are available from the Iron Project, Saraph [69,70] ; 
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LSTOIC: has not been used with R-matrix programs, Clark [33]. 
• Resonance fitting: 

RESON: detection and fitting of Breit-Wigner resonances, Tennyson and Noble [82]; 
RESFIT: multichannel resonance fitting, Bartschat and Burke [7]. 

• Angular distributions etc. : 
SCATTERING AMPLITUDES: amplitudes for scattering of electrons by hydrogenic and alkali-like systems, 

Moores [59]; 
SCAT/'AMPREL: amplitudes for scattering of electrons by atomic systems including relativistic effects, 

Bartschat and Scott [8]; 
OBSERVABLES: observable quantities from scattering amplitudes for inelastic electron-atom collisions, 

Bartschat [6]. 
MOMTRANF: differential and total cross sections for electron-atom or ion scattering using the momentum 

transfer formalism, Salvini [68]; 
DCS2: differential and integral cross sections for quantum mechanical scattering problems from reactance 

or transition matrices, Onda et al. [63]. 
• Belfast Atomic Data Bank: Hughes et al. [53] and Berrington et al. [ 15]. 

10.3. Alternative external region codes 

With suitable interfacing, these programs can take the internal region information in the H and D files output 
from module STGH, and provide the external region solutions to complete the problem i.e. they can replace 
module STG4. 
• Opacity Project external region codes, STGF, STGB, STGBB, STGBF: Seaton (private communication), 

Berrington et al. [ 1 1 ]. Restricted to ionic targets: 
STGF incorporates efficient Coulomb routines and a perturbation technique for the electron scattering 

problem; 
STGB calculates bound states; 
STGBB and STGBF allow bound-bound and bound-free radiative data for ground and excited states to be 

calculated. 
• FARM: a Flexible Asymptotic R-Matrix code, Burke and Noble [28]. This program incorporates the R- 

matrix propagator techniques of Baluja et al. [ 3 ] and Light and Walker [ 58], and the accelerated asymptotic 
expansion method of Noble and Nesbet [ 60], to provide an efficient program for solving the coupled equations 
for both neutral and ionic targets. Restricted to electron excitation. 

• VPM: Croskery et al. [39]. Uses a variable-phase method to solve the coupled equations for electron 
scattering. It has also been used in calculations of atomic free-free transitions. Restricted to neutral targets. 

• Norcross' program [61], used in the original versions of the R-matrix programs, has now been superseded 
by Crees [37]. 

• Coulomb programs: Barnett et al. [4] for open channel energies; Bell and Scott [9] for closed channel 
energies. These have been used for electron-ion scattering cases where the external region equations can be 
completely uncoupled, and the solutions are just Coulomb functions evaluated on the R-matrix boundary. 
Restricted to ionic targets. 

10.4. Other programs to augment current codes 

• No-exchange R-matrix program: Burke et al. [29]. This program is for electron-atom and -ion scattering 
in LS-coupling, and can be used for cases where exchange between the scattering electron and the target 
electrons can be ignored, e.g. for higher partial waves. 
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• RMATRX2: Burke et al. [26]. A new R-matrix approach for calculating cross sections for electron-impact 
excitation of complex atoms and ions. This new approach, based on an expansion of the total wavefunction 
in target configurations rather than in individual target states, and taking advantage of the special status of the 
scattered electron in the collisional wavefunction, enables the angular integrals to be performed very much 
more efficiently than hitherto. It also enables electron correlation effects in the target and in the electron-target 
collision complex to be treated consistently, eliminating pseudo-resonances. A major new program package 
has been written that implements this approach for electron collisions. Photoionization has not yet been 
implemented, nor have relativistic effects. 

• Dirac Atomic R-matrix Codes (DARC): Norrington and Grant [62]. A general program package based on 
GRASP [41 ] for electron-atom and electron-ion collisions has been written. Use of the Dirac Hamiltonian is 
essential when relativistic effects are dominant for high Z targets. 

1 1 .  T e s t  r u n s  

Two test runs will be described here, associated with the two mutually-exclusive modes of operation of the 
programs, namely an LS-coupling run, and a Breit-Pauli run. 

In order to maintain consistency with previous R-matrix program descriptions (Berrington et al. [ 12,13]; 
Scott and Taylor [73]) ,  and to allow comparisons with the fully relativistic treatments of Chang [31] and 
Norrington and Grant [62], we examine the similar electron scattering and photoionization processes: 

e -  + Ne + --* e -  + Ne + 

hv + N e  ~ e -  + N e  + 

The ionic states of Ne + are represented by single configurations: ls22s22p 5 and lsZ2s2p 6, in terms of the same 
bound ls, 2s and 2p orbitals, which are the analytic Hartree-Fock orbitals given by Clementi and Roetti [34]. 

In a more realistic but longer calculation, additional pseudo-orbitals, optimised in programs CIV3 or SU- 
PERSTRUCTURE, could be introduced to obtain improved configuration-interaction wavefunctions for the Ne + 
ionic states. Moreover, to obtain converged electron scattering cross sections, many more partial waves may be 
needed than the two considered in these test runs. 

The test runs are therefore rather restrictive in character, and do not fully illustrate the versatility of the 
program; nevertheless they do serve both as a useful benchmark to ensure that the programs are running 
correctly, and as a template for users to construct their own runs. In the latter case, the user should review the 
use of the debug parameters, as these could produce large amounts of unnecessary output in bigger runs. 

11.1. LS-coupling test run 

- The electron scattering test corresponds to elastic and inelastic scattering of electrons by the two lowest terms 
of the ion Ne+: 

Ne + ( 1 s22s22p 5) 2po 

Ne + ( 1 s22s2p6) 2S e 

where the total system of electron plus Ne + ion is in the lSe or ~po state. 
- The photoionization process corresponds to photoionization from the ground state of Ne leaving the Ne + ion 

in one of these two ionic states, 

hv + Ne ( 1 s22s 22p 6) 1S e ~ Ne + ( 1 s22sZ2p 5 ) 2po + e -  ( ks, kd) 
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--~ Ne + ( 1 sZ2s2p 6) 2se + e -  (kp)  

where the final state is a lpo state. 

411 

11.1.1. S T G I  test  run - L S - c o u p l i n g  

The input data is shown below. 

STGI TEST CASE : E + NEII (IS,2S,2P) non-relativistic 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 i 0 0 i 0 

0 999 0 0 0 0 0 

9 10 2 3 10 2 3 1 0 0 

2 2 

2 2 

5 

1 i 2 2 2 
9 .8112100  16 .0692000 

0 .91057  0 .03736  

5 

1 I 2 2 2 
9 .8112100  16.0692000 

-0 .  23117 -0 .  00377 
4 

2 2 2 2 
2. 5517500 4. 7006400 

O. 58442 O. 31344 

5 . 0  0 . 0  

3.7237700 8 .8049500 2 .4772400 

0 .00462  0 .06561 - 0 . 0 0 1 0 2  

3 .7237700 8 .8049500 2 .4772400 

0 .59087  - 0 . 0 9 3 1 9  0 .50552  

1.7533600 10.1572000 

0 .16267  0 .01293  

The test run output from STG1 begins with a printout of  the user-supplied data, which is explained in 
Section 2.3. 

The bound orbitals are first read in, and their orthonormality checked. Since they become negligible ( <  
4 x 10 -3 )  at r = 5 au, the boundary RA is chosen to be at this point: 

R-MATRIX BOUNDARY CONDITIONS 
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  

RA = 5.00000 

BST0 = .00000 

AMPLITUDE OF THE FUNCTIONS AT RA 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

is ORBITAL -1.2E-06 

2s ORBITAL 5.9E-04 

2p ORBITAL 3.5E-03 

The program automatically corrects the bound orbitals using Eq. (68) so that they vanish on the boundary. 
An integration mesh is generated by the program to give sufficient mesh points, both in the peaks of the bound 
orbitals and in the oscillation of the continuum orbitals. As discussed in Section I, the zero-order potential 
in Eq. (15) is arbitrary, and can be chosen by the user or generated by the program. We chose the latter m 
the test run by setting NPOT=0, to generate the static central potential of the 9-electron ground state using the 
bound orbitals supplied. 

The continuum orbitals arc now generated by solving Eqs.(15-16); there are NRANG2=IO orbitals for each 
continuum angular momentum up to I = LRANG2--1 = 2. The calculated eigenvalues and their boundary 
amplitudes are printed out in the test run output. Here is a sample: 

0RBITALS FOR L = 0 
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AMPLITUDE AT RA EIGENVALUE (RYD) NODES 

• 65426  - . 3 7 3 2  2 

- . 7 3 0 4 7  . 8 1 8 0  3 

. 6 9 1 0 3  3 . 1 7 3 0  4 

- . 6 7 2 8 7  6 . 4 5 6 7  5 

. 6 6 3 2 4  1 0 . 6 1 3 0  6 

- . 6 5 7 3 8  1 5 . 6 2 4 4  7 

• 65345  2 1 . 4 7 9 6  8 

- .65056 28.1712 9 
.64832 35.6916 10 

- .64651 44.0353 t l  

Also shown are the overlap integrals between the bound and continuum orbitals generated for each l; the 
overlap integrals should form a unit matrix, so this (optional) output gives some indication of the numerical 
accuracy of the integrations. 

All radial integrals associated with this bound and continuum orbital basis are then calculated. With NBUG8=I 
in the test run, the bound-bound integrals are printed out, and these are shown in the output. All integrals are 
written in unformatted form to the output files for use in program STG2. 

A useful facility not shown here is a dimension test run with NBUG7=I. It is particularly useful to establish 
the number of two-electron radial integrals to be stored in memory in both STG1 and STG2, in order to be 
able to supply a reasonable value for the ~MEM preprocessing parameter (see Section 8). 

11 .1 .2 .  S T G 2  t e s t  r u n  - L S - c o u p l i n g  

The input data is shown below. 

STG2 TEST CASE : E + NEII 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 999 2 0 0 0 

3 9 2 - 1  0 2 

1 0 2 0 2 1 

2 i 5 

1 2 1 

0 2 0 

2 i 5 

0 1 0 

1 1 1 

(IS,2S,2P) non-relativistic 

0 0 0 0 0 0 

2 1 3 

-i 0 1 

NTYP = 2 

AIJ = 1.0000000 

ENAT = -126.733017 

NTYP = 1 

AIJ = 1.0000000 

ENAT = -127.817513 

The test run output from STG2 contains a printout of the user-supplied data, which is explained in Section 3.3. 
The user specifies the orbital angular momentum, spin and parity of each N-electron target state being included 

in the calculation; in the test run these are the two Ne + states: 2po and 2Se. The N-electron configurations 
are generated in STG2 with the criterion that the minimum number of electrons in each shell should be given 
by ls22s2p 5. The test run output shows that this criterion produces the required single configurational states: 
(1 sX2s22p 5) 2po and (I  s22s2p 6) 2se. Since NDIAG=I here, the energies of these two states, together with the CI 
coefficients, are determined by diagonalizing the target Hamiltonian as in Eq. (6): 
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The user then specifies the total orbital angular momentum, spin and parity of each (N + 1 )-electron state; 
here we examine just two: l Se and 1po (the former defines the initial state for photoionization). For each total 
symmetry, the (N + 1)-electron configurations are generated using the same criterion as above (there is in 
fact only one such configuration: ls22s22p6); the channel coupling arrays are generated; the (N + 1)-electron 
Hamiltonian matrix is constructed as in Eq. (14): and the long-range potential coefficients calculated as in Eq. 
(29). These data are written to the unformatted output file (ITAPE3) for use in STGH. 

Because IPOLPH=2 is specified, STG2 proceeds to calculate dipole matrices as in Eq. (48), (in length and 
velocity form) involving all (N + 1)-electron states satisfying the dipole selection rules. The test run output 
shows the calculation of the dipole matrix for ~S e - 1po. These dipole matrix elements are written out to the 
second unformatted output file (ITAPE4) for use in STGH. 

The unformatted files from STG1 are normally deleted after the STG2 run, as they are no longer needed. 

11.1.3. S T G H  tes t  run - L S - c o u p l i n g  

The input data is shown below. 

STGH TEST CASE : E + NEII (IS,2S,2P) non-relativistic 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 

0 0 2 

1 i0 10 i 

0 1 0 

0 0 

The test run output from STGH contains a printout of the user-supplied data, which is explained in Section 5.3. 
STGH loops over each total symmetry to diagonalize the (N + 1 )-electron Hamiltonian matrices supplied on 

input; the test run output shows the resulting eigenvalues for the two symmetries concerned: 1se and Ipo. For 
the first symmetry 

ENERGY LEVELS WITH RESPECT TO THE GROUND STATE (AT -255.63503 RYDBERGS) 

46. 08270 42.71760 37. 73945 34. 70748 30. 22081 27. 51799 

23.53334 21.15471 17.68543 15.62532 12.68740 10.93153 

8.54977 7.04874 5.28327 3.91398 2.93991 1.79142 

i. 46516 -. 10568 -1. 54720 

The basic scattering data, including the long-range potential coefficients, and the eigenvalues and surface 
amplitudes of Eq. (26), are written to the unformatted H file, as described in Section 5.6. 

Because IPOLPH=2 is specified, dipole matrices are input and transformed as in Eq. (49) in STGH by 
multiplying through by the eigenvectors from the (N + 1)-electron states associated with the transition; in 
this case for lse - lpo. These transformed dipole matrix elements are output to the D files, as described in 
Section 5.7. 

The unformatted files from STG2 are normally deleted after the STGH run, as they are no longer needed. In 
contrast, the H and D files are normally archived for later use. 

11.1.4. S T G 4  test  run - L S - c o u p l i n g  

The input data is shown below. 

-3 1 1 :IPRINT, IKAD, IPERT 

1 .E-3 :AC 

1. : RONE 

1 : IMESH 

2 2 . 5  0 . 5  

2 
1 0 0  

1 1 1 :SLPI CASES 
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The test run output from STG4 contains a printout of the user-supplied data, which is explained in Section 6.3. 
Note the IRAD=I option has been chosen here: for the purposes of the test run, both electron scattering and 
photoionization cross sections are calculated for the same scattering states and electron energy range• The 
accuracy parameter (AC) has been set to 10 -3. 
- In the case of electron scattering, the collision strengths for e -  + Ne + (ls22s22p 5 2W - ls22s2p 6 2se), 

summed over the two partial waves (Ise and 1W) for each energy, 2.5 and 3,0 Ry, are output in file 
XOMEGA: 

i0 9 2 OMEGA 

• O00000E+O0 .216899E+01 

2.50000E+00 i 9.298E-02 

3.00000E+00 I 9.344E-02 

with the partial collision strengths in file XDUMP (since IPKINT = - 3 ) :  

NE = 9 NZ =i0 2-STATE RA = 5.0 L2= 3 K-MATRIX 

S L PI ENERGY PARTIAL COLLISION STRENGTH 

i 0 0 2•500000E+0 1.831E+00 4•I09E-02 7.I16E-01 

i I i 2.500000E+0 1.065E+00 5.188E-02 S.O24E+O0 

1 0 0 S.OOOOOOE+O 1.798E+00 4.190E-02 5.508E-01 

1 I i 3.000000E+O 8.431E-01 5.154E-02 3.789E+00 

- In the case of photoionization, the first symmetry specified is taken as the initial state of Ne (i.e. Ise), and 
the lowest bound state is calculated (this is the ground state of Ne, ls22s22p6): 

BOUND STATE ENERGY = -128.5898588 A.U. 
SEPARATION FROM THE LOWEST POLE = -. 1253460E-02 A.U. 

RELATIVE TO IONIZATION THRESHOLD= -1.54469 RYD. 

EFFECTIVE N = .8046 

The total photoionization cross section from this state to all possible final states (i.e. 1po for e -  + Ne +) 
is then calculated for the two photon energies, and output in file XSECTN in length and velocity forms: 

i0 9 2 PHOTOIONIZATION 

• 000000E+00 .216899E+01 

1 0 0 1 

- .  154469E+01 2 

0. PHOTON ENERGY(Ryds), CROSS SECTION (Mb) L,V: 
4. 044692E+00 7. 319E+00 5. 601E+O0 

4. 544692E+00 8. 757E+00 5. 126E+00 

Clearly, STG4 can be repeated using the same H and D files with different options, e.g. energy ranges and 
IPRINT. Note that the D files are not required if only electron scattering or bound state calculations are being 
performed. 

11.2. Breit-Pauli test run 

The electron scattering test corresponds to elastic and inelastic scattering of  electrons by the three lowest  
fine-structure levels of  the ion Ne+: 

Ne + ( 1 s22s22pS) 2P~3/2 

Ne + ( 1 s22s 22p 5) 2P~/2 

Ne + ( 1 s22s2p 6) 2 S~/2 
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where the total system of  electron plus Ne + ion is in the 0 e or 1 ° state. The photoionization process corresponds 
to photoionization from the ground state of  Ne leaving the Ne + ion in one of these three ionic levels, 

h v + Ne ( 1 s22s22p 6) 1S~) ~ Ne + ( 1 s22s22p 5 ) 2P~3/2 + e -  ( ks, kd) 

Ne+( 1 s22s22p 5 ) 21~1/2 + e -  (kd, ks, kd) 

Ne + ( 1 s22s2p 6) 2S~/2 + e -  (kp) 

where the final state is a 1 ° state. 

11.2 .1 .  S T G 1  run  - B r e i t - P a u l i  

The input data is shown below. 

STG1 TEST CASE : E + NEII (1S,2S,2P) Breit-Pauli 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 
0 999 0 1 1 1 0 

9 10 2 3 10 2 3 1 0 0 
2 2 

2 2 

5 

1 1 2 2 2 

9 .81121  16 .06920  

0 .91057  0 .03736  

5 

1 1 2 2 2 

9 .81121  16 .06920 
- 0 . 2 3 1 1 7  - 0 .  00377 

4 
2 2 2 2 

2 .55175  4 .70064  
O. 58442 O. 31344 

5 . 0  0 . 0  

3 . 7 2 3 7 7  8 . 8 0 4 9 5  2 . 4 7 7 2 4  

0 . 0 0 4 6 2  0 . 0 6 5 6 1  - 0 . 0 0 1 0 2  

3 . 7 2 3 7 7  8 . 8 0 4 9 5  2 . 4 7 7 2 4  
0 . 5 9 0 8 7  - 0 . 0 9 3 1 9  0 . 5 0 5 5 2  

1.75336 10.15720 
0 .16267  0 .01293  

The test run is similar to the LS-coupling case (Section 11.1.1), except that the Breit-Pauli operators in 
Eqs . (60-62)  have been switched on: IRELOP(1)---1 for the mass-correction term; IRELOP(2)=I for the Darwin 
term; IRELOP(3)--1 for the spin-orbit term. Extra one-electron integrals are therefore calculated and stored on 
the output file. 

11.2 .2 .  S T G 2  run  - B r e i t - P a u l i  

The input data is shown below. 

STG2 TEST CASE : E + NE II (18,2S,2P) Breit-Pauli 

0 0 0 

0 0 0 

0 999 2 

3 9 2 

1 0 2 

2 1 5 

1 2 1 

0 2 0 

2 1 5 

0 1 0 
1 3 0 

1 1 1 

0 0 0 0 0 0 

0 0 0 2 0 0 
1 1 1 

-1  0 5 -1  0 1 
0 2 1 

0 0 0 
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1 3 1 
2 3 1 

The test run is similar to the LS-coupling case (Section 11.1.2). However, because IRELOP (3)=1 is specified, 
for the spin-orbit interaction, the user must specify the orbital angular momentum, spin and parity of each N- 
electron configuration being included in the calculation; in the test run there are two Ne + configurations: 
(ls~2sZ2pS)2P ° and (ls22s2p6)2S e. Since NDIAG=I here, the target Hamiltonian matrix elements involving 
these configurations are calculated in STG2 for later diagonalization in RECUPD. 

In the Breit-Pauli mode, STG2 calculates the non-fine-structure ( N +  1 )-electron Hamiltonian matrix elements 
required by the right hand sides of Eqs.(104-107), with the N-electron configurations as the 4'/ in the first 
summation of Eq. (12), together with the long-range potential coefficients. In this test run we only require the 
total symmetry of the system to be 0 c and 1 ° (the former defines the initial state for photoionization). Since 
we must run STG2 for all L S  symmetries which can contribute to the required J~r symmetries, this means that 
we specify five SLTr symmetries here: 

LRGL=0, NSPN=I, NPTY=0 

L R G L  = 1, N S P N  = 3,  N P T Y  = 0 

L R G L  = 1, N S P N  = 1, N P T Y  = 1 

L R G L  = 1, N S P N  = 3, N P T Y  = 1 

L R G L  = 2,  N S P N  = 3, N P T Y  = 1 

(note that LRGL=0, NSPN=3, NPTY=I could also couple to 1 °, but there are no coupled channels for this L S  

symmetry). The LS-coupled Hamiltonian matrix elements, together with the long-range potential coefficients 
and other data, are stored on the unformatted output file (ITAPE3), for use in RECUPD. 

Since we specify IPOLPH=2, STG2 then calculates all possible dipole matrices between the (N  + 1 )-electron 
states defined above, subject to the appropriate selection rules, and writes them to the second unforrnatted 
output file (ITAPE4), for use in RECUPD. 

The unformatted files from STG1 are normally deleted after the STG2 run, as they are no longer needed. 

11.2.3.  R E C U P D  run  - B r e i t - P a u l i  

The input data is shown below. 

RECUPD TEST CASE : E + NEII (IS,2S,2P) Breit-Pauli 

0 0 0 0 1 0 3 0 

0 0 0 0 0 0 0 3 0 

3 I 0 

3 1 l 

l l 0 

2 

0 0 

2 1 

The test run output from RECUPD contains a printout of the user-supplied data, which is explained in 
Section 4.4. 

The user specifies the J~r symmetry of each N-electron target state to be included in the calculation; in the test 
1 o I e run there are three Ne + levels: 3°, ~ and ~ . Since ICHECK=I here (NDIAG=I having been specified in STG2), 

the energies and CI coefficients of the target levels are calculated by diagonalizing the target Hamiltonian for 
each J ~  symmetry. These are shown in the test run printout: 

LEVEL J PARITY ENERGY EI/2RY (EI-E1)/RY 
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1 1.5 ODD -127.9569579 

2 0.5 ODD -127.9532454 

3 0.5 EVEN -126.8659475 

LEVEL: EIGENVECTOK 

1 1 .0000000 
2 1.0000000 

3 1 .0000000 

LEVEL, LVEC JNTCON: COMPONENT TERMS 

0.0000000 

0.0074251 

2.1820208 

1 1 1 1 

2 1 1 1 
3 1 1 2 

The user then specifies the JTr symmetries of the (N + 1)-electron system required. The test run printout 
shows that the first two L S  symmetries contribute to 0 e, while the remaining three contribute to 1 °, the two JTr 
symmetries requested. 

Each Jr;" symmetry is considered in turn, and RECUPD reads from file ITAPE2 the non-fine-structure 
Hamiltonian matrices calculated in STG2. These are recoupled according to Eqs.(104-107). Then all necessary 
spin-orbit Hamiltonian matrices are calculated and added to the transformed non-fine-structure Hamiltonian 
matrices to give the left hand sides of Eqs.(104-107). These transformed Hamiltonian matrices, together with 
the long-range potential coefficients recoupled according to Eq. (108), are written to the unformatted output 
file (ITAPE3) for use in STGH. 

Since STG2 was run with IPOLPH=2, RECUPD can read from file ITAPE1 the LS-coupled dipole matrix 
elements in both length and velocity form calculated in STG2. These matrix elements are then combined to 
form dipole matrices between the specified J ~  states, according to the appropriate selection rules: in this case 
for 0 e - 1 °. The transformation is applied as described by Eqs.(112-115). The transformed dipole matrix 
elements are written to the second unformatted file (ITAPE4) for use in STGH. 

The unformatted files from STG2 are normally deleted after the RECUPD run, as they are no longer needed. 

11.2 .4 .  S T G H  r u n  - B r e i t - P a u l i  

The input data is shown below. 

STGH TEST CASE : E + NEII (IS,2S,2P) Breit-Pauli 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 
0 0 2 

1 10 10 1 

0 0 0 
0 0 

The test run is similar to the LS-coupling case (Section 11.1.3), except that the input consists of the two 
unformatted files from RECUPD rather than from STG2. The recoupled Hamiltonian matrices are diagonalized 
and data written to the H file, and the transformed dipole matrices written to the D files, for the total JTr 
symmetries requested. 

Again the unformatted files from RECUPD can normally be deleted after the STGH run, as they are no 
longer needed, with the H and D files normally archived for later use. 

11.2 .5 .  S T G 4  run  - B r e i t - P a u l i  

The input data is shown below. 

-3 1 1 :IPRINT, IRAD, IPERT 

I.E-3 :AC 

1. :KONE 

1 :IMESH 
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2 2 .5  0 . 5  

2 

0 0 0  

0 2 1 : J P I  CASES 

The test run is similar to the LS-coupling case (Section 11.1.4), except the input data specifies Jrr rather 
than SLy" for the total (N + 1)-electron symmetries. Note that IS (=2S + 1 in LS-coupling) is specified as 
zero here, to indicate intermediate-coupling. 
- In the case of electron scattering, the collision strengths for e -  + Ne + (2P~3/2 2 P~*/2, Zoo 2 ~e 2po 2 "3/2-- ~]/2' -1 /2-  

S ~ / 2 ) ,  summed over the two partial waves (0 e and 1 °) for each electron energy, 2.5 and 3.0 Ry, are output 
in file XOMEGA: 

i0 9 3 OMEGA 

• O00000E+O0 • 742513E-02 .218202E+01 

2.50000E+00 3 2.679E-01 7.077E-02 4.859E-02 

3.00000E+00 3 2.768E-01 7•300E-02 5.257E-02 

with the partial collision strengths in file XDUMP (since IPRINT = - 3 ) :  

NE = 9 NZ =i0 3-STATE RA = 5.0 L2= 3 K-MATRIX 

S L PI ENERGY PARTIAL COLLISION STRENGTH 

0 0 0 2.500000E*0 1.617E+00 1.535E-01 1.553E+00 2.785E-02 1.379E-02 7.213E-01 

0 2 I 2.500000E+0 2.099E+00 I•144E-01 1.583E+00 4.292E-02 3.480E-02 5.480E+00 

0 0 0 3.000000E÷O 1.623E+00 1•489E-01 1.595E+00 2.812E-02 1.393E-02 5.607E-01 

0 2 I 3.000000E+0 2.052E+00 1.279E-01 1.394E+00 4.488E-02 3.864E-02 7.001E+00 

- In the case of photoionization, the first symmetry specified is taken as the initial state of Ne (i.e. 0e), and 
the lowest bound state is calculated (this is the ground state of Ne, ls22s22p6). The total photoionization 
cross section from this state to all possible final states (i.e. 1 ° for e -  + Ne +) is then calculated and output 
in file XSECTN: 

i0 9 3 PHOTOIONIZATION 

• O00000E+O0 .742513E-02 .218202E+0i 

0 0 0 1 

- .  153960E+01 2 

O. PHOTON ENERGY(Ryds), CROSS SECTION (Fib) L,V: 

4. 039603E+00 7. 312E+00 5. 605E+00 

4. 539603E+00 6. 749E+00 5. 131E+O0 

Clearly, STG4 can be repeated using the same H and D files with different options, e.g. energy ranges and 
IPKINT. Note that the D files are not required if only electron scattering or bound state calculations are being 
performed. 

11.3. Timings on a Cray Y-MP EL 

The 'USER CPU Time' in seconds required to run the Breit-Pauli test case on a Cray Y-MP EL is shown 
below• 

STGI 23 .8635  

STG2 1.8893 

RECUPD 1.7808 

STGH 2.1838 

STG4 11.3464 
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